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Abstract. A novel algorithm for Neural Networks Clustering is proposed.
The number of network nodes (i.e. the number of reference vectors) has not been
fixed a priori, it may be increased as well as decreased during the training process.
The algorithm is fast, robust against the outliers of the input vectors, and against
the nonstationary data. The performance of the algorithm is demonstrated by
experiments. The extraction of clusters by Dynamic Neural Clustering does not
depend upon the initialization of the network.

1. Introduction

Clustering algorithms perform the partition of the input space according to the hidden
structure of the k-dimensional input data. They attempt to group similar input vectors
into clusters such that the elements of each cluster are more similar to each other than to
any member from other clusters. Representation of input vectors by the cluster centroids
is referred to as vector quantization,

Let us denote by *; = (z:1,%i2,...,2ix) an input vector, i = 1...n, and by
wj = (wj1, wj2,...,wji). j = 1... N, arepresentation vector, i.e. the centroid of the
cluster C;. The overall quantization error (distortion) d is defined as:

h d= Z |l = wuwinl| (1
i=1

where w;,, is therepresentation vector that has a minimum distance to the input vector:

s = wainll = min [l = w; 2)
An N -level k-dimensional quantizer is said to be optimal, if it minimizes distortion for
all quantizers that perform the partition of the input space into N subspaces, or clusters.
Optimal quantizers cannot be determined as long as we do not know the probability
density function f(x) of the input vector. In general, f(x) may be well estimated if the
number of clusters increases. However, there is always a tradeoff between the overall
distortion and the compression obtained by the quantization process.

A number of *“classical” algorithms for clustering have been proposed [8], the most
popular being the k-means or LBG algorithm [6]. Classical vector quantizers have been
shown to converge to a local optimum, but global optimality is hard to achieve, whereas
computational time is too long [7].
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2. Neural Networks for Clustering

Artificial neural networks (ANN) possess many desirable features: they are robust, fault
tolerant, and often can be efficiently applied when classical methods fail. One of the
well examined areas of the ANN applications is clustering.

A large variety of ANN topologies as well as learning algorithms have been proposed
for clustering; among the most popular is the Kohonen’s Self-Organizing Feature Map
(SOM) [1]. Kohonen has also initiated study of the Learning Vector Quantization
algorithms (LvVQ), which neglect topological structure of the input data but preserve the
SOM’s idea of the codebook design [1, 5]. In general, these algorithms suffer from the
following drawbacks:

o they are not robust against the codebook vectors initialization,
¢ they do not have robustness against outliers in the input data,
o they cannot neatly adapt if the input data is nonstationary.

Recently some other algorithms for clustering have been proposed. Pal and Bezdek
[5] derived modified learning rules to optimize an objective function whose goal is to
produce proper clusters. This algorithm, however, requires much more computation
than the Kohonen’s-like approach. Pitas and Kotropoulos [3] proposed vector quantizer
based on multivariate order statistic. Although this approach allows to overcome the
previously mentioned drawbacks, it requires a lot of computational resources, especially
memory. Choi and Park [4] proposed the algorithm which creates new network nodes
if the best matching code vectors are much too far from the input patterns.

This paper presents the novel Dynamic Neural Clustering algorithm (DNC) in which
some of the above mentioned concepts were exploited.

3. Dynamic Neural Clustering

The main idea of SCONN algorithm, developed by Choi and Park [4], is to start with a very
few network nodes and to expand the network with time. Let us modify this approach
so that the network might be expanded as well as shrunk during the generation of the
representation vectors. Therefore we prevent representation vectors both redundant as
well as not responding to any input patterns. If there are more network nodes activated
by an input vector, they become labeled as redundant. All nodes in the network have
predefined priority coefficients; the node with the highest priority among the redundant
nodes becomes the winner whereas the other ones in the redundant nodes set are moved
away from the winner. When the number of redundancy labels exceeds some predefined
limit, the redundant nodes are removed from the network. At the same time nodes may
be added to the network so as not to destroy previously established centroids.
The proposed algorithm can be summarized as follows:

1. Initialize number of nodes Ny i.e. initial number of centroids along with their
weights w;, learning parameter o, redundancy identification factor r, antire-
dundancy spreading factor m, redundancy counters R; and redundancy counter
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limit R, ., choice counters C; and choice counter limit C,,;,,, node generation
threshold lp and node generation factor g, iterations stop condition parameter 4.
Perform the iterative calculations as defined below, with ¢ = 1,..., ¢4, being
the iteration counter.

2. Atthe beginning of each iteration adjust (decrease) the learning parameter o, and
node generation threshold /;. For all the input vectors x; presented randomly
For all the network nodes wj
Find the best responding node w,,;,, according to the rule:

dwin = ”Z,‘ - w]” = l<1?i<nN1 ”2:,' - w]“ (3)

" If there are other nodes w; responding sufficiently strong to the input
vectors, i.e. :
llw; — =il < (14 7)dwin 4

then there exist redundant nodes in the network. In this case increase the
redundancy counters R; for the nodes involved and spread them away
according to the following formula

wJ = Wyin — m(:bi - 'wwin) (5)

with m being the adjustable redundancy spread factor.
If for the best responding node dy;» > ;, create a new node using the
following recipe:

Wnew = Wyin + ¢(Ti — Wyin) (6)

and increase the number of nodes N, ; otherwise, modify the weights of
the winner node;

Wyin = Wyin + Q¢ (zi — Wyin) (7)

3. Remove nodes with excessive values of redundancy counters R; > Rpqz: re-
move inactive (degenerated) nodes identified through too small values of choice
counters C; < Crin.

4, If Mis1=d < ¢, break, else continue iterations by going to (2).

The proposed algorithm possesses the ability to find the hidden structure of the data,
i.e. it extracts the number of clusters independent from the initial number of centroids.
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Fig. 1. Results of Experiment No 1, Fig. 2. Results of Experiment No 2,
d = 0.00243. d = 0.00152.

4. Experimental Results

Clustering properties of the proposed algorithm can be illustrated by the following
experiment. Let input vector z; = {z1,22}; i = 1...500, form K = 6 clusters of
the normally distributed variables, with mean values as defined by the set {0.15,0.25},
{0.6,0.2},{0.9,0.45},{0.75,0.9},{0.1,0.85}. {0.4,0.7}; the standard deviation was
equal to 0.05. We assumed that the starting number of network nodes Ny was equal
to 3, 6 and 12 for consecutive experiments, ,i.e. it was too small, exact and too large,
respectively, when compared with the number of clusters in the training data set. The
nodes initial weights were chosen in various manner, close to the data cluster centres
as well as far away from them; the initial nodes positions are presented in the figures
with small boxes. Learning parameters were as follows: learning parameter o = 1.0,
redundancy identification factor » = 0.1, antiredundancy spreading factor m = 0.7,
node generation threshold lp = 0.3 and node generation factor ¢ = 1.0, iterations stop
condition parameter ¢; = 0.001.

In general, the proposed algorithm proved to be perfectly well suited to the neural
networks clustering tasks when it is difficult to predict in advance the number of
clusters. In all experiments the proposed algorithm could easily and quickly adjust
the number of network nodes to 6, i.e. equal to the number of data clusters in the
training data set, independent from the initial number of network nodes and its topology.
Thus the proposed algorithm was found to be effective in adding the needed nodes as
well as in removing the excessive ones, thus enabling the necessary trade-off between
the clustering accuracy, convergence speed and calculation speed. Fig.1 presents the
localization of clusters as well as network nodes at the beginning (small boxes) and at
the end of the training process (medium disks), with initial number of network nodes
having been equal to 3. As one can see there were 3 additional nodes added, the mean
overall distorsion was d = 0.00243. As mentioned above, almost identical final results
have been obtained for different numbers and configurations of initial nodes. Fig.2
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Fig. 3. Results of Experiment No 3, Fig, 4. Results of Experiment No 4,
d = 0.00267. d = 0.00103.

presents the results of similar experiment with node generation threshold /g this time
equal to 0.1 meaning that one is more willing to allow for the generation of new nodes.
The results presented are perfectly coherent with the above prediction: there are 14
nodes for 6 data clusters--the price paid for much better value of the overall distorsion
which was equal t00.00152. Also for this set of experiments the proposed algorithm has
been shown to adjust quickly the number of network nodes to the clustering accuracy
demands irrespective from the initial network nodes topology.

In the next 2 experiments the first 200 samples of the input vector x; were random
variables normally distributed around the {0.15,0.1} mean value with 0.05 standard
deviation, whereas the next 200 data were normally distributed around the {0.7, 0.6}
mean value with the same standard deviation. Fig.3 presents the results of the proposed
algorithm run with the values of learning parameters the same as for the Fig.1 corre-
sponding experiment, i.e. among others with the value of node generation threshold
lo = 0.3; lp was changed to 0.1 for the experiment visualized in Fig.4. Similarly to
the first two experiments described above, there were different numbers and weights of
initial network nodes chosen, with practically negligible influence on the final network
structure and parameters. For [y = 0.3 the resulting network included 2 nodes for 2 data
clusters with overall distorsion d = 0.00267, whereas for lo = 0.01 the network nodes
number was expanded to 10 with the overall distorsion correspondingly decreased to
the value d = 0.00103. In both cases the network has easily adapted to the presented
nonstationary data set.

5. Conclusions
A new algorithm for neural network clustering has been presented. The proposed

algorithm is fast, independent from the initialization of the network nodes and is robust
against the nonstationary data. The algorithm can be applied for a number of tasks,
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including image data compression.

The proposed algorithm can be modified in various manners; for instance, the way of
creating the new network nodes and the criterion for removing redundant nodes may be
the subject of the further study. The idea of simultaneous expanding and shrinking of the
network may be also implemented into clustering algorithms with different algorithms
for moving centroids.
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