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Abstract. The anticipatory approach presented here is based on the
prediction of sensory consequences of hypothetically performed actions.
With the prediction of consequences of actions, it is possible to evaluate
sensory sequences. Prerequisite for this is a sufficient prediction of the
sensory consequences of executed actions. Based on this anticipatory
approach, we propose a neural architecture that is able to evolve an
initially reactive behavior into a planning and forecasting behavior.

1. Introduction

The basic idea of the anticipatory approach presented in [7, 8] is to avoid the
separation of perception and generation of behavior and to fuse both parts into
one neural process. It seems to be more realistic to characterise the visual
scenery immediately in categories of behavior. Perception is considered to be
the internal simulation of a number of actions and the anticipation of their
consequences. On one hand, these hypothetical actions and their anticipated
consequences characterise the sensory situation. On the other hand, from this
set of descriptive actions those can be selected for execution, which result in a
positive effect concerning to the system goal.

For enumerable states and actions there exist some similarities to Sutton’s
DyNA architecture [11]. In contrast to DYNA our architecture deals with a
quasi—continuous action space and uses environment models at the sensory
level. Other approaches try to solve the problem of action selection for a given
sensory situation by introducing evaluation signals to describe the quality of
alternative action sequences with respect to the current sensory situation and
the system goal (e.g. Q-Learning [12]). The disadvantages are that learning
is very costly and each learned action value represents a complete sequence of
experienced state—action transitions. It is not possible to evaluate a composite
sequence generated from action sequences that are only partly known, but have
never been seen as a whole before.
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2. Architecture

We understand perception as an active process of generating sensory hypotheses
based on detected sensorimotor relations. Hypothesis generation for sequences
requires an adequate representation of alternative actions. In order to evaluate
action sequences we have to search in a quasi—continuous sensorimotor space.
To reduce the search space we select only promising actions using an extended
neural field approach and a fixed search depth in our neural architecture.

The sensory information is the optical flow from a monocular video se-
quence. We use it because of its implicit information about spatial distances
to objects in the environment and the causing action. Regardless of typical
optical flow problems DUCHON et al. [3] and KROSE et al. [5] showed that it is
possible to navigate and avoid obstacles using the optical flow only. To estimate
the optical flow we use an region—based correlation approach by Camus[2].

Figure 1 depicts the principle structure of a prediction module consisting
- of an action suggestion, an optical flow prediction, an action selection and a
hypothesis evaluation. The action suggestion generates a topological motor
map that codes a set of alternative actions. A location in this map corresponds
to a specific action within a two-dimensional action space (speed and steering
angle), while the activation of the corresponding neuron represents the learned
evaluation of this action. The action suggestion is implemented as a neural
function approximator based on an adaptive vector quantization technique in
conjunction with a simple reinforcement learning mechanism.

Figure 1: Structure of
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In order to integrate the prediction module into a global behavior-based
system (fig. 2), we modulate the motor map with a global motor map (fig. 1).

To select a single action within the motor map we use an extended neu-
ral field with sequential selection behavior [1, 10]. This mechanism selects the
most promising action first and later less promising actions with respect to their
evaluation, if the available time for internal simulation allows this. The optical
flow prediction computes the sensory consequences of the selected actions using
the current sensory input. We use a modified “mixtures of expert” approach
realized by action—specific perceptrons gated by a neural vector quantization
technique [6]. We employ a piecewise linear transformation of the current opti-
cal flow field to approximate the succeeding one. The adaptation is performed
after the execution of a "real” action by comparing the real and the predicted
sensory situation. The quality of prediction is stored in a situation and action
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The adaptation of the two pathways, action suggestion and optical flow
prediction, is independent of each other. Hence, a non—optimal selected action
is no problem for the training of the sensory prediction. On the other hand, an
erroneous prediction has no influence on the real reward signal. Only the selec-
tion process is affected. A single prediction module is able to sequentially gen-
erate several individual actions and to estimate resulting sensory consequences
together with corresponding evaluations. By chaining of multiple prediction
modules working on staggered time scales it is possible to generate sequences
of actions and their sensory predictions (Figure 2). The first prediction module
works on the real sensory input, the second on the prediction of the first and so
on. Each successive module is only given that limited time to generate alter-
native hypotheses during which the output of its predecessor remains stable.
The choice of the parameters for the internal dynamics controls the breadth of
search. The maximum depth of search depends on the number of replicated
prediction modules organized in this temporal hierarchy. A stable action se-
quence is fed into a short—term memory called best evaluated action memory if
its evaluation is higher than that of the stored one. After the simulation time
elapsed, the best simulated action sequence is copied to the corresponding pre-
diction modules (fig. 2) in order to prefer the best simulated action sequence
in the next simulation. The first action of this sequence is executed. Our
mechanism guarantees that after a setup time the process can be interrupted
at any time. It puts out that action sequence which has been judged best up
to this point. Therefore it can be considered as a neural implementation of an
anytime algorithm.

3. Experimental Results

First we investigated the reactive behavior. Therefore we trained the action
suggest module to satisfy the reinforcement function shown in figure 4. The
desired behavior is a straight-ahead motion that is as fast as possible. Three
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- Figure 3: Three different sensory situations (left), the corresponding optical
flow fields (middle) and the suggested action maps (right) as the results of
the module action suggestion. Highly evaluated actions generate higher, lower
evaluated generate lower activities in the motor map. Velocity is coded in y—
direction and steering angle in x—direction. In the upper situation the robot
avoids left turns, in the middle the robot can move straight ahead. The last sit-
uation represents an obstacle in front of the robot, therefore no ” move forward”
hypotheses are generated, merely slow turn left or turn right movements.

Figure 4: The already defined heuristic reinforcement
function favours fast and straight ahead movements. Ad-
ditionally, any collision is evaluated with a zero reward.

typical sensory situations are shown in figure 3, the corresponding optical flow
fields and the suggested actions learned in preceding action perception cycles.
For a reactive behavior we only use one prediction module. In this way, the
action selection depends only on the current situation and the immediately
expected reward.

For the anticipatory experiments we use three concatenated prediction mod-
ules. The function of our architecture is shown in figure 5. In contrast to the
reactive system, the anticipating one takes not only the immediate best reward
into consideration, but also future rewards. The bottom sequence was selected
because the overall reward is higher than that of the top sequence, although
the expected reward of the first action in the top line is highest. In order to
get comparable performance measures we placed the robot in front of a large
obstacle approximately 10 cm away. Its task is to maximize its overall reward
considering the heuristically defined reinforcement function (fig. 4). The antic-
ipatory approach avolds an obstacle earlier than the reactive (figure 6). Mean
rewards for this experiment are shown in table 7.

In a given sensorimotor situation the system can select those local actions
from the action map which are suited best for the global action. In figure 8 there
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Figure 5: 'Tree of simulated action sequences. The first proposed action is the
best action considering no simulation. With internal simulation, the last line
~ has an higher expected overall reward than the top line.

is a constant global action “move left ahead” modulated into the prediction
module. As can seen, the system avoids movements to the left as long as an
obstacle is in the robot’s left view. After the obstacle has vanished the robot
turns left and follows the global intention.

4. . Conclusions and Outlook

The usage of information about the future is part of strong reinforcement ap-
proaches. TD-(A) or Q-Learning, for example, propagate the evaluation of a
situation back to the one preceeding it. The evaluation of a action sequence de-
pends on its complete execution. Our approach can combine parts of sequences
into a new sequence and evaluate it at once. A drawback is that we can build
sequences only of a size equal to the number of prediction modules. This is
not critical because the changes in global actions are more dominant for larger
time scales. In future work we will investigate the use of prediction differences
in the sensory information to detect dynamical obstacles in order to give some
hints for active vision systems for interesting areas in the visual input. Further
investigations have to be carried out in comparisons with strong reinforcement
approaches.
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Figure 6: Result of anticipation of sensory consequences.
The anticipatory agent moves earlier to the left (solid
line). Therefore its mean reinforcement is higher than
that of the reactive one (dotted line).

Figure 7: Comparison of the reinforcement values of
the reactive (dotted line) and the anticipative behav-
ior (solid line). The reactive robot gets first a higher
reinforcement but can often not avoid a collision. The
anticipative can look ahead and select the action with

T higher reinforcements in future.

Figure 8: The left trajectory shows an global interaction
to prefer a left turn. This preference takes effect after
the obstacle on the left side has vanished from the view.
The right trajectory is an example for no global interac-
tion. The robot moves straight ahead until an obstacle
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is blocking its way.
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