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Abstract. We introduce a type of fully connected Recurrent Neural Networks
(RNN) with special mathematical features which allows us to determine its quali-
tative dynamical behaviour. Using these properties we describe a learning frame-
work for the generation of sequences to be applied to nonlinear control problems.
The potential of this approach is demonstrated by applying the learning frame-
work to the adaptive leg control of the six-legged walking machine LAURON II.

1. Introduction

During the last years the application of RNNs gained constantly growing attention.
The first attempt to formulate a learning algorithm for fully connected RNNs with
deterministic discrete time dynamics (BPTT) dates back to one of the original publi-
cations of the backpropagation algorithm [12]. For practical applications convergence
of this algorithm proved to be too slow and could not be guaranteed. So one favorite
starting point to handle the classification or generation of time series was the applica-
tion of several extensions to feedforward networks [5, 9]. Doing so questions about
the computational power and convergence of RNNs were neglected in most cases.
Only in recent years researchers became interested in this field, inspired for example
by questions about generalizations of the Hopfield model [3, 6] or the description of
chaotical behaviour [11, 7]. Application-oriented approaches were presented in terms
of recombination of oscillators [1] and using biologically inspired time continuous
models [10, 14]. On the other hand neuroethological research has shown that basic
motion patterns are generated by small groups of neurons representing neural oscil-
lators [13, 2]. The aim of this paper is to propose a time-discrete RNN model which
is intended to be used for the generation of nonlinear time sequences based on a time
invariant characterization in a biologically plausible manner.

2. A RNN Model for Generating Oscillating Behaviour

We use a fully connected deterministic RNN with d units and continuous outputs [8].
Let x,, € R denote the current state of the RNN at time step 7, i.e. the vector of
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outputs of each individual neuron at time step . We assume a synchronous iteration
mode. Therefore we can determine the RNN state in the next time step n -+ 1 using the
state transfer function f(z) := fic:(Wz) where W € R%*? is an arbitrary matrix
and f,c: : RY — R? is a nonlinear normalization function defined as
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It is important to note that the proposed activation function f,c; is global with
respect to the RNN, i.e., it computes its new state using information about internal
states of each individual neuron. This might cause problems in very large networks
but the RNNs used here for sequence generation are mostly of sizes about ten units.
Furthermore we can imitate the behaviour of an RNN of d units and global update
by an RNN with 2d + 1 units and local update functions in each neuron which is
illustrated by figure 1.
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Figure 1: Mapping of RNN with global update to RNN with local update

Below we will describe some mathematical properties of the proposed RNN model
which will prove to be helpful in the context of adaptive control systems.

Lemma 1 Let fcfz) (x) denote component k of the result of applying fact to x. Let
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Lemma 2 f,.:(6x) is contractive for every 0 < & < 1. In the limit case § = 1
fact () is not contractive, but it still holds that x = 0 is a global asymptotic stable

fixed point of fyct-

The first statement of lemma 2 follows directly from lemma 1. To see the correct-
ness of the second statement we may assume an arbitrary point z € R? which is not
the origin. Let g : R — R be defined by g(z) = %@2 forz # 0 and g(z) = 0 for
z = 0 then fot(2) = g(|z|) - = and therefore £, (x) = ¢"(|z|) - . Furthermore
g'(z) < 1forz # 0and g'(0) = 1, g"(0) = 0, ¢"(0) < O which means that g is
globally asymptotically stable with the attractive fixed point z = 0. Therefore

lim f2(@) = lim g"(e) =0-2 =0 ®

which concludes the proof of lemma 2.
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Theorem 1 (Eigenvector Theorem) f,..(Wx) retains the eigenvectors of W, i.e.,
every local linearization of foee W) has the same eigenvectors as W.

Theorem 2 (Eigenvalue Theorem) Suppose A\ = re'® is eigenvalue of W. Then
there exist a decreasing function 3 : Ry — (0,1] with X = B(|Wp)|)re*? is eigen-
value of the local linearization of fe:(Wz) in p # 0. The local linearization in
p = 0 has the same eigenvalues as V.

Both theorems can be proven by tracing back the linearization at an arbitrary point
p € R? to the form I(z) = a(|Wpl) + B(|Wp|)Wz with nonlinear differentiable
functions o, 8 : R — R. Since a and § are constants to a given linearization the
statements of the theorems result from basic linear algebra. The relation given by the
Eigenvalue Theorem can be used to derive the following

Lemma 3 Suppose the eigenvalues of VW are ordered by |A1| > --- > |Aa| > 0.
Then for every local linearization with eigenvalues corresponding to theorem 2 holds
[A1] > -+ > |Aa|l > 0. Furthermore is || > |Ae| fork =1, ...,d.

The theoretical investigations given above result in the following dynamical prop-
erties which can be used to describe the qualitative dynamical behaviour of RNN.

Theorem 3 (Global Stability Theorem) Suppose the eigenvalues of W are still or-
dered by their absolute values. Whenever |\1| < 1, i.e., the dynamical behaviour of
the linear difference equation Tny1 = W, is globally attractive towards the origin
the same is valid for the RNN. If |A\1| = 1, i.e., the dynamical behaviour of the differ-
ence equation is stationary in at least one dimension the dynamics of the RNN are still
globally attractive towards the origin.

Theorem 4 (Oscillation Theorem) If there exists a subset of eigenvalues of W with
[Ax] > 1, 1 < k < 1, then the RNN will exploit quasiperiodic behaviour on the
space built of the eigenvectors corresponding to A1, ..., Ar. The absolute value of Ay
determines the attraction rate of the corresponding attractor.

The term quasiperiodic behaviour includes periodic (i.e. oscillatory) and fixed
point behaviour as special cases. The following lemma is a direct consequence of
the Global Stability Theorem and the Oscillation Theorem.

Lemma 4 The proposed RNN model cannot exploit chaotical behaviour.

3. A Learning Framework for Control Applications

Instead of learning a large neural network with recurrences which has to learn all the
dynamical behaviour at once, we extract a normalized oscillating behaviour which de-
scribes the qualitative behaviour of the system. This behaviour is realized using the
proposed RNN model and the adjustment to the task is accomplished by a simple feed-
forward network. Since we have a nonlinear oscillator with a nonlinear postprocessing
by the feedforward network we can restrict ourselves to affine pre- and postprocessing

fore(@) =Az+a and fou(z)=Bx+b A,BecR¥>, abeR? @
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of the system state space. In system identification tasks we can choose the postpro-
cessing as the inverse of the preprocessing. Suppose the output of the feedforward
network is denoted by fzs(2), then the output o, of the control system at timestep n
depending on the initial system state sy and the time independent control parameter

vector c is given by - n
On = Jpost © Jr7 (€, ™ © fore(S0)) &)

The resulting control system is illustrated by figure 2. To construct an initial
weight matrix WV of the RNN one can combine several rotation and scaling matrices
or determine an initial W directly from a set of given eigenvalues and eigenvectors.
Given a representative set of optimal sequences it is also possible to estimate the char-
acteristic system using finite differences or HOUSEHOLDER transform. According to
the second statement of the Oscillation Theorem it is possible to revise W to match
a given attracting behaviour by simply multiplying W with a factor oo > 1 if the
global attraction behaviour is to be adapted or to enlargen the eigenvalues of special

~ eigenvectors of W to achieve a specific attracting behaviour.
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Figure 2: Integration of the RNN in an adaptive control system.

Now we can train the feedforward net with one of the usual backpropagation al-
gorithms. We need to establish an external analysis module which monitors the dif-
ferences between the system state predicted by the control system and the real system
state according to sensory information. If the differences become too large the analysis
module has to decide which component of the control system should be recalibrated.
This can be achieved by estimating the characteristics of the dynamical system in the
same way the initial weight matrix of the RNN is obtained. In case the analysis mod-
ule detects changed system characteristics it derives a new weight matrix for the RNN
in parallel to the running system and updates the weight matrix at an arbitrary time
step. If the characteristics have not changed the occured differences have to be mini-
mized by further training of the feedforward network. The result of this approach is a
fast adaptation of the control system in case of varying environmental conditions.

The process of developing a control system is thus a combination of constructive
elements using context information and knowledge about dynamical characteristics,
and adaptive elements using the advantages of feedforward networks, both in a context
of neural networks.

The applicability of our approach is tested by the generation of joint angel se-
quences for adaptive leg control as illustrated by figure 3 of the six legged walking
machine LAURON II ([4]), which was built at FZI Karlsruhe, Germany. The aim of
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Figure 3: The left figure shows a schematic drawing of a single leg. In the right figure the
sequences of the joint angles for one complete leg trajectory are shown (in radians).

the research project LAURON is to realize an autonomous legged robot which can
adapt its behaviour online while exploring unstructured environments. This leads to
the following requirements for the representation of leg trajectories.

¢ Memory and computational efficiency to match the limited computing resources
and hard realtime requirements of an autonomous system.

o Robust and flexible trajectories. Main problems are the large variety of possible
initial situations and disturbances during motion.

o Integration in hybrid learning architectures. To control the walking behaviour of
LAURON II we have to integrate the single leg controller into a control system
_for leg-coordination and path planning.

o Integration of available domain knowledge about the dynamical behaviour. Es-
pecially for an online learning process on the walking machine it is extremely
important to guarantee a basic behaviour even during the learning process.

Using our method we were able to construct a family of oscillators that fulfill
the given specifications in every respect. We obtained some standard trajectories for
walking on even terrain by programming by demonstration. From these trajectories
we extracted the description of the oscillator and the training examples for the feed-
forward network. It showed up that only three neurons are necessary for the RNN to
describe the qualitative dynamical behaviour given by the standard trajectories.

In figure 4 the results of some experiments to generate leg trajectories are shown.
A two dimensional grid of starting positions for the leg deviating from the optimal
starting point is choosen and the resulting trajectories are recorded. We see that the
attracting behaviour of the recurrent network representation compensates for deviating
positions of the leg by gradually driving it back to the standard trajectory.

4. Conclusions

We developed a new RNN model which has several mathematical features which
proved to be useful in sequence generation tasks. Based on these results we described
a learning framework which separates the control system into an oscillating RNN and
a task-oriented adaptive component which supports fine-tuning, faster learning and
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Figure 4: Plot of two different return stroke trajectory fields created with our approach.

execution. Future work will include the extention of our approach to leg coordination
with several gaits including the transitions between them.
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