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Abstract. We consider the problem of classifying multiple simultane-
ous autoregressive (AR) signals based upon the observation of their sum
using a multilayer perceptron network (MLP). We propose a method that
allows the training of the classifier to be performed on separate AR pro-
cesses, and uses the Bayesian interpretation of the outputs of a MLP to
obtain the maximum a posteriori probability decomposition.of a mixture
of simultaneous AR processes. Some simulations results are presented.
The extension of our method to a more general class of problems is dis-
cussed.

1. Introduction

It is well known that autoregressive (AR) models can represent a wide variety
of signals. For example, they have been used successfully in speech processing
under the name LPC [1]. However, in certain applications multiple signals
each described by an AR model may arise simultaneously. To deal with such
situations we define a new model for simultaneous AR signals. A time series
y[n] is defined as a mixture of AR signals (noted LAR) if y[n] is a sum of ¢
components z;[n], and the signals z;[n] are generated by independent AR(p)
processes. That is,

E:C,‘[n], . (1)

yln] =
=1
ziln] = -3 alklziln — k] + eiln, 2)
k=1

where the processes ¢;[n] are mutually independent white noise sequences. Fig-
ure 1 gives a block diagram of such a process with the conventional notation
Ai(2) = 14 3% _, a;[k]z~F where 271 denotes the delay operator. It can be
shown that such a sum of ¢ independent AR(p) processes is equivalent to an
ARMA(cp, cp) process with a particular structure [2].
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Figure 1: A mixture of ¢ AR processes.

In this paper we consider the problem of classifying the AR components
present in a X AR signal. That is, we assume that each of the AR models 4;(z)
generating the signals z;[n] belongs to one of M possible classes of AR models,
and we want to find the class membership of the AR components present in the
Y AR signal y[n]. We further assume that, during the training phase, labeled
samples of the signals «;[n] are available for each of the M possible classes.
However, during the classification phase, only y[n] is observable. This problem
is typically encountered in environmental sound recognition and in processing
of speech in a noisy background.

An autoregressive process is entirely characterized, up to its variance, by
its p AR parameters a;[1],...,a;[p] or, equivalently, by the p complex roots
Zi1,...,%,p of Ai(z) [3]. These roots are called the poles of the AR model.
Given L consecutive samples of the AR process z;[1], ..., z;[L], it is possible to
compute an estimate of the AR parameters a;[k] using well known algorithms
such as the autocorrelation method [3]. The poles are then obtained directly
by finding the roots of A;(z). Similarly, a ZAR process is characterized by the
poles of the AR part of its equivalent ARMA process. It is easily seen that
these poles are simply the union of all the ¢p poles of the ¢ AR components [2].
Given L consecutive samples of a XAR process y[1],...,y[L], it is possible to
compute an estimate of the parameters of the AR part of the equivalent ARMA
process using methods initially developed for ARMA models, e.g., the modified
Yule-Walker method [3]. The poles are then obtained by finding the roots of
the resulting polynomial. If we were only interested in the classification of one
AR signal into one of the M classes based on the observation of the signal, we
could simply train a pattern classifier to perform this classification based on the
p poles. If we choose to use a multilayer perceptron (MLP) network for this 1 of
M pattern classification problem, the MLP would need 2p inputs elements! and
M output elements. For simultaneous classification of the ¢ AR components of
a ©AR model, we can similarly use the cp poles computed from y[n] as inputs
to a classifier. One obvious solution is to train a MLP to recognize directly all
the (M +c°'1) possible combinations of classes. This requires a network with 2cp

Scientifique-Belgacom.

1We need 2p inputs to represent p complex poles. Note that if the AR signals are real, the
poles are real or come in complex conjugate pairs, and the number of representative inputs
reduces to p.
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input elements and (M +cc_1) output elements. Even for moderate ¢ and M, the
size of the resulting network will preclude efficient training. In the sequel of
this paper we propose a method to avoid this problem. Our algorithm allows
the training of the classifier to be performed on separate AR processes, and
uses a combinatorial argument to obtain the classification of simultaneous AR
processes.

2. Algorithm

2.1. Formulation of the Problem

Since the autocovariance method and the modified Yule-Walker method are
consistent [3], we can assume that, for L large, they provide exact estimates of
the poles of the AR and X AR processes, respectively. That is, we will assume
that we have the true poles of the AR processes z;[n] during the training phase,
and that we have the true poles of the AR process y[n] during the recognition
phase. Of course, this assumption is only asymptotically valid for L tending to
infinity.

Let wi, ...,wpr be the M possible classes for the AR processes z;[n] and let
P(w;) be the a priori probability of class w;. An AR(p) process is characterized
by the set of its p poles z = {21,...,2,}. Let p(zjw;) be the class-conditional
probability density for z, the probability density function for z given that the
AR process belongs to class w;. The class-conditional distributions are to be
mutually independent. During the training phase, we have a set X’ of N labeled
training patterns X' = {(z1,41),...,(zn,£n)}, where £; denotes the class label
of zx. The patterns are drawn from the distributions p(z|w;) according to the
priors P(w;), j = 1,..., M. During the recognition phase, we are given a set
of cp poles Z = {z1,...,2¢p}. The number of classes ¢ and the AR order p are
assumed to be known a priori. The poles are obtained by the modified Yule-
Walker method in no particular order. We want to find the combination of ¢
classes ¥ = {¢1,...,¥:;¥; € {w1,...,wpm}}, that maximizes the a posterior:
probability P(¥|Z2). The maximizer ¥map = arg maxy P(¥|Z) gives then the
mazimum a posteriori probability (MAP) decomposition of the XAR process
y[n] into ¢ AR(p) components.

2.2. Training of the Network

It is well known that the multilayer perceptron, when trained as a 1 of M
classifier using backpropagation, estimates the Bayes a posteriori class proba-
bilities, provided that the size of the training sample is large enough and that
the backpropagation learning procedure does not get stuck in a local minima
[6][6]. Therefore, if a multilayer perceptron with p input elements and M out-
put elements is trained as a classifier on the set of training patterns X, its
outputs approximate the a posteriori probabilities P(wg|z) for k = 1,...,. M
when a pattern z is applied to the input. These a posterior: probabilities can
be used to find the MAP decomposition ¥pap as we will now see.
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2.3. Maximum a posteriori Probability Decomposition

We can rewrite P(¥|Z) as

P(¥|2) = P({¢1, ..., ¥} 2) = S(O)P([¢1, .-, ]| 2), 3)

where {-} denotes a set of elements without any particular order, and [] denotes
an ordered set of elements. The factor S(¥) is the number of distinct orderings

of the classes in ¥, which can be expressed as S(¥) = c!/(s1!...snm!) where s;
is the number of occurrences of class w; in ¥. Let Z(*) = [i(k) . ”ﬁ’“)] where
s (k) _ ry(k) 3(*)
2, = {47, %,
each. Then, we have

}, be an ordered partition of Z into ¢ subsets of p poles

K
P([1,- .., %] Z) Z P([1, ..., )| ZB)P(Z®))

= Z P([¥ vlIZ0), (4)

where K is the total number of partitions of Z, K = (cp)!/(p!)°. Since the AR
components are independent, it is easy to show that P([¢1,...,%]|Z(*)) can
be factored as

P([$1, -, %el|Z®) = [T P(wil™). (5)

=1

Finally, we have

p(u|z) =2 (‘P) ZHPw,w(’“’) O ®

k=14=1

As suggested previously, the a posterior: class probabilities P(«bz-]%l(-k)) can be
estimated using the multilayer perceptron trained on X'. The MAP decompo-
sition is then straightforwardly obtained by maximizing (6),

WUmap = argm‘?xP(\IﬂZ). (M

2.4. Computational Complexity

Our method requires the training of a network with 2p inputs and M out-
puts. Once the network has been trained, the decomposition of a ©AR signal
implies the evaluation of the outputs of the network for all K partitions of
the set of poles. The maximization of P(¥|Z) is then a simple combinatorial
problem which requires the evaluation of the (M te- 1) possible combinations
of AR classes. The “direct” approach would require the training of a network
with 2¢p inputs and (M te-l ) outputs. The recognition would then be simply
performed by evaluating the network for the set of poles of the AR signal and
selecting the output with the maximal value. We see that our approach trades
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Table 1: Experimental and theoretical probabilies of classification.

{ . | Both correct | One correct | Both incorrect |

Experimental 61.6% 26.3% 12.1%
Theoretical 63.0% 32.7% 4.3%

a reduction of the complexity during training for an increase of the computa-
tional load during recognition. Since training is generally the stumbling block
of a neural network application, the advantages of reduced training complex-
ity will generally overcome the inconvenience of the additional computations
during the recognition phase. Moreover, our algorithm is particularly suited
to a parallel implementation, which could eventually solve the computational
problem.

3. Preliminary Results

To verify the algorithm and illustrate its performance, we conducted some
simulations. The algorithm was implemented in MATLAB on a Sun work-
station. In a first experiment, we considered XAR processes composed of
¢ = 2 simultaneous AR(2) processes with complex conjugates poles. There
were M = b different classes of AR processes with equal priors. The complex
poles in each class were distributed on a ring inside the unit circle in the z-plane
according to a mixture of Gaussian and uniform probability distributions. The
neural network used had two inputs elements representing the real and complex
part of the poles, and five outputs elements, one for each class. A multilayer
perceptron with one hidden layer of 50 elements was found experimentally to
give good results. The network was trained on 10 000 training patterns (2000
training patterns per class) using backpropagation with an adaptive step size
and momentum of 0.6. We then generated samples [y[1],...,y[L]] of length
L = 8096 for 15 000 different £AR processes (1000 for each of the 15 possible
combinations). The poles of the ZAR, processes were estimated using the mod-
ified Yule-Walker method, and the MAP decomposition was obtained using the
algorithm described above. The results are summarized in Table 1. This first
experiment was deliberately kept simple to allow the analytical derivation of
the Bayes error rate for the optimal classifier [4]. The performances of our al-
gorithm matches the theoretical limit reasonably. Other experiments on more
complex data show similar results.

4. Concluding Remarks
An original approach to the problem of classifying multiple simultaneous
autoregressive signals from the observation of their sum using a multilayer

perceptron network has been proposed. The approach is based on the ability
a MLP adequately trained to estimate Bayesian a posteriori probabilities for
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separate AR signals. The method offers substantial gains in terms of training
complexity at the expense of increased computations during the recognition
phase.

A multilayer perceptron was used in this paper. However, other neural
architectures can also be used to estimate the a posierior: class probabilities,
e.g., radial basis function networks (RBF) or high-order polynomial networks
(see [9]).

The approach proposed here can be extended to a more general class of
problems. We introduced the algorithm of section 2 as a means of recognizing
combinations of poles of AR processes. It can be easily extended to other situ-
ations involving the detection of simultaneous components from an unordered
set. Examples of applications can be found, for example, in image processing.
Necessary conditions for the applicability of our approach are: the different
components must be independently distributed, and a separate representative
training set of samples must be available for each class of interest.
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