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Abstract. In this paper we investigate the learning of an unlearnable
problem and how this relates to the premature saturation of hidden neu-
rons in error backpropagation learning. General aspects of our model are
discussed. A sketch of the derivation of equations for the development of
the significant weights in time is given.

1. Introduction

The phenomenon of premature saturation of hidden neurons in feedforward
neural networks trained by error backpropagation learning has repeatedly been
reported by different researchers [2]. Different approaches have been proposed
to circumvent this severe problem that can prevent proper learning. In [4] it
is stated that the saturation is due to improperly chosen initial weights, where
improper is to be regarded with respect to network parameters. We show
that the relationship between these network parameters and the data to be
learned is the major effect leading to the undesirable growth of some weights.
Therefore we will suggest and discuss a model for an extremly difficult learning
task, relate it to backpropagation learning and then sketch the derivations of
equations for the weight development during saturation.

2. The Model

During many experiments reported elsewhere [1], we could observe that the
probability for premature saturation depends on the relationship between the
network parameters and the data, with which the network is to be trained.
Especially when a problem is difficult to learn for a network (which does not
imply that the chosen configuration is not well suited to accomplish the task),
saturation can be observed. An extreme task that can never be learned by any
deterministic network are statistically independent input and target data. In a
stochastic framework this is stated as

fxy(z,9) = fx(z)fr(y), 1)
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where fxy denotes the joint density function of the input random variables
X and the target random variable Y. We consider this case as the limit of
increasing complexity and as a suitable model for the saturation phase. Our
further reasoning will be based on this assumption. In section 3. it will be
shown, that this model implies the convergence towards a constant plateau of
the surface of the expected squared error between the target and the output
value of the network. This behaviour exposes certain similarities to the one
reported for feedforward neural networks during the saturation phase. They
are known to be on a saddle point of the error surface during saturation [2].
Furthermore, it can be observed that during the learning of complex tasks (i.e.
parity bit problems involving many bits), the correlation coefficient between
the target and the current output of the network is approximately zero (in our
cases 0.00012). This is a strong hint for the independence of the output and
target values.

For real data, an additional tendency towards the stated behaviour can be
induced by randomly chosen initial weights. The point of proper initialization
will not be addressed in this paper. At this point we would like to emphasize
that this assumption is only valid at the onset of learning where the saturation
usually occurs. For continued learning it must be immediately dropped.

3. General aspects

In our stochastic framework the problem of finding a function ¢ that maps
some input data z onto some target data y is commonly stated as the mini-
mization of the expected squared difference between the desired output y and
the corresponding value of g(z), i.e.

min (B {(s() -9)’}). @)
Using our independence assumption (1) this term can be rewritten as

E{(g(@) -1’} = E{9(2)’-29(z)y+v*}
= E{9(2)* - 29(e)y} + o3 + E {y}’
= EB{(9) - B{y}’} +0}, (3)

where 0% denotes the variance of y defined by 02 = E {(y —-FE {y})z} This

implies that a minimum is achieved for g(x) = E {y}, i.e. that the expected
value of the output data will be learned and that the remaining expected er-
ror is determined by the variance of the output variable, provided that g can
assume a constant value for all inputs. This result is solely based on the inde-
pendence assumption and the chosen error criterion. It is valid for all possible
deterministic maps g and minimization methods. A similar reasoning for vector
valued functions can be given.
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4. Backpropagation

The following work is a case study of a single hidden layer feedforward neural
network trained by the error backpropagation algorithm, where the so called on-
line mode is chosen. For a comprehensive stochastic ansatz for the investigation
of the learning behaviour of neural networks see [3]. Our architecture and
nomenclature is the following. The variables sy, s;, s; denote the activations of
the input, hidden and output layer respectively, w;; (w;x) the weights between
the hidden neuron j (input neuron k) and the output neuron ¢ (hidden neuron
7). The activations are computed according to the equations

1
14e="

si=0> wikse)  si=0(> wys;)  lz) =
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In the following, the superscripts n and n + 1 denote the values of variables at
time steps n and n+ 1. Using the well known derivation of the weight updates
per time step the resulting equations are

1
5 = wly + ael(¢h)"s), @

Wit =l + ale)msp S er (e (5)
[

w,

where the error e; = y; — s; is used and the ¢ are defined by

i =¢' QO wimse)  @i=dQ wisss) (@) = (@)l - p(x))
k J

Many experiments have been conducted using this architecture and inde-
pendent, identically and equally distributed input variables

1, 0<s,<1

e ©

and target values Y; ~ fy, = fs, . The results of these experiments lead to
reduced forms of the equations (5) and (4) as well as to separate approaches
for the treatment of the dynamics of the weights of the hidden and the output
layer. The following derivation is very condensed and does not show all the
intermediate steps due to space limitations of this paper.

4.1. Input-Hidden weight dynamics

The reduced form of equation (5), that we now want to investigate, is given as
Wit = Wi+ agy (W) Sk + b)SkA (7)

for fixed k and j not equal to zero. The term A models the influence of the
weights w;;, the error e; and the derivative of s;. The constant b replaces the
influence of the neglected weights w;; and activations s; and can be used for
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an analysis of the structural stability of the results. Due to the independence
of the inputs Sj the examination of only one weight should be sufficent for a
first order approximation. For the random variable A the existence of fa(a),
the expected value y4 # 0 and the variance 0% is assumed. The assumptions
for these properties of A are justified by the very short relaxation time scale
of the weights w;; as stated in section 4.2.. A more complex model is subject
to current research. To analyse the equation (7) we consider it as an iteration
equation of a first order markov process, i.e. w"™! = f(w",s,a) where we
dropped the subscripts of the weight. The conditional density function of the
transition probabilities is then given as

p(w™ 1w = //:: §(w™ — f(w™, 5,a))fs(s)ds fa(a) da, (8)

where in our case
fw™, s,a) = w" + ap'(w"s + b)sa 9)

holds. Then the probability density function for the state of w™*! is given as

) = [ " pw™ ) plu)dur (10)

//7:: S(w™tt — f(w",s,a))fs(s) ds fa(a) dap(w™)dw™(11)

Our goal is to establish an equation for the development of the expected value
of the ensemble of the w™’s in time. Therefore, we compute the expected value
of the preceeding equation giving

E{w"t} = / w1 p(w™ ) dw™ ! (12)

-

> 1
/ [w" +apa (ﬁg)(w" +b)—

—00

I (&»] (™) dw™, (13)

wn eb+1

The result is obtained by using equation (11) and performing the w™*, q and
s integration. It can be rewritten as

E{w"'} ~E{w"} = auA/oo [%so(w“rb)

—0oQ

1 ew b 41 1 m
—omin (W)] p(w™) dw (14)
= apaE{h(w")} (15)
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with

w) (16)

1 1
hy) = — — =1
(y) yso(y+b) 7 n( T
Keeping in mind that the first order approximation of E {h(w™)} is given by
h(E {w™}) [5], equation (15) can be approximated by
E{w"™} — BE{w"} = apsh(E {w"}), (17)
which is a nonlinear difference equation for the expected value of w™. Its
continuous time equivalent is given by
bw = apah(pw), (18)

where pw denotes E {w(t)}. To gain an approximate solution, the ansatz
pw (t) = atP is used. For small ¢ the solution is given by

pw (t) o< t (19)
and for larger ¢ it is given by
pw (t) o Vi (20)

This means, that the expected value of the weights between the input and the
hidden layer is continuously increasing with time, which directly leads to the
saturation of the hidden neurons. The behaviour described by the last two
equations fits the real behaviour of weights in time sufficiently well. Corre-
sponding equations for the variance are subject to current work.

4.2. Hidden-Output weight dynamics

For the weights between the hidden and the output layer an equivalent modeling
and analysis can be performed. One of the results is that the expected value
of the weights converges towards a fixed point. After a high convergence rate
for the first steps, the speed settles to an almost constant low rate. This is the
reason for the choice of a time invariant density for A in equation (7).
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Fig. 1. Development in time, Fig. 2. Development in time,
hidden weights output weights

Figures (1) and (2) show the qualitative development of the expected value of
a weight of the hidden layer and of the output layer in time.
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4.3. Comparison to the general case

From these results we can conclude that the problem of learning the expected
value of the target data is solved by the network by driving the hidden neurons
into saturation and mapping their constant activations statically to the desired
output values. This solution is preferred to zeroing all output weights except
for the ones linked to the bias, what represents a second possible solution for
the problem. A possible explanation for this behavior are the different volumes
of the possible solutions in weight space for the first and the second solution,
i.e. there are more possibilities to realize solutions of the first kind than of the
second kind. A third possibility is the zeroing of all weights linked to input
units except for the bias and mapping the constant activities of the hidden
units statically to the output units. This solution was never observed. An
explanation for this would be the faster dynamic of the output weights.

Experiments have shown that in the case of linear activation functions no
saturation occurs when independent data are presented. In this case the second
solution was always realized due to the lack of the reachability of saturated
hidden neurons.

5. Conclusions

In this paper we investigated the “learning” of statistically independent data.
The problem was related to the phenomenon of premature saturation of hidden
neurons in error backpropagation learning. We have considered general aspects
of our model for a class of learning algorithms and sketched the derivation of
equations for the development of the weights between the input and the hidden
layer of a single hidden layer network in time. The results may suggest that
some problems exist, that cannot be learned in practice by the chosen architec-
ture and minimization algorithm due to the saturation of the hidden neurons
induced by the complexity of the task to be learned. The proposed model seems
to be a promising foundation for continued investigations of problems related
to complex learning tasks.
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