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Abstract. We present three continuous time neural systems built
with Hebbian connections and a new type of neurons, useful for signal
processing' applications. Some of the weights obey a classical Hebbian
adaptation law, other weights obey a natural generalization of Hebbian
adaptation laws, related to laws described by Oja and Sanger, but with-
out bidirectional information flow.

The first application is recursive least squares estimation (RLS). The cor-
responding neural network is a continuocus time limit of the well known
discrete time Gentleman Kung systolic array. This application was worked
out in [3, 4], with emphasis on the mathematical background and the re-
lation with systolic arrays. Here we put more emphasis on the neural
interpretation, and give another dgrivation.

Secondly, an extended system, obtained by putting a non adaptive clas-
sical one layer linear neural network in front of the RLS network, can be
used for linearly constrained beamforming applications. ) ’
Thirdly, if the weights of this extra layer are made adaptive in the clas-
sical Hebbian sense and the RLS network is made to work at double
speed, one obtains a system that can be used for subspace tracking and
principal component analysis. The input output behavior of the system
is identical to a continuous time limit of the neural stochastic gradient
ascent algorithm of Oja, but it doesn’t use bidirectional connections.
All systems are formulated in continuous time, but can be integrated
exactly for piecewise constant input, yielding discrete time systolic algo-
rithms.
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with its authors. In addition, this research was supported by the F.K.F.O. project G.0292.95.
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1. Recursive least squares estimation

In this section, we first give a purely descriptif explanation of the system in
fig. 1 Then we briefly introduce the recursive least squares problem (RLS), and
explain how fig. 1 provides a solution to it.
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Figure 1: Neural network for recursive least squares estimation and detailed
signal flow graph for a neuron ¢ and a synapse (i, )

The balls in the fig. 1 are neurons. They receive a current total input #;
and keep track of r; ; which is an exponentially weighted quadratical average of
past input 7; ; (see below). The output ¢; of a neuron i equals the current total
input 7; ; divided by r; ;. The horizontal lines are axons sending the output ¢;
of a neuron i to other neurons to its right. The vertical lines carrying signals
7;,; are dendrites, accumulating products of signals ¢; coming from neurons to
the left of the line and weights —r; ; of the synapses (i,j) between neuron i
and j. The signal #; j carries the accumulated input to neuron j from the first
i —1 neurons. The adaptation of the synapses r; ; is Hebbian in the sense that
it is proportional to presynaptic information ¢; and postsynaptic information
‘é‘("h‘,j + 7i,5+1). That is a classical Hebbian synapse, except for the fact that
normally the total accumulated input #; ; to neuron j or even the output g; of
neuron j would be used as postsynaptic information. However, in view of the
configuration, where input to a neuron is accumulated on one vertical line, the
present law is not far fetched, as it uses even more local information.

The continuous time recursive least squares problem (RLS) can be stated
as the following time dependent optimization problem

n-1

w:(t),.r.r.l,iul;],,_l(t) /;tw(zn(T) - E zg(r)w’-(t))2e)\(r—:)d1_ (1)

i=1
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That is, at any time instant ¢ the signals zl, , T, are considered to be func-
tions on the interval (—oo,t]. And Y I 1 ziw (t) where w}(¢) denotes the
optimal w;(t), is the best approximation of z, as a linear combination of the
signals z;, i = 1,. — 1, in terms of the norm ||f||? = f_ f(r)2er=t)dr,
The quantity A > 0 is called the forgetting rate and determmes the relative
importance of past mformatlon In some applications, one is interested in
the approximation Z.—-1 z;w}(t) itself, in other applications in the residual
za(t) = > ois 11 z;(t)w} (t). Below, we will assume the latter. In all applications
one is not interested in the whole function over (—oo, ] (note that the solution
St @wi(t) yields a whole new function over (—o00,t] for any new t) but only
in the “last” value of this function at time f. We will use the following notations
for the resulting function of ¢ taking all these “last” values

o ([ {21, 2ac1}(t) = zalt) — Ticy milt)wi (2) @)
zn L{z1, ., 2n1Mt) = za(t) —za || {21,..., a1} (2)
We will show that if the signals z1, ..., z, are supplied as inputs to the sys-

tem of fig. 1, that the signal 9, », gives the wanted residual z,, L {z1,...,2,-1}.
This problem and its discrete time counter part have a broad spectrum of
applications, such as adaptive noise cancellation, adaptive equalization, beam
forming. We refer to [5, 6].
In (3, 4] we have given a matrix derivation of the algorithm implemented
by the neural network of figure 1. The algorithm is given by

R = upph(R"TzzTR-1)R - %R
where R is an upper triangular matrix storing the weights and where the op-
erator upph takes the upper triangular part and halves the diagonal elements.
This adaption law fits in a class of adaptation laws, with a simple parallel
realization, introduced in [4].

Another derivation (less constructive, but giving more insight in the mean-
ing of the different signals) starts from an analysis of the case where n = 2. In
that. case the solution is

f_ z1(7)zo(T)e =T dr
ft zl('r) e~Mt-7)dr

®)

T2 .L:Bl = $2—£1(t

This can be read as a projection of z; on z; (a new projection for any new t) in a
function space over (—o0, ], with inner product (f, g) = f:w F(r)g(r)e"2t=7)dr,

Introducing m 1 = =1, M2 = 22, 111 = \/f_t_co z3(r)e~At=7)dr, 115 =
f:oo z1(r)za(r)e~*t=7)dr/ry 4, and ¢; = ;’:—}1-, (3) becomes
me=r2lrzi=molmi=mao—qre
and r1; and ry 3 can be updated by

: — 1.2 A
i1 = 3¢im1,1— 3711 N (4)
: 1

r1,2 a15(m,2 + n2,2) — 3712
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This is exactly what is realized by neuron 1 (storing r; ;) and synapse (1,2)
(storing ry 5) in fig. 1.

The solution of fig. 1 recursively calculates all ;41 ; = z; L {z1,...,2;},
(1 < ), according to .

z; L {z1,...,zi} = (x5 L {=1,...,2i-1}) L (=i L {z1,...,2i-1})

that is
Nig1,5 =M L i

This is realized by neuron 7 and synapse (%, 7).

2. LCMV filtering and LCMV beamforming

In this section we consider the application of linearly constrained minimum
variance (LCMV) beamforming [6], which can be realized by the neural system
introduced in the previous section, with an extra fixed linear neural layer up
front. We first give a brief sketch of the application.

LCMYV filtering and LCMV beamforming are other applications for which
RLS can be used, but before the vector z of input signals is supplied to, for
instance, a Gentleman Kung array, it is multiplied by a fixed matrix [6]. For a
beamforming application, the inputs come from a linear array of n antennas,
onto which a planar wave impinges. The beamformer linearly combines these
inputs in an adaptive way, minimizing the output power subject to one or more
constraints. A typical constraint requires that signals from a given direction are
passed unchanged. The constraints determine the fixed preprocessing matrix.

For the neural system, the multiplication with the fixed matrix, is realized
by adding a linear one layer neural network in front of the network of fig. 1
with non adaptive weights and non dynamic linear neurons. This is shown in
fig. 2.

3. Principal component estimation and subspace tracking

In this section we discuss a system similar to the one of the previous section,
but with Hebbian weights in the first layer.

In [7] we have given a derivation of a continuous version of the neural
stochastic gradient ascent algorithm of [1], which is closely related to the al-
gorithm given by [2]. The derivation given in [7] derives the algorithm as a
continuous time spherical subspace tracker, by analogy with the discrete time
spherical subspace tracking algorithm of [8]. Below we first sketch the problem
of subspace tracking. Than we derive a new algorithm which can be realized
by the system of fig. 2 with Hebbian weights in the first layer.

Subspace tracking consists in the adaptive estimation of the column space
of a slowly time-varying n x k matrix M, given a signal z, generated by z(t) =
Ms(t) +n(t), where s(t) is a source signal with non singular correlation matrix
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Figure 2: Neural network for LCMV beamforming (with fixed weights in the
first layer) or for subspace tracking (with Hebbian weights in the first layer)

E{s(t)s(t)T}, and n(t) is additive white noise. That is, we know that z(t)
is generated by some & order linear model, and we want to track the (slowly
evolving) k-dimensional subspace in which z(t) would lie in the absence of noise.
Typical applications are frequency estimation, direction of arrival estimation,
and beam forming [5].

The continuous time algorithm, discussed and analyzed in [7] is given by

A=y {e2TA ~24 upph(AT zz7 A)} (5)

where A is an orthogonal matrix, whose columns span an estimate of the col-
umn space of M. In most cases y = ATz is considered as output. Here, we
derive another algorithm with the same input output behavior but storing a
rectangular matrix B-and a triangular matrix R, such that A = BR™!. If
B(0) = A(0) and R(0) = I, and

B = vy.zzTB (6)
R 2y - upph(R~TBTzzTBR-Y)R

then, with S = R~ one finds (from $£(RS) = 0) that S = —SRS = —2v -
Supph(ST BT z2T BS) and

A=BS+BS=v {zaTA-24 upph(AT zzT A)}

which corresponds to the algorithm (5).

Clearly, algorithm (6) can be implemented by a linear one layer network
for B with classical Hebbian synapses (now using the total accumulated input
to a neuron as postsynaptic information), followed by the RLS network of
section 1. for R, working at double speed. In fig. 2 the fact that the weights in
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the first layer adapt proportionally to the total input to a neuron instead of the
partially accumulated input along a long dendrite, is represented by drawing
other neurons than in figure 1, getting their input in parallel (one could think
of a dendrite with n short branches) instead of along one long dendrite.

4. Conclusion

We have shown how continuous time algorithms for some classical signal pro-
cessing operations, can be performed by simple neural networks, with unidirec-
tional Hebbian connections, and a new type of neurons.
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