ESANN'1998 proceedings - European Symposium on Attificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 1-6

Extending the CMAC Model:
Adaptive Input Quantization

Grzegorz Piotr Klebus

Institute of Electronics Fundamentals, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, POLAND
E-mail: klebus@ipe.pw.edu.pl

Abstract. This paper presents an extension to the Cerebellar Model Articula-
tion Controller, a fast and efficient approximation tool. The input transformation
in the standard model is fixed, thus the internal representation does not adapt to
the distribution of the input data. The proposed approach adds to the input trans-
formation adaptiveness of the controllable range. The new algorithm does not
change the rest of the standard CMAC model, so it can be easily integrated into
existing applications.

1. Introduction

The Cerebellar Model Articulation Controller, proposed by Albus [1] as a model of
cerebellum, is a learning architecture with local generalization property. It is a useful
method for function approximation and was applied by many researchers in numerous
tasks (see [2]). The major advantage of the model is its very fast training and ability
to approximate small- to medium-dimensional nonlinear mappings.

The CMAC model is a kind of sparse coarse-coded look-up table, although it can
be considered a neural network [4]. It quantizes the input space that is further trans-
formed into a highly-dimensional basis functions space. Basis functions are linearly
combined to produce the model output. In the standard model the transformation is
fixed and does not depend on the input data. In this paper a novel approach is presented
which lets the CMAC model self-tune to the distribution of the training data, thus con-
structing better approximation than in the case of the fixed input transformation. The
network with the adaptive input quantization still possesses all the advantages of the
standard CMAC.

2. Standard CMAC Model

The CMAC model is a lattice-based associative memory with local generalization ca-
pability [2, 4]. The given input vector X from the input space X C R" is first quantized:

This work was partially suppotted by the Polish Committee for Scientific Research under Grant No.
8T11C04611.

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 1-6

for each input dimension the activated quant number is computed. The vector of ac-
tivated quants numbers is then used to determine the activation values of the basis
functions a;. The p basis functions form a vector in a highly dimensional association
space. The input transformation is constructed in such a way that only a constant num-
ber (called a generalization parameter, p) of basis functions is activated. The output
transformation is a simple linear combiner. The vector of the basis functions values
forms a kind of extended representation of the original input vector. This represen-
tation is build in such a manner that even complex nonlinear problems can be solved
using the linear output transformation. The input transformation is topology conserv-
ing, in the sense that input vectors near in the input space activate the association space
sets with a number of common elements, and distant vectors activate completely un-
related basis functions. This feature provides a local generalization ability with range
controlled by the generalization parameter.

The model output is y(x) = ¥1_, ai(x)w; for the given input vector x. Since only
a subset of p basis functions is activated (with nonzero values), and p < p usually
* holds, it suffices to sum only the basis functions from the subset.

Implementations:of the CMAC model usually use hash coding techniques to com-
press the large association space into a manageable weights space; see, e.g., [2]. A
model with more than one output can be easily constructed using one quantization
module and many output weights vectors. After the activated basis functions responses
are determined, they are used in weighted sums for each output.

Input Quantization. The input quantization transforms the input space X into some
normalized input space X' by means of quantization. Input dimensions must be
bounded, that is two values should be specified for each of them, x?‘i“ and x"*, de-
noting the minimum and maximum value of the i-th input.

Each input dimension is divided into a number of non-overlapping intervals, or
quants. Quantization is determined by specifying knots, which divide each dimension
into intervals. Knots are denoted A; j, where i = 1,...,n is the input dimension, and
Jj =1,...,r; is the number of knots for that dimension. The knots must satisfy the
following inequality: x}“i“ <A £ <A < x?’i“. These knots are termed internal.
It is convenient to introduce external knots that lay outside or on the input boundaries;
namely, let A;o = x?‘i“ and A; 41 = 2P,

The j-th quant of the i-th dimension is defined as

_ {[7\4’]‘_1,}4,1‘) fori= 1,. vy Tiy
ij = , 4))
[xi,j—la}\'i,j] fori=r;+1.

" There are r; + 1 intervals on dimension i. The input value x; activates the quant inside

which it lies.
There are different knot placement strategies. Quants can be of the same width

(the uniform quantization), or of variable widths. The latter helps the model construct
finer approximation with respect to the probability density of input data. Later in this
paper an algorithm for automatic adaptation of the input quantization is presented,
which eliminates the need to hand-tune the CMAC input transformation.

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 1-6

Basis functions. Basis functions are defined on compact supports (receptive fields),
that is they have nonzero output on bounded regions of the input space. They are orga-
nized in p lattices, or planes, in such a manner that supports do not overlap and cover
all the input space. The support of each basis function is a hypercube of edge p in the
normalized input space. Lattices are displaced relative to each other and any input vec-
tor activates only one basis function from each lattice. Several displacement strategies
exist; see, e.g., [2]. In the Albus CMAGC, the basis functions were binary, thus imple-
menting a piecewise constant approximation. It is also possible to use higher order
basis functions to obtain smooth approximation [2].

Training. The CMAC model is trained using a simple Least Mean Squares (LMS)
rule Aw; = n(d —), thus avoiding the problem of local minima; 1, is the training rate,
d is the desired output.

- 3. Adaptive Input Quantization

The properly constructed input quantization can improve the model performance by
using greater number of fine quants in the regions of the input space in which the input
data are dense. The approximation is then more accurate where the problem is better
represented by the training set. The standard CMAC model, however, does not have
the ability to adapt the input quantization to the input data distribution. This section
presents an algorithm for adaptive input quantization in the CMAC model.

The rough idea behind this algorithm is to try to move knots near the presented
input value slightly towards it. After a sufficient number of training steps, the input
quantization is reorganized: quants become finer in the regions with high probability
of data occurrence. This way the quantization self-adapts to the underlying training
data distribution . The formulation of the algorithm is similar to competitive learning
in unsupervised neural networks [3].

Let us consider an input dimension #; the i-th input value is thus x;. For each
internal knot (j = 1,...,r;) of the input i the update rule

ANy j(2) = a(t)h(e) [xi — A] @

is applied, where ¢ denotes the current training step. Consequently, knots move slightly
towards the current input value ;. In the above equation o(z) denotes the time-varying
learning rate, h(t) is a neighborhood (or kernel) function that decreases to 0 as the knot
value moves away from the input value. The widths of certain quants can become very
small after a large number of training steps; this can be avoided by applying (2) only
if after that the quant width is greater than the minimum assumed width. The learning
rate in (2) controls the amount of correction applied to the knot values, and should
decrease during learning to avoid instability.

After the learning rule is applied, the standard CMAC algorithm is employed to
determine the absolute output error and weight vector update.

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 1-6

3.1. Neighborhood Functions.

The neighborhood function 4 controls the range of the input value in which the knots
positions are adapted during training. The radius of neighborhood should decrease as
training proceeds. The function depends upon the distance between the input value
x; and the considered knot value A; ;. There are two classes of neighborhood functions:
input space functions h(x;,; j,t), measuring the closeness of the input value and the
knot value, and normalized space functions h(k, j,t), measuring the adjacency of the
activated quant k and the considered knot number j.

Input Space Neighborhood Functions. Generally, input space functions can be
easily formed as decreasing univariate functions of the distance between the input and
knot values. They may also have an adjustable parameter ¢ determining the width of
the neighborhood. The value decrease in time, e.g., 6(t) = Ginito'ﬁec’ to obtain a closer
neighborhood in the final phase of training. The value Gjy; in the above equation is
- the initial neighborhood radius, and 0 < Ggec < 1 is the decay rate. See examples in
Appendix A.

Normalized Space Neighborhood Functions. The normalized space neighborhood
functions measure the distance between points on the quantized input axes and also use
some non-increasing univariate function of the distance as their value. See examples
in Appendix A.

Features of the extended CMAC model The proposed extension to the standard
CMAC model provides a simple and effective method of tuning the input quantization
to the distribution of the input data in unsupervised way. The algorithm resembles
the known competitive neural networks learning techniques, although, by contrast, it
operates on each of the input dimensions, not on the whole input space. It may be
applied without any modification to the rest of the standard CMAC algorithm, either
the classical Albus formulation or improvements thereof, and it works in an on-line

manner!.

4. Experimental Results

Preliminary experimental evaluations have been carried out using the building dataset
from the PROBEN1 collection. They aimed at showing that the proposed approach
may be used in certain situations instead of the standard CMAC model to obtain bet-
ter approximation.

The experiments were conducted on a slightly modified building dataset: the
day of week was coded as a real number instead of 1-of-7 binary values. There was no
validation set, it was used as a part of the training set. Other settings were standard.
Each experiment consisted of 500 runs. The experiments were carried out for three
different generalization ratios for four CMAC models: the standard one (‘std’) and

Ladaptation occurs after presentation of each training vector independently upon other presentations

'ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 1-6

RMSE RMSE

1 10, ming epoch 100 50 1 1o,miningemcll 100 500
(a) Training, p =8 (b) Training, p = 16
RMSE RMSE
04 T I 04
std
03 = "o e m - 03 = P=8 p=16 p=32 _]
s [.7 .
- 02 = —
BA eecnananns
\ | - : L L
1 10“ 100 500 8 W € g 5§ W e § s W e g
‘Training epoch
(c) Training, p =32 " (d) Testing errors

Figure 1: Learning curves for different p values (x axis in logarithmic scale)

the adaptive ones with different neighborhood functions—- WTA (‘wta’), exponential
(‘exp’), and Gaussian (‘gau’). The results are presented in Fig. 1, where the Root
Mean Square (RMS) Error is plotted versus the training epoch number. Due to the
space constraints of the paper, the full specification of the experiments and the detailed
results can be obtained from the author via e-mail.

The results of the preliminary experiments show that the convergence speed dur-
ing training is similar for all the algorithms, not counting a few first presentations
where the standard CMAC performs better. The generalization capability is, however,
reflected by the test set errors. It follows from Fig. 1(d) that the adaptive quantization
extensions can substantially improve the generalization in CMAC especially when the
generalization parameter p is low. For higher p values the performance is approxi-
mately the same, since the generalization mechanism of the standard CMAC itself is
satisfactory.

The best properties has the algorithm with the Gaussian neighborhood function.
Worse performance of the remaining two functions is probably caused by somewhat
ad hoc choice of neighborhood radii widths for each case. It is worth noting, that the
larger neighborhood yields better results; compare the poor performance of the WTA
rule, in which only the two nearest knots are updated.

More experiments are needed to examine the properties of the proposed methods

ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 1-6

to a greater extent. It is particularly interesting how the neighborhood initial radius
influences the approximation quality of the extended CMAC model.

5. Conclusion

This paper presents a new extension to the CMAC model. The adaptive input quan-
tization lets the model approximate correctly even when the generalization ratio p is
relatively small. This approach seems promising and worth continuing. Particularly
important are experimental evaluations investigating the influence of the neighborhood
radius on the training capability.

The ability to add and remove quants when appropriate is another enhancement to
the standard model, allowing still better adaptation to the training data. Along with the
adaptive quantization, these two additions to the standard CMAC would substantially
improve the self-organization capabilities of the network.

References
[1] J.S. Albus. Theoretical and Experimental Aspects of a Cerebellar Model. PhD thests,
University of Maryland, 1972.

[2] M. Brown and C. Harris. Neurofuzzy Adaptive Modelling and Control. Prentice Hall Inter-
national, 1994, ‘

[3] T.-Kohonen. The self-organizing map. In Proc. IEEE, volume 78, pages 14641480, 1990.

[4] W.T. Miller, EH. Glanz, and L.G. Kraft. CMAC: An associative neural network alternative
to backpropagation. In Proceedings of the IEEE, volume 78, pages 15611567, 1990.

A. Examples of Functions
Input Space Neighborhood Functions

: 1 if =M j| < o),

hx;, A i) = ’ 3
Square (s Aaot) {0 otherwise; (32)
Gaussian h(x;, A j,t) = exp (—(x,- i j)2/ c(t)) . (3b)

Normalized Space Neighborhood Functions
1 forj=kk+1,

k,j,t) = 4

WA hlk, ;1) {0 otherwise; (42)

- .\ _ Jexp(—|k—jl/o(2)) if j <k,
Exponential h(k, j,t) = {exp(——(lk-—jl ~1)/oe)) ifj>k (4b)

