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Abstract. Multi-dimensional classification based on the Bayes criterion
minimizes the probability of misclassification. In order to apply this
criterion, one has to know or to evaluate the probability densities of
each class of data. Parzen windows or probabilistic neural networks may
be used to estimate these probability densities; however, the number of
operations involved in such process is prohibitive for large databases. The
proposed algorithm shows how to apply vector quantization techniques
to reduce the size of the learning set, while keeping sufficiently accurate
estimations of probability densities. The problem of the width of the
kernels used in the estimation is addressed by making the hypothesis of
small clusters after quantization.

1. Introduction

In multi-dimensional classification tasks, the challenge is to attribute a class la-
bel to a vector presented to the system, which previously “learned” the spatial
distribution of each class, on a set of training vectors. The Bayesian classifica-
tion theory provides an ideal method for classification of data, once the a priori
probabilities of the classes and their probability density functions are known.
The principle of Parzen windows [2] or kernel estimators is thus to estimate the
probability density functions with the learning vectors, and then to use these
estimates in the Bayes law.

Parzen windows however require a computational load that is unrealistic in
practical situations (it requires a.o. the evaluation of a number of Gaussian
functions equal to the number of vectors in the learning set); we present here
a method to drastically reduce the number of operations involved in Bayesian
classification, by using a vector quantization technique to replace the initial
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learning set by another one with a strongly reduced number of samples, while
minimizing the approximation error on the probability density functions. This
method allows to consider favorably the use of kerne! estimators in realistic
classification tasks.

2. Bayesian classification

Assume the problem consists of classifying an observed vector u of R¢ among ¢
classes denoted w;. Assume that « is random and that its d components admit
a joint density p;(u|w;) in class w;. If all wrong decisions are given the same
penalty, the Bayes law may be expressed as:

Po (ulwi) P(wi)
2 j=1 Pe(ulws)Pw;)’
where P(w;) is the a priori probability of class wj, and P(w;|u) the probability

that vector u belongs to class w;. The Bayesian decision to select the most
probable class will thus be:

P(wilu) = 1)

Decideu € ws & s = flrglrilkamC {P; pr(ulwi)}. (2)

Using equation 2 necessitates the knowledge of distributions p,(u|w;) and
of a priori probabilities P;. Given a learning set of vectors, i.e. a set Ay =
{z(n), wzn), 1 £ n < N} of vectors z(n) and their associated known classes
Wg(n), it is possible to estimate these distributions and a priori probabilities.
The a priori probabilities and simply estimated by the ration between the num-
ber of learning vectors in each class and the total number of learning vectors.
According to [2], the probability densities in each class can be estimated by

s - T(n
Pe(N;, ulw;) = Ni, ; K (UTN())> (3)

where {z(n),1 < n < N;} denote the available patterns in a given class w; and
K(-) a kernel function. The parameter h(n) is called the width factor of the
kernel, which can either depend of z(n)or not. Gaussian kernels are often used:

k() = (h(n)lﬂ?)“ ey (B e

where d is the dimension of « and z(n).

The purpose of the following method is to drastically reduce the number
of kernels N; in each class, in order to use equation 3 in realistic situations,
avoiding to reduce the quality of the approximation.
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3. Suboptimal Bayesian classification

3.1. Principle and hypotheses of the method

The principle of the proposed method is to split the portion of the space where
vectors can be found in clusters; a vector quantization technique will be used
to find the clusters and their centers of gravity, and it will be assumed that
the error generated by the vector quantization will be sufficiently small so
that the true probability density inside each cluster can be approximated by a
constant. In the portions of the space where the vector quantization will lead
to small clusters, this last assumption will be verified; on the other side, in the
portions of the space where the clusters are large, this means that the number
of learning vectors which lead to these clusters is small, and so that an error
in the approximation of the density function is of less importance.

Other algorithms exist to reduce the size of the learning set before using
equation 3. The first one [4] extracts a reduced set from the original one in an
optimal way to reduce the differences between the probability density estimate
before and after this reduction; this method is however heavy on a compu-
tational point-of-view, and leads to unsatisfactory results for high reduction
rates [8]. Another algorithm [3] uses a vector quantization technique to reduce
the size of the learning set, as does our algorithm, but is based on a Gaus-
sian hypothesis of distribution inside each cluster, instead of a constant one for
ours; the Gaussian hypothesis is more appropriate when the vector quantiza-
tion leads to clusters which represent the modes of the distribution, which is
the case when the number of clusters is much smaller than in our hypotheses.

3.2. Vector quantization

Any vector quantization method can be used to reduce the size of a dataset.
The “Generalized Lloyd Algorithm” [5] is one of the most popular techniques;
we will however use an iterative rule known as “competitive learning” or “Ko-
honen learning rule”, based on iterative changes of the codebook, i.e. on a
modification of the reduced learning set each time a new learning vector is
presented. The iterative character of the rule will be used in the evaluation of
the width factors and explained in the next section.

The aim of the Kohonen Learning Algorithm is to approximate the sets of
patterns Ay, by sets of so-called centroids By, = {c(m), wem) =wi, 1 <m <
M;}, where M; << Nj, roughly keeping the same probability density of vectors
for sets Ay, and Bpg,. The principle of the KLA method is then the following
in each class w;.

First, the M; centroids ¢(m) are randomly initialized to any of the N;
patterns, keeping the same a priori probabilities of classes for both sets Ay,
and Byy,. Then, each of the N; patterns z(n) is presented to the set Byy,, and
the centroid ¢(a) closest from z(n) is then selected and moved in the direction
of the presented pattern :

¢(a) = ¢(a) + a(z(n) — c(a)) (3)
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Figure 1: Illustration of two Gaussian functions in 1 dimension, and related
notations.

where « is an adaptation factor (0 < a < 1) which must decrease with time
during the learning to ensure the convergence of the algorithm. After several
presentations of the whole set of patterns Ay,, the distribution of centroids
¢(m) in By, will reflect this of the pattern set Ap;,.

For the estimation of probability densities in each class, we will use the
reduced sets By, instead of the original sets Ay,; this will strongly decrease
the number of operations involved in 3.

3.3. Width factors

Our hypothesis is that the true probability density can be considered as con-
stant inside each cluster; this leads to the constraint that we will choose the
width factor of the Gaussian function associated to each cluster in order to
keep the estimate 3 of the density as constant as possible over two consecutive
clusters. Let us examine the one-dimensional example of figure 1. X and Z
represent the centers of two consecutive clusters A and B, 2R the distance
and Y the midpoint between them. The purpose of the method is to set the
relation between R and the width factor h of the Gaussian functions A and
B, in order to have a constant approximate of the probability density over the
segment [X, Z]. We will simplify the computation of h by setting its value in
order to have the same estimate of probability density at points X, Y and Z;
we assume that the fluctuations inside the segments [X,Y] and [Y, Z] may be
neglected. We will also neglect the influence of a kernel at a distance 2R of its
center (which, when verified a posteriori, will cause a maximum error of about
6% in the local value of the estimate).

With these hypotheses, we can evaluate the contribution of the Gaussian
functions A and B respectively at locations X (or Z) and Y:

po({4, B}, X) = am;—m (6)

—R2?
e Tt %

po({4, B}, Y) = m

Making the estimates 6 and 7 equal to have an equal approximation of
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probability density at points X, Y and Z leads then to
R = v2In2 h(m) (8)

A similar development may be done in dimension 2. In this case, we can con-
sider the approximation of probability density due to four Gaussian functions
A, B, C and D centered on the four vertices of a square; this approximation is
computed at the location X of a vertex of the square, at the center Y of the
square, and at the midpoint Z of an edge. Setting the distance between two
centroids on an edge of the square equal to 2R, and neglecting the influence of
kernels at a distance greater or equal to 2R, we have respectively:

1
A-’L‘ A;ByC;D ;X = 9 9
Pz ({ 1 X) (\/§7—rh(m))2 (9)
4 _r?
5({A,B,C,D},Y) = — = ektm? 10
p=({ 1Y) (\/2_7rh(m))2 (10)
5.({4,B,C,D},Z) = ——2 _cTite@ (11)

It is possible to make the estimations 9, 10 and 11 equal, by setting the width
factor h(m) according to equation 8, which gives thus the same result as in
dimension 1. An identical development can be made in dimension 3, by con-
sidering the influence of 8 Gaussian kernels located on the vertices of a cube,
respectively at the locations of these vertices, of the midpoint of any edge, of
the center of a face, and of the center, of the cube. Again, the estimations of
probability densities at these points will be equal if equation 8 is respected; it
will also be the case in dimension d greater than 3.

Now we have the relation between h(m) and R, we need a method to eval-
uate R. First, we will evaluate the inertia of each cluster, by using an adaptive
method exactly as the competitive learning does for the locations of the cen-
ters. The inertia coefficient ¢(m) for each cluster is computed in the following

way: ,

i(a) = i(a) + a(||z(n) — c(a)||* - i(a)) (12)
where a is the index of the closest centroid to a learning vector z(n). Equation
12 is a kind of convex combination at each iteration between the previously
estimated value of i(a) and a new contribution ||z(n) — ¢(a)||? due to the input
vector z(n). After learning, parameters i(m), 1 < m < M;, will converge to
the average inertia of points in the clusters associated to c(m).

The last point to solve is the relation between the estimated inertia i(a)
and the distance R. If we consider that, under the locally uniform density
approximation as above, the local arrangement of the centers of consecutive
clusters will be as the vertices of an hypercube with edges of length 2R, the
relation between the inertia of each cluster and R is:

itm) = 57 | ) = etmiPav = 4 (13)
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Figure 2: Percentage of classification error on the phoneme database with 20,
50, 100 and 200 centroids.

Combining equations 8 and 13 then leads to a width factor h(n) given, in
dimension d, by
3i(n)
4
2d1n2 (14)

Finally, the estimation of probability density in each class will be calculated
through equation 3, applied on a set of centroids fixed by 5, the width of
the kernels being fixed by 14. Bayesian classification is then realized through
equation 2, where the probability densities are replaced by the above estimates,
and the a priori probabilities by percentage of occurrence of prototypes z(n)
in each class. This constitutes the IRVQ (Inertia-Rated Vector Quantization)
method.

h(n) =

4. Simulation results

Simulations have been carried out on two real-world classification databases.

The first one, “phoneme” was in use in the European ROARS ESPRIT
project [1]. It’s aim is to distinguish between the classes of nasal and oral
vowels. The database contains 5427 vowels coming from isolated syllables (for
example: pa, ta, pan,...). Five different attributes characterize each vowel: the
amplitudes of the five first harmonics, normalised by the total energy (inte-
grated on all the frequencies).

The second database, “satimage” comes from the ftp anonymous “UCI
Repository Of Machine Learning Databases and Domain Theories” [6]. It was
in use in the European STATLOG ESPRIT project [7]. This database was
generated from Landsat Multi-Spectral Scanner image data purchased from
NASA by the Australian Centre for Remote Sensing. It is a (tiny) sub-area
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Figure 3: Percentage of classification error on the satimage database with 20,
50, 100 and 200 centroids.

of a scene, consisting of 82 x 100 pixels. Each line of data corresponds to a
3x3 square neighbourhood of pixels completely contained within the 82x100
sub-area. Each line contains the pixel values in the four spectral bands of each
of the 9 pixels in the 3x3 neighbourhood and a number indicating one of the
6 classification labels of the central pixel (red soil, cotton crop, grey soil, ...).
The database contains 6435 patterns with 36 attributes (4 spectral bands x 9
pixels in neighbourhood).

The test used in these two cases was the holdout method averaged on five
partitions of the original database in two independant learnset and testset
containing each the half of the total amount of available patterns. Simulations
consisted in measuring the error percentage on the testsets of the Bayesian
classifier built with the estimations of probability densities on the learnset, after
vector quantization leading to a total number of 20, 50, 100 or 200 clusters (for
all classes together). In order to evaluate the correctness of equation 14, the
width factors h(n) have been multiplied by a factor varying from 0 to 2; the
value of 1 corresponds thus to equation 14.

Figures 2 and 3 clearly show a minimum in the value of the error; this
minimum is however obtained for a multiplying factor slightly inferior to 1, i.e.
for a width factor slightly inferior to our evaluation 14. This small difference is
due to the numerical approximations made in the derivation of 14. Simulations
carried out on other databases showed similar results.

5. Conclusion and future work
Efficient computing of probability densities for Bayesian classification requires

sub-optimal methods, avoiding to compute as many kernel functions as there
are vectors in the learning set. Vector quantization techniques have been shown
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to reach this goal. The challenge is however to evaluate appropriate widths
for the kernels used in the estimation of probability densities; based on an
hypothesis of small clusters, i.e. of constant probability densities over two
conscutive clusters, we derived a theoretical value for the widths, depending on
the measured inertia of the clusters.

Extensive experiments showed an optimum value of the widths slightly in-
ferior to our theoretical value; the small difference is due to the numerical
approximations made in the development.

While the vector quantization process is deemed to have converged to clus-
ters having the same distribution as the initial points, simulations showed that
this process is often trapped in local minima, leading to clusters including dif-
ferent number of points of the initial database. Future work consists in taking
into account the number of points in each cluster to increase the quality of
approximation.
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