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Neural Networks for financial forecast

G. Rotundo*B. TirozzitM.Valente

Abstract.

We use Neural Networks algorithms for forecasting financial time series.
‘We check first the kind of correlations that the series exhibits by means
of the estimate of the Hurst’ s H parameter. The range of correlations
characterize the time series and gives useful hints for choosing the net-
work and the training set. The time series considered is given by the
values of the futures of italian BTP.

1. Introduction

We deal with the problem of using neural networks for prediction of financial
market time series. The first problem is to have some criteria for choosing the
training set and the testing set: there is in fact a great arbitrariness in this
choice when dealing with random quantities. We simply select these sets using
the condition that they have to be realizations of the same stochastic process.
Since we deal with prices of financial market time series we know already that
they are realizations of Brownian motion. But the process generating them may
be a fractional Brownian motion or a simple Brownian motion. The difference
between these two processes is crucial for the market theory. In fact the Black
and Scholes model cannot be applied if the data are generated by a fractional
Brownian motion because Ito calculus fails. In this case the only method for
prediction are the neural algorithms. The situation can be even more subtle
because the Brownian motion can change its nature during time and so one can
get a set of data which correspond for example to a simple Brownian motion
and another one which corresponds to a fractional Brownian motion. So we
select the data for training and testing in such a way that they are generated
by the same kind of Brownian motion. The Brownian motion can be simple
or fractional according to the value of the Hurst parameter which is defined
in the following section. Applying some suitable criteria for determining the
value of H for the daily Italian treasure bond values we get a unique value of
H near to one. This means that the daily data are strongly correlated and
generated by a fractional Brownian motion. Thus Black and Scholes model
cannot be applied for computing the evolution of the prices of the bonds in
this case and, as we said above, we have a good reason for applying neural
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algorithms. Moreover the existence of the same type of strong correlations, as
a consequence of a unique value of H, leads to the use of neural networks also
because a strong correlation implies some ”rule” generating the data which can
then be ”learned” by the network. In other words data generated by a simple
Brownian motion have independent increments and cannot be ”captured” by
neural algorithms. In Section 2 we define H and explain the method used for
detecting its value. In Section 3 we describe the neural algorithms used and
in Section 4 we discuss the special input data constructed starting from the
simple time series of the price using current methods for dealing financial or
economical values.

2. Estimate of H

Before applying neural networks to our economical time series we make a pre-
. liminary analysis on the data estimating their dependence. The neural network
can learn a rule from a data set only if there is some law behind them, in other
words a learning algorithm will never converge on a set of independent data and
so the training set must be chosen inside the range of correlation among data.
A quantitative parameter which indicates the degree of dependence among the
increments of the process is the Hurst’s exponent. It has been introduced by
Hurst in 1951 in relation to an hydrology problem of the Nilum basin. It can
be defined by means of the variance of the increments:

E(:EH.T - xt)2 ~ CTZH .

If [4] 0 <H< 0.5 the series is antipersistent or ergodic, if H = 0.50 there
is no correlation between the data and if 0.50 < H < 1 then a long term
correlation exists and the more H is close to 1 the more the underlying process
has a strong long term component.

We use two different methods for estimating H. The first is the R/S statis-
tics [4] , where R/S means rescaled range over standard deviation. Given a
random data set {Xi,---,X,} the estimate of H is given

E[R/S] ~ an® (1)

for n — oo where @ is a constant and E is the expectation of the R/S
variable with respect to the probability measure of the process generating the
time series. The mean is computed averaging among block of data according
to the law of large number. H is the slope of the line which best approximates
the (logn,logE[R/S]) diagram which can be constructed from the time series
([4]). We got H = 0.9 for the BTP futures for all the data that we consider. So
we can think that the time series is generated by a unique fractional Brownian
motion with very strong correlations. As we mention in the introduction the
Black and Scholes model for computing the evolution of prices cannot be used
and we have a consistent set of data to which apply neural algorithm.

If the data are scattered too much such a line has no precise meaning and
then one can use a spectral method approach. This is not our case but a check
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with another independent method is always good because there is also some
arbitrariness in the way the statistic R/S is performed.
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R/S analysis of the daily closure BTP values not normalized. The dark line
represents the results of the R/S analysis, the dashed line is the
approximating line 0.95*n+0.7 .

In order to estimate H with spectral methods we use the Fractional ARIMA
(FARIMA) models applied to our time series {X3,---, X} and a nice theorem
found by Hosking [3] in which H is shown to be equal to d + 1/2. d is the real
power of difference operator VX; = X; — X;_; which enters in the definition
of FARIMA model: V¢X; = ¢; where ¢ is a process of independent gaussian
N(0,1) variables.

The main theorem for the estimate of H for such processes is given in Geweke
[2] by the following :

Theorem

Let {X:} be a general integrated linear process, with d < 0. Let I(X;r)
be the periodogram of {X;} evaluated at the harmonic frequencies A\; r = 7,

where T is the number of sample data. Let b be the ordinary estimator of the
least square method of b in the regression equation:

In(I(\j,T) =a+bln (4sin21\12’—2) +er,j=1,---,n 2)

Then there exists a function g(T") ( such that limr_0g9(T) = oo and
~ 2
lmT 0022 = 0)) such that if n = g(T) then limb = —d. If limr_0o M- =
_btd bi imat f
0, then Tt — N(0,1) where varb is the usual least square estimator o

var(b).
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Applying this theorem to the futures of BTP we got the same result of R/S
statistics.
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Estimate of d for the daily closure values of the BTP. The slope of the dotted
line is the estimate of —d.

3. Two layer neural networks and genetic algo-
rithms

Since we got strongly dependent random data we feel more sure about the
application of neural algorithms to them and since H is uniquely determined
we can take rather arbitrarily our training set.

We choose a perceptron with one intermediate layer for dealing with our
time series ;.

We at first construct the input-output pairs (x¢,4:),t = 1,T , divide them
in two subsets of equal magnitude and we perform the learning on the first
half of them. Then we perform prediction and training with a moving window
procedure in order to minimize the arbitrariness due to the choice of the training
set. First we make a prediction on the first pattern that doesn’t belong to the
training set, yr/241, and after the couple (X7/241,¥7/2+1) is taken into the
training set. The original neural network is doubled into 2 neural networks
that are trained again: the ”long range” unit is trained on a training set larger
than the one of the ”short range” unit. The choice of using two modules of
neural nets is connected with the kind of predictions that we want to make:
a large set of inputs is of course connected to a prediction of longer range.



ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 351-356

The prediction of this 2-modules neural network is simply given the average
predictions of each unit. This procedure continues until the last data is reached.

Monte-Carlo training algorithm has been modified in order to have a better
performance: if the error relative to a certain pattern does not decrease after
a given number of minimizing steps, ncomp, then we use the compensation
method [6] that adds one or two neurons in order to reduce to O the error
on that pattern. A measure of the goodness of the forecast, called fitness
of such nets is connected to the error made on the predictions: fitness =

1- -}V\/ZLT/m(yt — F(x4))? where (x;,3:),t = T/2+ 1,T are the input-
output pairs, F(z) being the output of the neural net under the input x. The

genetic algorithms ([5], [1])have been applied on the dimensions of the moving
windows in order to maximize the fitness.

4. Application to BTP time series data

A future contract is a contract in which we establish to give a certain amount
of a good at a fixed time. These contracts are made on the italian bonds BTP
(Treasury Bond).

In order to perform the predictions we got the daily closing values x; of the
futures contracts on BTP from 19/09/91 to 2/10/97.

For the construction of the training couples, (x;,y:) we put ¥ = Ty
and we map our time series data z; in a vector of technical indicators. These
parameters are chosen by economical arguments: M Ay (z;) is a moving average
quantity which takes into account the local time evolution while RST(x;) gives
an estimate of the increasing behaviour (relative strength index).

Xt = (MA3 (xt)’ MA5($t)’ MAS(mt)y MA13($t)7 MA21 ((l?t),
RSI3(x;), RSI®(x1), RSI®(x), RST*(x), RST? (x4))

where
l -1
k k
t
Zi:n—k—l,m;>mi_1(l Ti — Ti-1 l)
Yicip1(mi—zic1 |)

In order to perform the training the x; values were normalized: denoting
by btpmaz the maximum value of the BTP and by btpmin the minimum BTP
value that appears in out data and by z; the BTP value at the day t then
the wanted output is given by: #ﬁ%. In particular we have that
btpmin = 87,187, btpmazx = 132.15, italian liras.

The probability mutation of the genetic algorithms was fixed equal to 0.15:
this means that for each generation only the 15% of its members can be mu-
tated; the crossover probability was fixed equal to 0.8.

Our results lead to an error (mean of the sum of the absolute values of each
error on each prediction) of 0.33 liras on the normalized values, that lead to a

MAL(z:) = —(2) + M Ag(z:-1), @)

RSIk(tL't) -

(4)
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true error of 0.5 liras. Our future aim is to try to decrease this error working
on the definition of the training set and the input vector and use other data as
input as for example the values of future taken every 5 minutes.
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