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Abstract. We present a neural nrethod - based on the Hopfield net -
for the modelling and control of over-saturated signalized intersections.
The original Hopfield algorithm is modified to take into account proper
constraints of the traffic problem. This approach is illustrated by numer-
ical examples of traffic conditions generated by a simulator. We extend
the method to urban nets of several interconnected intersections.

1. Introduction

Adaptive traffic control systems! by means of traffic lights, are generally based
on a mathematical model which propagates the traffic flows through the urban
network during the time. Then one realizes a short term forecasting of traffic
demand and looks, in real-time for lights setting which minimize a performance
criterion, function of delays or waiting time.

In this paper, we investigate the optimization capabilities of the well known
Hopfield net [3], to resolve the traffic control problem. Other kinds of Artificial
Neural Networks [2] can also be used to give solutions to the traffic adaptive
control problem [7], as a particular case of a general optimal control problem
[1]. In section 2 of this paper, we formulate the general traffic control problem
and the simplifications induced by oversaturating assumption [9]. In section 3,
we present the -Hopfield’s solution- and finally section 4 is devoted to numerical
results.

2. Traffic modelling - The control problem

In this paper, we deal only with elementary intersections with four links and
two lights phases. However, complex intersections can be subdivided in two or

1This work was supported by the Institut National de Recherche sur les Transports et
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Figure 1: Elementary signallized junction

more elementary intersections?.

Under oversaturating assumption, the rate of vehicles leaving a light line is
constant in time, and so the traffic behavior is described by the following linear
dynamic state equation (the time is discrete with a path about 5 seconds in
practice):

Li(t + 1) = Li(t) + Ai(t) — Si x ui(2) (1)

where: L;(t) is the queue’s length at time ¢, in link ¢, A;(t) are the vehicles
arriving on link ¢ during the time interval [t, £+ 1[, u;(t) is the signal setting for
the-link 7 on the same interval and S; is the saturation flow, i.e. the maximum
flow evacuated from the link 7 in one time path. Since we neglect the yellow’s
duration in traffic lights, u; is then a binary variable taking the values O for
red and 1 for green traffic lights. We can so describe the signal setting for the
whole intersection with only one variable denoted « (u = 1 if the traffic lights
are green for links 1 and 3).

To compute the command on an optimization horizon[0,T] (about a few
minutes in practice), on which the arrivals are known, we use a criterion of the
form:

T 4
T(u) =Y (L)) (2)
=0 i=1
J depends on u through the queues L;, ¢ is an index on the links incoming
the controlled junction and generally ¢(z) =  or z%: linear or quadratic crite-
rion. The problem has two constraints: a spatial one related to the maximum
queue expansion and a security one about the minimum and maximum green
time. The command space is of cardinal 27 but, because of the green time
constraints, the admissible solutions are notably less. However, the problem
becomes quickly harder for any urban net of several junctions.

2See [8] for an introduction to the'concepts of traffic flow control and modelling
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3. The neural method

Let consider the quadratic criterion associated to an elementary intersection,

as defined in section 2: J(u ZZI?(t)) = ZJ In the following, we

=0 t=0
express J as a quadratic function of the T——components vector control u and

we identify it to the energy function of a Hopfield net [3] of T units: the k** unit
encoding u(k), the traffic lights state at the kt* time step of the optimization
horizon. We then exploit the optimization capabilities of the Hopfield model
[4] to compute a (local) minimum control u*.

Starting from to the linear traffic equation (1), we obtain an analytic ex-
pression of the partial criterion Jy (see [6] for more details):

Jy = By 4+ 01u + S? WOy . (3)
T
where (1 = 2(01(15))2 and C;(t) ZA (s), fori=1,...,4.
=0

0, =* [@1(1) 01(2), ...,01(T)] is the T—components vector given by, for
t=1,..,T:

s=t+1

W is the null diagonal symmetric matrix given by

0 T—1 T-2 ... 2 1
T—1 0 T2 ... 2 1
wo= | Tm2 Tm2 0 2 5)
2 2 2 0 1
i 1 1 1 O

For symmetry reasons Js is given by an analog equation to (3). From u; =
1y = 1 — u, we obtain:

Jo = Ba +! Ogqu + SZ tuW (6)

where

Ba _2(02(t))2+ws2 2Szz(T—t+1)C’2(t)

t=1 t—l T (7)
+S3(HEG 4 TE-LETD _ 963 Z 3 (T —s+1)4s(s)
t=1 s=t+1

6O, is the T'—components vector:

eg(t) = —(T _— tT+ 1)(5% - 28202(t)) T
4285 Z (T — 8+ 1) X Az(s) — 255 E ng (8)

s=t+1 s=1
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Figure 2: Arrivals to an internal link

We have obviously a similar expression for Jy. The main criterion J is then a
quadratic function of the command u:

¢
J=ﬂ+t9u—%uWu (9)

with 8 = Zﬁ“e Ze andW——2(ZS2 ) x WO.

1,=1
The minimum green duration constramt When controlling an urban

net, the arrivals to an internal link of a given intersection depend on the up-
stream intersection. Let ¢ be an internal link of an urban net, the neighbors
of i are numbered 1, 2 and 4. We denote oj; ,j = 1,2 or 4 the directional
coefficients, i.e. the rate of vehicles leaving link j for link 7. The arrivals to the
internal link ¢ are then given by:

Ait) = Y i X Sju;(t) (10)

JEV(i)

where V(i) = {neighbors of link i} , S;ju;(t) are the departures from the up-
stream link j. Let now suppose that the minimum green duration is of two
steps. This assumption is realistic since in practice the time step is about five
seconds and the minimum green duration is about ten seconds. We add then
to the energy function J defined by (9), the following term which advantages

the constraint:
. T-1

E.=—-A Z(Utut+1+ atat+1) (11)
t=0

where A is a positive constant and 4;= 1 — u.
We prove [6] that E = J+E_ is decreasing on the Hopfield’s net trajectories
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which dynamic is given by the equations:

T-1
up(k+1) = H(Z Wists — O+ 2A(Usts 11— Uslior1))
s=1
Vi=1,.,T—1landfort=T: (12)
T-1
ur(k+1) = H(Z Wrsus — 01 + A(2ur—1 — 1))
s=1

This approach is naturally eXtensible to urban nets of several intersections.
The main difficulty is to obtain an analytic expression of the quadratic crite-
rion associated to an internal link of the net. In fact, we show [6] that this
criterion is a quadratic function of the traffic lights states upon the horizon op-
timization of both the considered link and the upstream intersection. However
the interaction matrix is still symmetric and null diagonal which insures the
convergence of the optimization process.

4. Numefica.l results

The simulations were performed on the semi-macroscopic traffic simulator SSMT
[6]. We consider an urban net of one controlled central junction surrounded
by four peripheral intersections, which lights states behave in an a priori fixed
way. The main parameters of a simulation are then the rates of arrivals on each
incoming link of the urban net (12 in total). The results are presented for three
kinds of traffic situations: fluid, saturated and a third one where the arrivals
are randomly generated. In the following table, we indicate the relative gain of
the constraint Hopfield model relatively to the basic Hopfield model (without
minimum green duration constraint), The comparisons are done upon the two

. . » T 4 . .. o
following criterions: X; = ; Zi=1 L;(t) which measures the waiting time for
all vehicles crossing the central intersection. The second criterion is the stan-

T
4
dard quadratic g = Z Zi=1 L? (t), it has no physical significance, however
t=0

its optimization tends to equalize queues on antagonist links.

Fluid | Saturate | Random
% of Viyin violation | 8.03 6.29 8.40
% of 3 5.13 2.24 4.74
% of 5 10.30 4.07 9.22

Compared results of the constraint and non constraint models

We also compare with the optimal model, which consists in a complete
enumeration of the solutions space.
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Fluid Saturate Random
%2y %X %X, %X %Ly %xs
Constraint model 5.13 9.30 2.24 4.07 4.59 9.27
Optimal 6.57 9.55 10.84 17.14 12.54 21.64

Compared relative gaps of the two criterions for three traffic
situations

In conclusion, we present a neural algorithm for the modelling and control of
over-saturated urban intersections. We exploit the optimizations capabilities
of the Hopfield net. We modify the genuine algorithm to take into account
particular constraints of our own problem and we prove the convergence of the
modified algorithm. We illustrate this method by several examples of traflic
states generated by a traffic simulator. Finally, we show that this method is
naturally extensible to urban nets of several intersections.
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