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Abstract. Observations of complex dynamical systems operating at
Self-Organising Criticality (SOC) have shown them to be inherently ro-
bust to fluctuations in their environment. This SOC has the signature
spectrum S(f) x 1/f?,8 ~ 1 for some variable f in the system. The
observation of power laws in the spectrum of the updates of the neuron
weights in the SOM are reported. Such a signature is shown in the SOM
for certain types of neighbourhood functions, which are intuitively ro-
bust. Other neighbourhood functions have different spectrums which are
" presented, but their meaning remains to be explained.

1. Introduction

The Self-Organising Map (SOM) as developed by Kohonen (4], and based on the
biological process of retinotopy, has been used in many different applications
with success. One of the reasons for the widespread application of the algorithm
is its robustness, that is, with an unknown training data set the neuron weights
will generally self-organise for a broad range of network parameters (i.e. gain,
neighbourhood function). Relatively little fine tuning of the parameters is
required to produce this organised state, although for the convergence phase
this may not be so. The question to be addressed here is the robustness of the
self-organising phase.

In the natural and man-made world there exist many non-linear dynamical
systems with both spatial and temporal degrees of freedom, which can be clas-
sified as dissipative coupled systems and exhibit complex behaviour. The SOM,
during the training phase, can be viewed as such and one of the characteristics
of systems belonging to this class are their inherent robustness. A phenomena
associated with such systems is the formation of spatial structures which are
scale invariant and have self-similar structures (fractals) [6]. A second phenom-
ena in such systems is the existence of power laws, which have been observed
in systems as diverse as semiconductors, traffic flow [5], written text [7], occur-
rence of earthquakes, size of cities, living systems [1]. The best known example
is probably 1/ f noise in semiconductor devices [3]. Here the noise caused by a
current flowing through a silicon sample has a frequency spectrum proportional
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to 1/ f where f is the frequency the noise is measured at. Such systems evolve
towards, what has been called a self-organised critical (SOC) [2] state.

Although the existence of power laws in nature are well know the origin of
these power laws is not well understood. Despite the fact that for example the
existence of fluctuations in a semiconductor with a 1/ f spectrum are considered
as noise, now it may be seen more as the macroscopic signature of the existence
of a system operating at a self-organised critical state.

In this work by the use of simulations the existence of SOC in the SOM
during the training phase will be investigated. The approach is to show that
there exists fluctuations in the SOM which follow a power law over certain
ranges. It is hoped that this will give a new perspective to the analysis of
self-organisation in the SOM.

In what follows the SOM to be analysed is presented, with a brief description
of power laws and where they exist in the SOM. This will be followed by the
presentation of simulation results and conclusions.

2. The SOM and Power Laws

For the pourpose of simulation a one dimensional SOM is used. There are a
total of N neurons with neuron weights z; for neuron 4. At each time ¢ there
is an input w(t) and the winner neuron v(t) is such that

v(t) = min|z;(t) ~ w(t)|

Each weight is then updated as
zi(t+1) = 2:(t) + (DR, v)(w(t) — z:(t)) (1)

The gain function 0 < a(t) < 1, and the neighbourhood function is defined such
that h{v,v) = 1 and h(v, |v £ j|) > h(v,|v £ i|) for ¢ > j. For a broad range
of parameters and input signals the weights will go to one of two organised
states 71 < T3 < ... < zN,ZN < TN-1 < ... < &1 which are both absorbing.
It is known that for h(v,|v £ j|) = 0,5 > 0 that the neuron weights will not
self-organise.

Before discussing power laws in the SOM a few words about power laws
themselves. A power law implies a functional relationship of the following
form,

K
9(y) = v (2)

for some constants 8 and K. In most examples of SOC systems the value of 38
is most often close to 1, hence 1/f noise in semi-conductors. Its actual value is
usually related to specific parameters of the system. In using graphs to display
power law relationships of measured data it is most common to plot log-log
graphs. The resultant curve is linear with a slope of —3

log;o(g(y)) = —Blogyy(y) + logyo(K)
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This form of plot is used here for presentation of simulation results with a least
squares curve fit to determine the slope —g.

The parameter y and function g(y) to be analysed in the case of the SOM
is the occurrence of values of the updates of the weight values. Thus at each
iteration the update of each neuron is given from equation 1 by,

Azi(t) = h(i,v)|(w(t) — z:(t))] 3)

The a(t) will be kept constant and is considered as a scaling factor and not
included here as part of the update. The function g(y) used here will be the
spectrum of the Az; or in the discrete case, as here, a histogram.

3. Simulations

The approach taken in the simulations is to use SOMs with a large number of
neurons and to perform many iterations and then average over all the neurons.
Unless otherwise stated in the simulations presented below N = 500 and 107
iterations are performed. The spectrum S is calculated by dividing the range
of possible updates (e.g. 0 —1) into j intervals with f; the midpoint of interval
J. At each iteration the update of each neuron is calculated and the counter
S(f;) of each interval is updated for each neuron having an update in the
interval j. Thus the number of updates in each interval are averaged over all
the neurons. Figure 1 shows the result for an SOM with a neighbourhood
function h(v,i) = exp(ﬁvN;’L)z with a uniformly distributed input w. It is seen
that at higher values of f the linear behaviour of the curve is lost. In the
literature mentioned previously the effects of finiteness are sometimes used to
explain deviations from linearity. However later on it is seen that here the curve
could be piecewise linear having different regimes for different values of f. As
it turns out it is difficult to classify this behaviour. In figure 2 four decades
of f from 10755 to 10725 of the graph in figure 1 are shown. The linearity is
quite obvious. The dotted line least squares approximation for equally spaced
points on the log scale gives a 3 = 0.815. To see the variation in the curve for a
different type of input distribution, figure 3 shows the spectrum of updates for
a normal distribution (i.e. a sum of uniformly distributed inputs). All other
parameters of the SOM remain the same as the previous case. As seen the
spectrum is also linear with a slope of —0.804 for the dotted line approximation.
Thus the slope of the curve does not change significantly with respect to the
probability distribution of the input signal. To compare these results with the
case of a neighbourhood function where h(v,v) = 1 and h(v,j) = 0,Vj # v
(i-e. no neighbourhood), which as stated already is a case known not to self-
organise. The spectrum of the updates is shown in figure 4 a). It is quite
different from the previous curves. For values of log,q(f) greater than —3 the
slope is zero. In the transition for log,o(f) between —3 and —1.5 the slope is
approximately —6.0.

Figure 4 b) shows the spectrum of updates for the neighbourhood function
h(v,Jvtj]) = 1,7 <1and h(v,|v £ j|) =0,Vj > 1 (i.e. one neighbour) which
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Figure 1: Spectrum of the updates for a uniformly distributed input.
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Figure 2: Spectrum of the updates for a uniformly distributed input. Dotted
line is a linear approximation of slope —0.815.
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Figure 3: Spectrum of the updates for a normally distributed input. Dotted
line is a linear approximation of slope —0.804.

should lead to an organised state of the weights. While the shape is similar to
that of a), the slope of the curve in the transition region for log,o(f) between
—2.5 and —1.2 is approximately 8 = 2.5.

The question now is to interpret these results. First it is clear that the crit-
ical factor for self-organisation is the neighbourhood function. For the cases
of the extended neighbourhood function for lower values of f there is a linear
relationship with a 8 = 0.8, which is close to 1 the value associated with SOC.
This would suggest a certain robustness of the system. However there is a range
for higher values of f, still linear, where 8 = 4. In the case of zero neighbour-
hood function a very different characteristic is obtained which is dominated by
a uniform spectrum with a sharp transition region at higher f. Introducing a
neighbourhood function of width 1, leads to a similar characteristic but with
a more gentle transition which has # = 2.5 and decreases as the width of the
function increases. This transition however, has been observed to be sharper
for smaller numbers of neurons. However while decreasing the number of neu-
rons changes 3 the ratio of the §s for the two cases, of no neighbourhood and
one neighbour, remains the same. Intuitively and from experience an SOM
has a better chance of reaching an organised state for broader neighbourhood
functions, thus the slope of the spectral curves could be taken as an indica-
tion of whether a system can reach SOC, and hence a measure of the system’s
robustness.

4. Conclusions

The existence of power laws in the spectrum of the updates of the neuron
weights in one dimensional SOMs has been demonstrated. The form of the
power law depends on the type of neighbourhood function. In classical SOC
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Figure 4: Spectrum of the updates for a uniformly distributed input with a
neighbourhood function a) h(v,v) = 1and h(v,j) =0,V j # v, b) h(v, [vtj|) =
1,j <1and h(v,lvxj|) =0,Vj> 1.

theory the robustness of a system is considered greatest for exponent values
of B close to 1. Here this has been observed for decreasing neighbourhood
functions extending over large numbers of neurons. For no neighbourhood
a different spectrum has been observed, consisting of a flat spectrum and a
sharp transition. By introducing a neighbourhood the slope of this transition
is reduced. However this effect depends on the number of neurons, further
studies are required to determine if this is a numerical effect or an inherent
effect of the SOM.
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