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Abstract. We introduce a radial basis function neural network, in
" which the variances of the radial basis function are corrected by a su-

pervised feedback, with very little cost in training time. A significant

decrease of the generalization error is observed in two test problems.

1. Introduction

Radial basis function neural networks (RBF) share with the multilayer percep-
trons (MLP) the property of being a universal approximator, but their training
time is much shorter [1, 2, 3]. One weak point of RFB however is the absence
of supervised feedback in the construction of the radial basis function itself. In
the present contribution, we show how a very simple modification of the RFB,
that is motivated by theory, allows to incorporate such a supervised correction.

One of the easiest way to introduce RBF is in the traditional framework of
MLP. The function implemented by a feed-forward network can be written as

M
y(X) =Y w;g;(X) (1)

Jj=1
where X = {z1,---,24} is the input vector of dimensionality d, w;, for j =

1,..., M, are the network weights, ¢;(X) is the jth basis function or the ac-
tivation of the jth hidden unit, and y(X) is the network output. If the basis
functions are chosen to be linear, one recovers the familiar single layer percep-
tron. To go beyond linear theory, the two most common choices of the basis
function are the sigmoid one, leading to the MLP, and the radial basis function,
yielding the basic architecture for RBF. Usually, one opts for a multi-Gaussian
form:

$j(X) = e—%(X—u,-)TGj(X——W) (2)

where p; is the center of the jth basis function and G is a d x d positive
definite matrix.

Unlike MLP, in which all the layers are trained in a supervised way using
backpropagation, the training procedure of RBF is implemented in two stages.
The first stage is to determine the basis functions by unsupervised learning,
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using input data points alone. In the second stage, the basis functions are
frozen and the second layer is optimized by supervised learning.

The fact that the internal representation of hidden units is the result of
an unsupervised process is at the same time the strength and the weakness
of the network. On the one hand, it ensures short training times, but on the
other hand the internal representation can be quite inappropriate, notably in
the presence of input variables which have large variance but have little impact
on the corresponding outputs. Here we present a modified RBF technique that
optimizes the basis function by a supervised feedback, while keeping intact the
most important advantage of RBF, namely its short training time.

2. - Optimizing the Basis Function of RBF

2.1. Theoretical motivation

For convenience we introduce a new vector R = {ry,---,7}, representing the
activations r; of the hidden units j for an input vectorX:

ri(X) = = Ing5(X) = 2(X ~ 1) "G5 (X — ) 3)

The cost function for the second layer is
1 N
E=— n _4n2
§ AR =) 4

where W is the vector of the network weights. y(R"™, W) represents the network
output as a function of the hidden layer state R™ corresponding to the training
pattern X™ with target value ¢”. In the limit in which the number of examples
goes to infinity, the expression (4) becomes

= [ [w@w) - 'perprmar (5)

where p(t|R) is the distribution of the target value conditioned on R and p(R) is
the unconditional distribution of R. Denoting (¢{|R) = [ tp(t|R)dt and (t*|R) =
J t2p(t|R)dt, we can rewrite this expression as follows:

B = [®W)- URyamR
+ [eIr) - eRP)p(RaR ©
The first term in the r.h.s. of Eq. (6) is the cost related to the neural network
training. We will call its minimum value the error of training (EOT). The

second term is the variance of the target value conditioned on R. We will
call it the error of variance (EOV). Different choices of the basis functions will
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normally influence the values of both EOT and EOV. However one can expect
that in a real application, with the number of data points much larger than
the number of hidden units, EOV will be much more sensitive than EOT to
the choice of the radial basis functions. Furthermore, in many cases EOV is
found to be much larger than EOT. This serves as a motivation for a supervised
optimization procedure of the radial basis functions based on the consideration
of EOV alone.

2.2. The method

To stay in line with the main advantage of the RBF, namely the speed of its
training, we are looking for a choice of the radial basis functions based on a
straightforward optimization procedure. To do so, we need to make a number
of simplifying assumptions.

1. We assume all basis functions are well localized on their associated clus-
ters, so that the EOV reduces to the summation of a contribution for each
cluster. As a result we can concentrate on minimizing EOV per cluster:

EOV = / {21 — (tlr)2}p(r)dr )

in which we have dropped the index referring to the hidden unit under
_consideration.

2. We consider a common statistical model, assuming that ¢ is equal to the
sum of a deterministic function f(r) of r plus a Gaussian noise, with zero
mean and standard deviation . Going back to the case of finite training
examples, the EQV is given by:

1 N
EOV = <> {t" - f(™)}* ®

3. One can assume that r < 1 so that f(r) can be approximated as f(r) ~
F(0) + £'(0)r + o(r?), where f'(0) is the derative of f(r) at the cluster
center.

4. In order to get a simple linear optimization problem, we keep the loca-
tion of the cluster center p fixed to the value obtained by unsupervised
learning, and only use the matrix G as the parameters for minimizing
EOV.

5. In order to guarantee that G retains the crucial property of being positive
definite, we consider only the diagonal form which each diagonal element
gii = e positive. We finally get:

N d
EOV = % > {tr =Y WiXpp (9)
n=1 =1
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where £ = " — £(0), W; = f/(0)e” and XP = (XP—p;)%. The optimiza-
tion is thus converted into the training a single layer perceptron, since
Eq. (9) can be viewed as the cost function of a single layer perceptron
with X " as the input, £ as the target, and W; as the weight.

In practice we don’t know the values of f(0) and f'(0), but it does not
matter. The constant term f(0) can be easily eliminated by including a bias
term in the neural network. For f'(0) the situation is more subtle. First, we
note that the value of |f'(0)| is irrelevant, since the EOQV is invariant under
a linear transformation of r, while the width of the cluster is anyways chosen
by heuristics. Furthermore the performance of the network is usually not very
sensitive to its precise value. To deal with the problem of the unknown sign
of f'(0), the single layer network is trained two times with two cost functions,
each of which corresponding to one possibility of the sign, namley

d
~ Z{t” =YXy (10)
i=1 :
and
1 N _ d .
5 A+ e Xpy? (11)
n=1 =1

The proper W; is chosen from the one having the smaller cost function value.

So far we have not considered the unsupervised learning part. From the
several unsupervised techniques proposed in the literature we have chosen the
Gaussian mixture model method [2, 4], because it is widely applicable and it
can be implemented using a powerful algorithm, the Expectation-Maximization
method (EM).

3. Simulation Experiments

To distinguish our method from the usual RBF model, we call it the modified
RBF model (MRBF) hereafter. Note that no extra parameter is introduced
when going to the MRBF. Since the training error is further minimized, we
expect that the generalization error will also decrease. This is confirmed by
applying the algorithm to two different test cases. It shows that the assump-
tions going into the construction of the algorithm and not too restrictive. To
compare the performance of MRBF with that of RBF, we have estimated the
averaged normalized prediction error (ANPE), which is defined by

ANPE = (ZL[ZJJ\SX " W) — t,]?
Yo I = 12

where ¢ = (1/N) 25:1 t" is the averaged target value. The notation (-)trial
refers to the average over different trials of the example set.

)trial (12)
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3.1. A radial function regression problem

The first experiment is a radial function regression problem, cf. [5], which is

f(z1,22) = 24.234[r*(0.75 — r?)]
P = (z1-0.5)%+a(zy — 0.5)%

Ten different training sets, each of which has 300 points, are generated from
the uniform distribution [0, 1]2. The test set, of size 10000, is generated from
a regularly spaced grid on [0,1]2. The simulation results with different choices
of the parameter a are shown in Table.1.

a=0.2 a=0.5 a=0.8
RBF | 0.071041 | 0.053879 | 0.037143
MRBF | 0.023826 | 0.031173 | 0.035671

Table 1: The simulation results of ANPE for RBF and MRBF both having 7
hidden units.

3.2.

The second experiment is a chaotic time series prediction problem, namely
the prediction of the next value of the logistic map z,+1 = 42,(1 — z,,), as a
function of the two previous values. Ten example sets, each of which consists of
500 examples, and the test set of size 10 000, are generated from the stationary
attractor distribution. The simulation results are shown in Table.2.

A chaotic time series prediction problem

M=4 M=8 M=12
RBF | 0.183074 | 0.024980 | 0.012980
MRBF | 0.066597 | 0.010555 | 0.006707

Table 2: The simulation results of ANPE for RBF and MRBF with varied
number of hidden units M.

4. Discussion

We can conclude that MREB leads to a lower training and generalization error
as compared to the RBF. The algorithm is simple and only necessitates the
training of single layer networks. The training time is only a few times slower
than RBF with the same structure. Simulation shows that it works well in
some cases. Even though problems can arise, that can be traced back to the
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failure of some of the assumptions such as the non-overlapping character of the
clusters, the algorithm is so fast and simple that there seems to be no reason
to just try it out.
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