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Abstract. It is shown how neural spike train responses can be pre-
dicted by truncated Wiener series and by LN-cascade models. To prove
the capability of these methods we test them on spike trains which have
been generated by model neurons. The agreement of the approximated
responses and the neuron response to known stimuli is analysed quanti-
tatively by calculating least mean square errors and rates of coincidences.

1. Introduction

Essential properties of neural networks are results of the interaction of neurons.
In biological systems this interaction is performed by means of action potentials.
The ability to predict the occurrence of spikes is necessary to investigate the
neural code and communication.

Wiener [7] has developed a general method to represent nonlinear systems.
Adapting this technique to the. circumstances.of spiking neurons allows the
description of impulse responses.

Here we identify truncated Wiener series which represent the spike train
responses calculated with the Hodgkin-Huxley equations [2]. When these se-
ries are determined, estimated responses to new stimuli can be computed and
compared with the output of the neuron.

Quantitative analyses of the model neuron with this method show that the
appearance of most of the action potentials can be predicted in the range of
2 ms. The results are compared with approximations by means of LN-cascade
models [4].

The Hodgkin-Huxley model is close to natural neurons. Therefore the results
will probably hold for biological systems, too.

2. Representation of nonlinear systems

Wiener theory

As Wiener has shown for a nonlinear system S which processes a stationary
Gaussian white noise input z(t) with zero mean and variance o2 = (z(t) z(t)),
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the output signal y(t) can be written as

y@®) = Y Gulhniz®), (1)

n=0

where {Gy[hn;z(t)]} is a complete set of orthogonal functionals [7]. {h,} is
the set of Wiener kernels which characterize the system S. The functionals are
orthogonal in the sense that the time average

Gnlhn, (t)] G [hm, z(t)] = 0, n #m. (2)
The leading functionals for a causal system S are
Go = ho (3)
o0
G, = / ha(r)alt — 7) dr @)
0

Gg =/°°/°oh2(1’1,7'2)$(t - Tl)x(t - T2) - 0'2h2(1'1,7’2)6(7'1 e Tz)dTlde. (5)
o Jo

Under well defined conditions the Wiener kernels of an unknown system
can be identified by crosscorrelating the input z(t) and output y(t) [5, 6]. The
first kernels are determined by

ho = y(t) (6)
o?hi(r) = y(t)z(t-1) (7)
20 ha(r, ) = y(@)z(t — 1)zt = 12) — ® ho6(11 — T2). (8)

Cascade models

Expanding the input z(t) by a complete set of orthogonal functions {®x(7)}
allows to describe the output y(¢) of the nonlinear system S by the functional

y(t) = F[CO(t)icl(t)) .. ']a (9)

where the {ci} satisfy cx(t) = f0°° z(t — 7)®4(7) dr. Assuming that the nonlin-
ear behavior depends on a weighted sum of the coefficients only instantaneously,
the output may be written as

y() = f (Z% ck(t)) = f ( /0 ~ g a(t - ) dr) . (10)

k=0

This equation describes a cascade of a dynamic linear device (L) followed by
an instantaneous nonlinear device (N).

The LN-cascade model is less universal than the Wiener series expansion.
The simplification from eq. 9 to eq. 10 allows the representation of only a
smaller class of nonlinear systems. Consequently the output y(t) of a system S
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characterized by a Wiener series cannot be represented in general by a LN-
cascade. The function g(7) is computed as

9(7) = hu(7) (11)

by minimizing the mean square error [y(t) — yc(t)]?> where yc is the output of
the LN-cascade. The nonlinear function f has to be chosen by minimizing the
above error, too. The identification of cascade models is described in detail by
Korenberg [4] and Hunter and Korenberg [3].

3. The Hodgkin-Huxley model neuron

We use the Hodgkin—Huxley model {2] to generate spike train responses which
are analysed with the above mentioned techniques. The fundamental equation
describing the membrane potential V is

av
dt
where C,, is the membrane capacity, F' the membrane current and I the sum
of external currents. The capacity is typically Cy, = 1 uF/cm? per membrane

area. The membrane current is the sum of potassium, sodium and leaky currents
described by

Cm & = —F +1(b), (12)

F(V,m,h,n) = ggn* (V = Vk) + gna hm® (V = Vo) + gL (V = V1)  (13)

where the conductivities run as follows gx = 36 mS/cm?, gn, = 120
mS/em? and g = 0.3 mS/em? and the potentials are Vx = —T77 mV,
VNe = 50 mV and V; = —-54.402 mV. Each of m, h and n satisfies the
differential equation

d{m,h,n '
% = O‘{m,h,n}(1 - {m,h,n}) - 'B{m,h,n}{m’ h,n}. (14)

The six functions a(m s,n}(V) and B{m p,n}(V) which have been determined by
fitting them to experimental data are [1, 2]

0.1V +40)
T 1-exp{~0.1(V +40)}

an = 0.07exp{—0.05(V +65)} B

001V +55)
" 1—exp{-0.1(V + 55)}

Bm = 4exp{—0.0556(V + 65)}  (15)

1
" 1+ exp{-0.1(V +35)}

Bn = 0.125 exp{~0.0125(V + 65)} (17)

Om

(16)

wherein the membrane potential ¥V has to be measured in mV.
This model describes the release and shape of action potentials. When stim-
ulated by appropriate currents I(t) the response is a spike train.
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Figure 1: Response of the HH Model (V') and predictions by a
truncated Wiener series (V) and a LN-cascade (V)

4. Predicting responses of the model neuron

The prediction of impulse responses generated by the Hodgkin-Huxley model
requires the identification of the Wiener kernels. For that reason the system is
evoked by a Gaussian white noise current which is determined by (I) = 0 and
(I?) = 49 p® A% /em?.

Simulations of 1000 s duration are used to calculate the Wiener kernels
ho, h1 and hy by means of the equations 6 through 8. Previously the input
current I(t) and output potential V'(¢) are sampled in steps of 0.4 ms. Following
eq. 1 and 3 through 5 the output of the model neuron is estimated by the
truncated Wiener series

Vit) = ho + / " b - 1) dr (18)
0
and
V) = W) () /0 " hatr,7) dr
| +/0°° /000 hao(m, ) I(t = 11)I(t — 72) dTidTa. (19)

Additionally the response is approximated by the LN-cascade model using
eq. 10 and 11. The nonlinear function f in eq. 10 is determined by
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fz(t) = ZLO ay z*(t) wherein z(t) satisfies z(t) = f0°° hi(7)I(t — 7)dr. The
coefficients {ax} are chosen by minimizing the error

= [ - 16O & (20)

Polynomials of degree higher than 7 do not reduce the error further.

Figure 1 shows responses to a Gaussian white noise stimulus which was
not part of the identification procedure. Therein V'(¢) is the response of the
Hodgkin-Huxley model neuron and V; (¢) and Vi (t) are the estimated responses
calculated by the truncated Wiener series and by the LN-cascade respectively.
The potentials V' and V¢ show a similar response to the input current. The
approximation by V, (not shown) is qualitative equivalent to Vp. Both are
capable to describe action potentials whereas V; does not include the spikes.

For more evidence quantitative analysis is necessary. At first the least mean
square error [[V(t) — Vapproz(t)]°dt is calculated for each approximation V4,
V2 and Vi by integrating over 4 s. The errors are measured in relative units of
the reference error defined as [[V(t) — (V)]? dt.

Furthermore, the rate of coincidences from spikes generated by the model
neuron and spikes predicted by the approximations is a point of interest. The
time an action potential occurs is determined by the time the potential reaches
a threshold ©. If the difference of times of the events in the original and ap-
proximated response is smaller than 2 ms these spikes are assumed to coincide.
The threshold © is chosen by maximizing

_ 2 N¢or _ Nuu Napproz (21)
NHH + NAppro:c‘ K (NHH + NApproz)

where N¢y is the number of coincidences, Ngy the number of action poten-
tials generated by the Hodgkin-Huxley model, Napproz the number of spikes
described by the approximation and K the number of bins which is determined
by the interval of coincidence. Therefore C' is the relative number of coinci-
dences without coincidences by chance. Its value is calculated by averaging the
result of 6 realizations each of 0.9 s duration.

The following table shows the errors and coincidences for all estimation
methods.

approximation | threshold @ | coincidence C' | LMS error
Vo —44mV 0.68 0.59
\Z —-48 mV 0.61 0.73
Ve —49 mV 0.61 0.64

As expected the error of the estimation by V5 is smaller than the error of ;.
The approximation by the LN-cascade model has to allow a better prediction
than V;, which was confirmed by the errors. But the cascade is obviously not
able to describe all nonlinear effects which are better taken into account by the
truncated Wiener series V5. All the errors seem to be large but bearing in mind
that a spike is a rare event the approximation by the average potential (V') will
result in a small reference error which is the measure for all other errors.
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The rate of coincidences of the spikes predicted by the different approxima-
tion techniques and the spikes generated by the Hodgkin-Huxley model is very
high. Nearly 70 % of the action potentials coincide if the estimation by V; is
used. The coincidences predictable by V; are surprisingly good which could be
explained by the knowledge that the membrane potential may be approximated
by linear differential equations if the potential is close to the resting potential.
The LN-cascade leads nearly to the same rate of coincidence as V; which is
a consequence of the added threshold. The action potentials are assumed to
coincide when placed within only 2 ms. If a broader time window is used the
number of coincidences would increase further which is supported by fig. 1.

5. Conclusion

Predicting spike responses of deterministic model neurons is in principle possi-
ble by means of the infinite Wiener series. The approximation of the Hodgkin-
Huxley model by truncated Wiener series results in good estimations of the
impulse output. As shown in the previous sections the occurrence of most of
the spikes can be determined within 2 ms. The considered cascade model seems
to be not much more profitable than the approximation by the simplest estima-
tion by Wiener series. Particularly the rates of coincidences are equivalent in
both models whereas the shape of spikes is better realized by the LN-cascade.

The knowledge of only h; and ho makes it possible to determine 60% of the
action potentials which is important for the application to biological systems
where the time to look at input and output signals is limited and therefore
higher Wiener kernels cannot be calculated from the data.
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