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Abstract.  Here the self-organization and a.s. convergence of one-

. dimensional Kohonen’s algorithm in its 2k—neighbor setting with general
type of stimuli distribution and non-increasing learning rate is consid-
ered. We show that the probability of self-organization for all initial val-
ues of neurons is uniformly positive. Moreover, in the convergence phase
the asymptotic behavior of the algorithm is governed by a cooperative
and irreducible differential equation. This implies the a.s. convergence
of algorithm if the differential equation has a unique fixed point.

1. « Introduction

We start with a short definition of the Kohonen algorithm.

Let I be a finite set of neurons labelled from 1 to N. There is a neighborhood
function fij I xI — [0,1] such that fi,i—l = fi,i+l =y € [0, 1], Y >
Yi+1, Yo =1. A weight X} 1is associated to each neuron ¢ attime n and
X" := (X])1<icny denotes the weight vector. Every v € [0,1] corresponds
with the winner neuron ¢*(v) which satisfy

lXi*(v) — v| < |X¢ — ’U| V iel 1)

The algorithm starts usually with a randomly chosen X°. The weights X
are then adapted in the learning phase according to

X+ = X7 + enfiri(vn — XT) Viel, n=0,1--- (2

where v, € [0,1] are ii.d. random variables with probability distribution
Pe, € (0,1) is the learning parameter.

The evolution of the weights in the one-dimensional Kohonen algorithm can
be decomposed into two phases:

1- Self-organization phase, in which the weights of neurons become or-
ganized. The existing results concerning the self-organization property of the
algorithm are limited to some special cases of the one-dimensional algorithm
see [2, 3, 4, 5, 6].

2- Convergence phase, in which the weight vectors converge to their fi-
nal values. In this phase learn process (2) reduces to a special case of the
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Robbins-Monro algorithm and its behavior is governed by the so-called mean
(or average) differential equation. This phase has been studied in [2, 3, 7, 9].

In section 2 we show that under quite general conditions , the probability
of self-organization is uniformly positive, regardless of the initial weights of the
neurons. In section 3 it is shown that the mean differential equation is cooper-
ative and irreducible in F* and F* is positively invariant. This enables us
to establish the a.s. convergence of the algorithm in its convergence phase.

2. Self-Organization
2.1. The Winner Definition

We adopt the following conventions :

D = {ze0,)\V|zy =2y =k=1 V klel}, D :=[0,1]N\D,
Fr o= {ze€[0,1]"] 0<z1<z3<...<zN5 <1},
CFT o= {ze0, V] 1>z >a>...>ay >0} and F:=FtUF~,
U = {(elI|XP=X}}, S(z,n):={ye0,)"||lzi -yl <nViel}

The definition (1) assigns a unique winner neuron for almost all (z,v) € D x
[0,1]. Moreover, if z,z* € D and z* — =z, then the Lebesgue measure of
the set of stimuli for which i*(z,v) # i*(z*,v) tends to zero.This assures the
stability of the winner on D. Hier we introduce a new definition of the winner
which possesses both uniqueness and stability properties on whole [0,1]V.
Let Xn be the set of functions of(.):{1,---,N} =1, k=1,..,N.L
For z € RN, X% C Xy denotes the set of those functions in o*(.) which
satisf L .
Y Z>]=>.’Eok(,;)2xok(j) VZ,]G{I,---,N}.
If x € D, then X% consists of a unique function. ¢ will be referred as the
ordering of the neuron j according to o*(.) if o*(i) = j. Now set
Wow)y:={iel | |zi—v|<|zj—v| V jel};
Wo(v):={ieW2w) | =<z; V jeWl)}

For any z € [0,1]V and any given function oF(.) € £x we define the
k—winner i (v), or more precisely 4 (z,v), which is in fact a generalization
of the winner definition to [0, 1}".

DEFINITION. For i € W,(v) if v>z; (v<uz;), then d;(v) is the
neuron which has the greatest (smallest) ordering in W, {(v) according to
ok ().

It is clear that if z € D, then W,;(v) consists of a unique neuron and
therefore if(v) = i*(v) for almost all v € [0,1] and all of(.) € Ty. But
if the algorithm starts from a point =z € D', then , as soon as X" € D',
there exists stimuli v for which W,(v) consists of more than one neuron
and consequently the k-winner depends on the ordering function o*(.). This
means , for z € D’ the probability that F be reached within ¢ steps
depends on the ordering function which we choose. This is in accordance with
the fact that in any neighborhood of a point =z € D' there exists points of
D with all different possible orderings.
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Next let us introduce the following function :
P, <t):= in P(X* X0 = ;17 (w) =1 (v).
(r<t)= min P(X'er|X°=z 5 i'0):=iW)

Here P(.|.) denotes the conditional probability function. The rest of this sec-
tion deals with the treatment of the analytical properties of P, (7 < t).

2.2. Proof of Self-Organization

The proof presented here is valid for general 2k-neighbor setting with quite
reasonable restrictions on the input distribution and the learning rate.The
method we use to establish the self-organization property is to show that
Py(rp <) > 6 >0 uniformly if P,(rr <t) >0 for all z.

For z € [0,1]V suppose X% consistsof m different ordering functions o*(.),
i=1---,m , m< N Let pe{l,---,m} and define

 S@m=S@mn{yeD | SH={FO}, S™(z,n):=S@EnnD,
CS™R(a,n) = {y € S™(e,m) | By(rp S8) =P(Y' € F | Y = y,i"(v) = i5(0))}.

For sufficiently small 7 it is easy to verify that S(z,n) = UpL,(S?(z,n) U
SR (3, 7).

Sequelly V,(z) denotes the set of all events v = (vq,---,v:) which take
X%=g to F with #*(v) :=43(v), where oP(.) € X%,
Lemma 1. For any z € [0,1]Y and almost all v € V,(z) there exists a
n > 0 such that v takes all y € SP(z,n) U S™TYP(z,n) to F by putting

i*(v) == ip(v). :

Proof. Consider any event v = (vy,---,v:) € Vp(z) and the correspond-
ing weight vectors X!,---,X*. Let k be the ordering of 4} attime n, that
is , oP(k) = i}(vn, X") and define X% = 0.5(X,-’;‘: + X o k-1))> Xz‘?,+1 =
0.5(X{£ + X0 (k1))

Choose a 1 > 0 which satisfies

n < 05min(|X2,, — v, [ XE —wnl), V n=0,---,t-1.

Note that the set of all stimuli for which 1 does not exist has Lebesgue measure
zero. Moreover 7 is independent of the function o?(.).

Suppose YO = y € SP(z,n) U S™TP(z,n), p € {1,---,m}. We use
induction to show that, after v = (vi,---,v;) with *(v) :=i3(v), we have
Yt e S(Xt,n).

Assume that Y™ € S(X™,n)forall n € {0, ---,I—1}, where L € {1,---,t—
1}. We show this is also true for n = 1.

As a first step let us show that i3 (v, Y'™1) = i3 (v, X'71).

It is clear that i}(vy,Y°) = i%(v1, X?). Now let us assume i}(vy,,Y"™1) =
ix(vn, X1 for n=1,---,5s =1, s <l It is enough to show this is also
true for n = s.

Suppose |\Ilf:(}] X,_1)| > 1. (|| denotes the number of the elements of
a set ¥). With probability one for all i,j € U7 4, ., we have X' =
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X7, n=0,1,---,5 — 1. This can be the case only if ¥;" = Y, which

. . -1 . -1 : . —1
1mp111es 'I’Z’;(fa,X’-l) = \1112;(0“1,,_1), that is, for j € \Il;f’;(vuy‘,_l)we have
Yl=y Tt iffie \Il;?;,y_(vs’x‘,_l).This together with Y*~! € S(X*~1,n) and

n < 0.5min(| X%, —vnl,|X]: —v,|) implies that i}(vs, Y1) = i%(v,, X™71)
for n=s.

For I‘I':;,_(i,,,le)' = 1,the definition of i%(v) implies i}(v,,X*7!) =
i(vs, Y1),

Now we have

Yr=0Q1- En’)’ii—i;|)Yin‘1 +enYicigin ¥V i€

which implies,
Xin - (1 - 5n'7[i—z’;;|)77 < Yin < Xin + (1 - 6n’Y|i—i;;|)"7 V iel,

. that is, Y™ € S(X™,n). Recall that F is an open subset of [0,1]V, for
sufficiently small 7 we have Yt € F.
O
The Lemmas 2 and 3 and Theorem 1 are direct implications of Lemma 1.
Their exact proofs are presented in [10].

Lemma 2. If P is diffuse, then ,for oll t € N, P,(rr <1t) is lower
semi-continuous on [0, 1]V.

Lemma 3. Suppose P is diffuse and supp P =[0,1]. If Py(rr < o0) >
0 for all z€[0,1]N, then

3 >0, 3 TEN suchthat ¥V z€[0,1]N, Pu(rr <T)> 0.

Theorem 1. Suppose P is diffuse , supp P = [0,1], Zpe, = 00,
k>1, %41<7 forsome j, 0<j<k and N >2j+1. Then

3 >0 3 TeN suchthat V z€0,1]N, P.(rr <T)>0.

3. Almost Sure Convergence

In this section we review the most recent results concerning the a.s. convergence
of the one-dimensional Kohonen algorithm and some open questions which still
need to be worked.For the winner definition we return to the original definition
(1). In the case that there is more than one possible choice for the winner, we
choose the neuron with smallest index as the winner.

It is known that after self-organization the following differential equation
governs the asymptotic behavior of the Kohonen algorithm.

—Ry(2)z1 + S1(2)
= 3 (3)
—Rn(z)zy + Sn(z)
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where z € RV (N is the number of neurons) and
Ri(z") := Fi(z") + (Pi-1(2") + Pipa (2" )11 + - + (Pici (") + Pig (&™) Vi
Si(z") := Qi(a"™) + (Qi—1(2") + Qita (@™)m + -+ + (Qi-k (=") + Qitk (z™)) ks
Pi(z") := P([z},274]), Qi(z™):= f;f“ vP(dv), 7 :=0.5(z] + =z - 1)").

In the remainder of this paper h(z) denotes the right hand side of (3).

The a.s. convergence of one-dimensional Kohonen’s algorithm has been
investigated in [2, 3, 7] . The results established in these papers confirm a.s.
convergence of the algorithm to the zero of h(x), if the stimuli is distributed
uniformly and €, converges to zero slowly enough. The major difficulty, which
prevented a generalization of this result to the non-uniform case , was that no
Liapunov function is known for (3) in general case.

In [9] the cooperative and irreducible characters of (3) are employed to prove
that X™ converges almost surely (or with probability one), if (3) possesses an
* unique equilibrium in F+. This result is proved in following steps.

Lemma 4. Consider the set F* := {z € [0,1]Y] 0 <2y <22 < ... <
ry < 1},
(i) If P is diffuse ,then there exists a x* € F* suchthat  h(z*) =0.

(1) If P is diffuse , supp P = [0,1], yj+1 <7vjand N >2j+1 for
some j, 0< j <k, then z*e€F™T.

(ii5) Under the same assumptions as in (i) F* is positively invariant
and any solution z(t) of (8) with z(0) € F* has a compact
closure in FT.

(iv) Under the same assumptions as in (i) any solution z(t) of (3)
with z(0) € OF™" satisfies z(t) € F+ fort > 0.

Lemma 5. Suppose suppP = [0,1], P has a density P(dv) = p(v)dv
which is continuous on [0, 1], p>0 on (0,1) and v < -1 <--- <
v1 <1, then we have
(i) The m.d.e. (8) is cooperative on F7.
() If vj41 <7; forsome 0<Lj<k and N >2j+1, then the
m.d.e. (3) is irreducible on F% .

Lemmas 4 and 5 are proved in [9].
Theorem 2. Assume the following conditions hold :
(i) €2>0 ¥V n, Y € <oo and Y, €n = 00;
(ii) supp P =[0,1], P has a density P(dv) = p(v)dv which is
continuous on [0,1] and p>0 on (0,1);
(i) i1 <y; for some 0<j<k and N >2j+1;
(iv) the m.d.e. (3) possesses a unique equilibrium in Ft;
then ,with probability 1, {X™} converges to the equilibrium of the m.d.e. (3)
in Ft.
Proof. For the proof we use the theorem 4.4 of [8]. Lemmas 4 — (i4i) and
5 show that this theorem is applicable.Here (! = Q¢ = F*. We come to the
conclusion that the equilibrium is asymptotically stable and F* is a subset of
its domain of attraction . Now Lemma 4 — (iv) implies that the same is true for
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F* and finally the Kushner-Clark theorem implies a.s. convergence of X™ to
the equilibrium.
a

A natural question which now arises is that under which conditions the
uniqueness of the fixed point is guaranteed. In [1] it is proved that each of the
following conditions are sufficient for the uniqueness of the fixed point of h(x)
in FT.

e logp(v) is strictly concave on (0,1},

e logp(v) is concave on (0,1) and p(04) + p(1-) > 0.
In spite of these results, there are still unanswered questions. Firstly the class
of stimuli, for which the uniqueness is proved, seems not to be the biggest one.
Secondly, in many applications one deals with non-continuous density func-
tions. In such a case the system (3) is not cooperative any more and hence its
asymptotic behavior remains unclear. A possible approach to tackle this prob-
. lem and even the multi-dimensional algorithm is to consider the convergence
in distribution of the algorithm, instead of its almost sure convergence.
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