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Abstract. Time —Delay neural networks are well —suited for prediction purposes.
A particular implementation is the Finite Impulse Response (FIR) neural net. As
illustrated by some applications, a major design problem exists in establishing the
optimal order of such filters. Here, a constructive solution based on Cascade
Learning is outlined.

1. Introduction

The handling of temporal characteristics in the training of neural nets has been
researched in the past for its biological plausibility and for its predictive potential. In a
standard Time-Delay Neural Network (TDNN), as introduced by Lang and Hinton
(1988) and Waibel et al. [1], temporal characteristics are imbedded in a feedforward
ANN through synaptic delays. In its most simple format, a memory-less feedforward
network with a tapped delayline on its inputs constitutes already a TDNN. A more
complicated scheme arises when the delayline is repeated on the inputs of every neuron.
By structural transformation, any delayline can be replaced by a fanout-tree of parallel
delays.

So typically, two neurons in a TDNN will be interconnected by N synapses, each
having a different delay. If these delays can be expressed in discrete time as
multiples of a unit time—delay, the set of N synapses between two neurons can be
replaced by a adaptable synaptic Finite Impulse Response (FIR) filter [2]. In the
synaptic filter, the delays are placed in the synapses; hence the filter coefficients
are also the weights. We study here the TDNN filter, where the delays are placed
within the neuron to separate the learning of the weights from that of the filter
characteristics and order.

In the following, we will first review the determination of the weight values from
training. Then we show how the filter characteristics can be determined as well
and relate some practical experience. Finally, we give a constructive procedure to
train for the order of the filters.

II. The synaptic filter

The output y(n) of an N’th order adaptable FIR filter inresponse to an input x(n) is
N

described by:y(m) = > hy(mx(n — i)
i=0

Here, h;(n) denotes thei’th coefficient of the filter at time n. If J; denotes the setof
neurons that are connected to neuron j by synaptic FIR filters, the output of this
neuron in discrete time is described by:
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1T all synaptic filters Hjg(rij in (1) may be described as the product of a basic filter
H} and a factor vjk(n), i.e. h,fn) = v,(n) « h, (2)

all filters will be of the same order and (1) can be rewritien w:
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where Wik(n) is defined according o:
wn = i) = v,(n) 0=i=N 4

This procedure, that reduces the total number of weights ina TDNN, is described
by Shamma (3] in the context of continuous time. Effectively, (3) and (4)
describe a TDNN in which the synaptic filters have been replaced by
intra—neural filters. Shamma argues that the choice ot the form of f; depends on
the amount of detail required. However, determining the exact order and
characteristics that each H; should have to reach a maximum performance seems
a difficult task, that requires a thorough understanding of the problem at hand.
Training a TDNN is usually accomplished with a modified error
back—propagation algorithm as in [1] and [3]. Here, the adapted backprop
algorithm will be extended in order to determine the characteristics of the filters
H;.

X1 Synaptic filter

Intra—neural filter

Fig.1 Two arrangements for a FIR-filter neural network.
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First, recognize that from a mathematical point of view the decomposition of
hiki(n) in (2) is not unique. Equally well, we may write:

hin) = vy() - h;(n) &)
Using (4) together with (5) and substituting the result in (3) leads to:

xm) = f(- e<n>+2 FOIPRTIEA (B,

i=0 kESj
N
= f(= 04m) + > by, (m) ‘ (6)
i=0
Here, y;; (n) is defined as:
Y = [> wuxln - ) )
. kESj

Together, (6) and (7) describe the output of a neuron with an adaptable
intra—neural filter (see fig. 1) in response to the activation level of other neurons
in the network.

II1. Updating weights and filter coefficients

In the standard error back—propagation, weights are adjusted according to:
ag(n)

- 8
T ®
B(n) denotes instantaneous sum of squared errors. If O denotes the set of output
neurons and 5;(n) the target output of such a neuron at time n, 8(n) canbe defined
according to:

B = 1> () — xm)? = 1 efny?

j&E0 jE0
When the nelirons are equiped w1thj internal adaptable filters, two distinct kinds
of weights appear and in addition to (8) the equation
Ay = paly(n = 1) ~ g s ©

has to be solved. In case neuron j is an output neuron the partial derivative in (9)
can be computed as:

3&(n) _ 98(m) 9dem) ox;(m)  duyn)

oh;(n)  de;(n) ~ ox;(n) © duy(n) * oh;(n)

Aw;(n) = adw,(n — 1

= e;(n) (-1) f(u;(n)) y;;(n) (10)

If we define 6,(n) as J,(n) = e;(n) f(u;(n)) an
and use this definition while substituting (10) in (9), we obtain:

Ah(n) = BAh,(n) + ud;(n)y;,(n) (12)

This equation is very similar to the one describing the weight adjustments in the
standard backprop algorithm. Using the definition of y;(n) (7), the partial
derivative in (8) can be calculated as:
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38(n) _ a8m) du(m) ay;o(n)
aw;, (n)  dun) * 3y;(n) ~ aw;,(m)

= — ¢;(n) ['(u;(n) h(n) x,(n) (13)

If we define yj(n) as y; = &;(n)h;(n) (14)
substitution of (13) in (8), while using this definition, produces
Awy(n) = adwy(n — 1) ~ gy, (mx,(n) (15),

which describes the update for the synaptic weights. When neuron j is a hidden
ncuron, (14) still can be used to compute y;(n). In this case, however, 6J(n ) can not
be computed with (12) for we cannot directly associate an error-signal with a
hidden ncuron. Fortunately, a recursive definition for d; );(n) can be derived. As
this derivation is essentially the same as that for the backprop al gomhm (seee.q.
[4]) the result will be presented without further ado:

8,() = f(u(m) D yy(mwyy(n) (16)
3

IV. Some fixed—order experiences

The research reported sofar arose from the experience gained in a number of
projects, that were concerned with the prediction of natural dynamic processes.
In the bio—chemical control for pharmaceutical purposes, it is clear that not only
an analytical model for the controled process is not available, but also that a
number of unknown phenomena can have a severe impact on the measurement
data. Besides numerous electrical effects arising from the sensory set-up, also
the body movements play an important role.
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Fig.2 Observed learning curves for the synaptic and the TDNN network.

A first attempt (o extract the time-dependent non-linear behaviour from the
measurement data was performed by recursive neural networks. Even when the
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recursion was integrated in the individual neurons, an acceptable fit was not
found. Therefore the focus shifted towards synapse filters and time—delay nets. It
was found that, though the fit was remarkably more close, the development effort
was immense. The main reason was the effort spent on determining the order of
the filters. ' =
This observation was confirmed in a second series of experiments, that were
concerned with the consumption of energy. In order to prepare for the movement
of energy to individual households it must be brought in a transportable form. For
economic reasons, this has to be done at the last moment; hence long-term and
short—term prediction is required. Except for the influence of the weather, this
experiment could be performed in a more controled manner. Though basically
the synaptic and the TDNN approach could give similar results, the experiments
show a consistent shorter and higher quality learning for the TDNN (Fig.2).
Apparently, both networks are trained in 1000 to 1500 learn cycles. A major
difference, however, is present in their generalisation capabilities. The synaptic
filter was still very sensitive to the individual inputpatterns, while the TDNN has
very good generalisation properties. Whether this observation has a general
significance or is due to the individual training parameters remains unclear sofar.
As shown in Fig.3, the dynamic characteristics are adequately predicted, but the
order of the filter is not optimal.

7w~ Actual signal (target output)
Predicted signal (actual network output)

Amplitude (scaled)

0 50 100 150
Sample no.

Fig.3: Prediction by a trained TDNN of a testpattern.

V. Determination of the filter—order

To determine the order of the filters, a technique similar to cascade—correlation
learning {5] is used. Initially, each neuron in the network is equiped with a zero’th
order filter (i.e. no delay elements are present) and the network is trained to
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minimize the error—signal. After each pass over the entire training set, the
improvement in performance is considered. If the error decreases less than by
b%, a delay element must be added to one of the neurons.

To determine which filter must be enlarged, the following procedure is adopted.
- Each neuron is assigned an additional candidate delay element. For the time
being, the weighted output
aj(") = h,'nﬂ(”))’;nu(”) (17)

of this candidate is not connected to the network. Furthermore, all weights except
those associated with the newly created set of dangling connections are frozen
and each Ay, ;(n) is initialized randomly. Now, an additional p passes over the
entire training set are made, during which the weights hin+1(n) are-adapted
according to (12). After p passes, the most suitable candidate is selected. Its
weighted output is connected to the network and all other candidates are
removed.

Determination of the suitability of a candidate is accomplished by inspecting the

contribution of its output (yn. 1 (n)) to the total error of the network. Therefore, if

T denotes the size of the training set, the value of i | 8@ | (18)
= 0Y;n41(n)

has to be evaluated for each candidate. Again, the partial derivative in (18) canbe

expanded and using (11) we obtain:

T T
Dl =M L@ by ()| and D1 =3,(n) by, ()| (19)
n=0

n=0
The candidate with the smallest value for (19) is considered to be the most
suitable one. The use of cascade-correlated learning largely offsets the negative
effect of the increased network size on the learning speed; fuithérmore the
iterative search for the optimal filter order is removed and learning becomes
more complete.
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