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Abstract. A generalization of Multilayer Feedforward and Backpropagation to
interval arithmetic was proposed several years ago. This generalization has
several applications like the codification of expert’s knowledge in the form of
rules, “don’t care attributes”, missing inputs, etc. In the bibliography there are
two error function and two training algorithms proposed, and in this paper we
present the first comparison between both training algorithms. We have used a
total number of 35 different problems for the comparison, Finally, the results are
that one of the two training algorithms clearly out-perform the other.

1. Introduction.

Several years ago it was proposed a generalization of Multilayer Feedforward and
Backpropagation to interval arithmetic [1], [2], [3]. This generalization allows to
mixture interval inputs and point inputs (normal samples) inside the training set.

Since that, there are several general applications of this generalization in the
bibliography. For instance, in the papers [1], [2] it is reported its usefulness to
integrate expert’s knowledge in the form of rules and samples in the training set, the
samples are codified as usuvally and the rules can be codified by an interval. It is also
reported its ability to handle “don’t care attributes” in a simple and natural way, a
“don’t care attribute” is codified by an interval whose lower and upper limits include
the range of variation of the input.

In [3], [4] it is reported its capability to codify missing or unknown inputs in the
training and test set. An unknown input is represented by the interval [0,1] if the set of
possible values of the attribute is [0,1]. It is shown that the network is able to respond
to missing inputs in the test set if it is trained with missing inputs.

In [5] it is shown how to decrease the effect of weight errors by using interval
arithmetic. It is proposed a training procedure based on interval arithmetic which
decreases the output sensitivity to etrors in the weights. This procedure has
applications in digital and analog feedforward networks implementations.

Finally, in [6] a new approach to interval regression in neural networks is proposed.
However, there is still a problem in interval arithmetic Backpropagation. The problem
is that two error function were proposed [4], [1] and there is not any comparison
between the performance of both error function and their respective training
algorithms. This paper will fill this gap by showing a complete comparison between
both error functions.
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2. Two error functions.

As already told in the introduction, there are two error functions for interval
arithmetic Backpropagation. The first one proposed by Ishibuchi et al is the
following:
Number of Ouputs
Error = Zmax{(t,,k ~op)’ Vo, €0,,}
k=1

where opy is areal number and Opx is the interval output from the kth output unit. A
learning algorithm can be derived from this equation in a similar way to
Backpropagation taking into account the properties of interval arithmetic [2]. We will
call this error function “Cost function I” in the rest of the paper.

The second error function was proposed by one of the authors of this paper [1]:

Number of Outputs Number of Outputs
Error = Z (to —05) 12+ Z(tpk ~09)* /2
k=1 k=1

where op” and op' are the lower and upper limits of the interval ouput Opy,
respectively. Another different training algorithm can be derived from this error
function. We will call this error function “Cost function II”,

There was a rather small comparison between both training algorithm [4], but the
comparison was performed by using only one problem and it is absolutely
insufficient. In this paper we present a more in deep comparison.

In order to define the percentage correct, several definitions of inequality can be used
[4] in interval arithmetic. These definitions are:

Definition 1: O, <, O, & o, <o,

Definition 2: 0, <, O, < o, <o§k

Definition 3: 0,, <, O, <oy, <o, and o, <o,

Definition 4: O, <, 0, < oz, < o‘fk
And the definition of classification rule is the following:

0,, < O, for h=12,.,C (h#k)

where O, =(0y,;, 042 ... , Oy is the interval output vector from the trained neural
network for the interval input vector X, if the relation holds we assign X; to the class
k.
We have used in our experiments the four classification rules, and the results are

similar for every one. However, we will present here the results for classification rule
number one (the first definition of inequality) because of the lack of space.
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3. Experimental results.

As we pointed out in the introduction, interval arithmetic codification can be used to
codify missing inputs. So we have generated several missing inputs problems in order
to compare both training algorithms.

We have selected seven problems from the UCI repository of machine learning
databases, these problem are:

Credit Approval (CA): This problem concerns card applications. It has 15 nominal
and continuos attributes, 2 classes, 453 training instances and 200 test instances.

Pima Indians Diabetes (PI): This problem has 8 attributes, 2 classes, 518 training
instances and 250 test instances.

The Monk’s Problems (MOI1, MO2, MO3): We have used the three monk’s problems.
. These problems were the basis of the first international comparison of learning
algorithms. They are three problems with six attributes and two classes, 332 training
instances and 100 test instances.

Display 1 (D1): This problem contains seven attributes, the seven segments of a
light-emitting LED display, and 10 classes, the set of decimal digits. Each attribute
value has a 10% probability of having its value inverted.

Display 2 (D2): It is the D1 problem, but additional seven irrelevant attributes are
added to the instance space. It has 900 training instances and 2000 test instances.

And for each problem we have generated five new problems by randomly introducing
missing inputs in the training and test set with percentages 5%, 10%, 20%, 30%, 40%
over the total number of inputs. So, the number of different problems we have used
for the comparison is 35.

In the following page we have the results for both training algorithms. For each
problem, we have trained six different networks with different initialization, and we
have averaged the results and obtained and error.

From the results, we can see that “Cost function II” proposed by Hernandez et al. [1],
[2], clearly out-perform “Cost function I”. The results of “Cost function II” are better
than “Cost function I” in 21 of the 35 problems we have used. In 11 problems there is
no difference within the errors between both training algorithms and in only 3 cases,
“Cost function I” slightly improves the results of Cost function II”.

‘We can also see, that the differences between both training algorithms increases as the
number of training intervals in the training set increases. When the number of samples
which are intervals increases “Cost function II” out-performs the results of “Cost
function I”. For instance, in the cases of 30% and 40% in the problem CA, in the
cases of 20%-40% in the problem MO1 and MO3 and in the cases of 10%-40% in the
problems D1 and D2.

So, we can finally conclude that the training algorithm derived from “Cost function
1I” is better than the other training algorithm from “Cost function I”.
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Table 1. Experimental Results.

Percentage Correct. Cost function I (Ishibuchi ef al.)

Problem 5% 10 % 20% 30% 40%

C4 85.24+0.11 83.7£0.2 | 84.10+0.01 | 77.25+0.01 | 52.20£0.01
Pl 74.240.15 | 65.20+£0.01 | 65.40+0.01 | 66.40+£0.01 | 65.95+0.01
MOl 79.05+0.01 73.5£1.5 | 49.80+0.01 | 47.45+0.01 | 49.35+0.01
MO2 69.25+0.01 | 68.45+0.01 | 69.6+0.01 | 67.6+0.01 | 67.40+0.01
MO3 80.55+0.01 | 87.45+0.01 | 81.5%1.1 | 55.65+0.01 | 53.90+0.01
DI 71.420.5 54+9 8,70+0.01 | 11.25+0.01 | 9,30+0.01
D2 69.58+0.13 2749 11.15+0.01 | 10.3020.01 | 8.65+0.01

Percentage Correct. Cost function II (Hernandez et al.)

Problem 5% 10% 20% 30% 40%
CA 86.00+0.11 84.0+£0.3 | 84.10+0.01 | 82.30+0.01 | 73.25+0.01
PI 69.0+0.4 72.8+0.4 | 65.82+0.03 | 66.40+0.01 | 65.95+0.01

MOI 79.067£0.017 | 68.4+0.3 73.7£0.6 | 70.35+0.01 | 67.5+0.1
MO2 69.25+0.01 | 68.45+0.01 | 69,60+0.01 | 67.60+0.01 | 67.40+0.01

MO3 82.540.3 88.0+£0.4 85.2+0.6 78.2+0.2 | 77.75%0.01
DI 71.9+0.2 67.10+0.17 5642 49.3+0.6 36.70.9
D2 68.78+0.12 | 62.94+0.07 | 57.1£1.3 49.9+0.6 35.5+0.8

4. Conclusions.

We have presented the two existing error functions and training algorithms for
interval arithmetic Backpropagation.

And we have performed a comparison between both training algorithms. For the
comparison we have used 35 different problems, the problems are from the UCI
repository of machine learning databases and we have included randomly missing
inputs in the problems.

The results show that there is one training algorithm proposed by Hernandez et al. [1],
[2], the one derived from “Cost function II”, which clearly out-perform the other. The
difference between both training algorithms increases as the number of interval
samples increases in the training set.
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