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Abstract. In this paper, a new algorithm for the learning of feed-
forward neural networks is presented. Stating the learning process for
feedforward neural networks as a parameter estimation problem, we de-
velop a new algorithm and provide an analysis of its convergence and
robustness properties. The simulation results, for both classification and
function approximations problems, confirm the effectiveness of the pro-
posed algorithm, whose behaviour with respect to error back-propagation
.and extended Kalman filter-based learning are discussed.

1. Introduction .

In the literature on neural networks, many efforts have been reported to improve
the performances of learning algorithms: nonlinear optimization techniques for com-
puting search directions more effective than the steepest descent, algorithms using
also the second derivatives, adding noise during the training, heuristic acceleration
techniques, etc. By considering a feedforward neural network as a nonlinear system
having a layered structure, its learning algorithm can be regarded as a parameter
estimation problem for such a system. Following this approach, training algorithms
based on the extended Kalman filter (EKF) have been developed [1]. They show
faster convergence than backpropagation (BP) and avoid tuning parameters, at the
expense of increased computational burden (matrix inversions are needed) and large
amount of memory, required for storing the covariance matrix.

In this paper, after stating the learning of feedforward neural networks as a pa-
rameter estimation problem, we develop a new batch learning algorithm, and demon-
strate its convergence and robustness properties. Unlike BP, the algorithm shows
fast convergence and, unlike the EKF-based training, it does not require successive
linearizations. The algorithm works according to a sliding-window scheme (only a
portion of the data is processed at every time, and the past is summarized in one
prediction) is computationally tractable.
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2. The learning algorithm

We consider multilayer feedforward neural networks containing only one hidden
layer, composed of v neural units, with the hyperbolic tangent as activation function;
the output layer is linear. The function implemented by such a network is denoted
by 7(w,u), where w and u are, respectively, the weights and the input vector.
The data set consists of P input/output pairs (u,,¥,),% = 0,1,..., P — 1, where
u, € R™ and ¥, € R? represent, respectively, the mput and the desued output to
the network. We let the weights of the network constitute the state of the following
nonlinear system (¢=20,1,... P—1):

Wiy = Wy 1)
Y, =l(!¢73"-t)+1_7.¢
A . . e
where w, = w, = ... = wp_, = w, 1, € R” is a random noise whose statistics are

unknown, and it is supposed 7, € K C RP, where K is a compact set. We assume
that w € W and u, € U, where W and U are compact sets. If we consider the data
set (v,,%,),t=10,1,..., P —1, as generated by a process governed by an unknown
_function f : R™ — ER , Le,, ¥, = f(u,), then 7, is the error achieved by the
' approximator 7Y in the approximation of f, in correspondence of the value u,. The
possibility of writing (1) is guaranteed by the universal approximation properties of
feedforward neural networks, provided that the unknown function f be sufficiently
smooth (for instance, [2]).

The algorithm we propose for the network training is based on a sliding-window
state estimator for system (1) [3]. According to this, we estimate the constant pa-
rameters vector w in such a way as to minimize the cost

t

YA _ 2 . 2
R, o)+ Y o -1@ew)|’ t=NN+1L.,P-1 (2)
i=t—N
where the integer N is the dimension of the sliding-window, @, is the estimate
of the weights vector w at the time ¢ and @, is the “a priori” information on
the value of #,. Minimization of J; at each temporal stage leads to a sequential

state estimator; the optimal estimate @; of w at time t, given the “information

a "
set” IV = {_y_t_N,... Y M N Uy ,}, is w, = argmm Jz (w,,ItN), where

a . o .
@, = Ww)_,, and @y is the initial prediction. Let W/ be the sets of the optimal

estimates that minimize the cost (2), Yy & Y(W,U), Y C RP and H (w, _u_i_N) =

col[7(w,u,), T=t—N,...,t], where u; _y = col (u Yoo Yoo N1 g,)
Assumption A. There exists a compact set W such that W 2 WU ( S Wy )
Assumption B. There exists an integer N such that, for any u{_y € U Th+1 , the
mapping H (__,_, N) : W —s RPV+D) s ap injective immersion (i.e., the Jacobian
matrix must have rank n), where W is the closed convex hull of W (such a W exists
in virtue of Assumption A).

Given a symmetric positive definite matrix A, we denote by Amin(A) and
,\max(A) its minimum and maximum eigenvalue, respectively, for a generic matrix

B, ||Bllmax £ |Bll = \/Amax(BTB) and ||19||.,,,n 2 /*mm(BTB). Moreover, let
D(w,ut_y) 2 2 e RHNHDX" oy € Wand A = maxyew, ui_eon [1D(w ),

. A
2 mingeway_,cown D@ gl Letrg 2 maxfeol(Bos-o- 20
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and k = 2 kN + 1, where k € RT is a suitable scalar such that
87("’ ) === (w',u) - a"(w %) === (w", u)” <k |w —w"|| Yo', w" € W,Vu € U. The follow-

ing theorem gua.rantees, under suitable hypotheses, the boundedness of the estimation
error (for the proof, see [4]).

Theorem 1. Suppose that Assumptions A and B are verified. Let &, 2 w—®; and
consider the largest closed ball N(#.) with radius 7. and center in the origin such
that &, € N(#.). If there exists a choice of u, for which the inequality
(8" — 8EAry) p+6° >0 (3)
is satisfied, the second-order equation (28kp?)&% +{p(p+6%)2 —(u+6% )3 +4kA%ur)e+
2kA3r2 + Ary(p+6%)? = 0 has the two real positive roots £~ and ¢+, with ¢~ < €+
Then, if the choice of u yields also the fulfillment of the inequality
W28 kAT p+ (8 —28A%r,) >0 (4)
we have limeyoo [|8]] <€7, Vi< €T
Moreover, considering the sequence &, generated from the discrete-time system
(;4+62)3£¢ = (20kp)el_; + [p(p +6%)® + 4kA  pury)€emt + 2kA%r2 + Ary(n + 62)2,
" where £n 2 enll, we have 0 < ||&,]] < &, VYt > N, ie., the sequence £; constitutes
an upper bound to the norm of the error dynamics.
O
For large ry, (3) imposes an upper bound to u, whereas (4) is very likely to
impose a lower bound. In other words, the theorem guarantees the boundedness of the
estimation error Yu € (u~, %), where p~ and p* are suitable scalars. Assumption
B is strictly related to an important property of networks. For H(w,u!_,) to be
an immersion, the Jacobian matrix D(w, u{_,) must have rank n, Vu!_, € UN+!
Since D _%gﬁ_N) € RPN+DX" the bigger p(N +1) is, the easier is for the above
matrix to have rank n. According to this, we require that p(N + 1) > n, ie., we
choose a very large window size, compared to the size of the weights vector. This is
related to the estimation error of a network: since it is decreasing with P and, unlike
the approximation error, increasing with n [2], in order to minimize it we would
require P > n: this follows from p(N + 1) > n, noticing that P> N+1 (the
choice of N influences the condition on the rank of D ( B N)) As regards the
injectivity of H, we observe that the mapping ¥ : W x U — Y is not injective, due
to the invariance of Y(w, u) to certain permutations of the weights [5]. Since we only
require the estimator to find one of the weights vectors that minimize the cost (2)
(considering as equivalent all those obtained through permutations), we can neglect
the injectivity assumption.
The minimization of (2) can be carried out using a nonlinear programming iter-
ative algorithm that asymptotically converges to @;. By considering only a finite
number of iterations we find an approximate value of @, that we denote by @,

Moreover, let ¢, = W, — @, and € £ maxee(N,N+1,..,P—1} (J|&]l). The next theorem
concerns the robustness of the proposed training algorithm: it states that, if the error
in the estimate of the weights vector is suitably bounded, then the boundness of the
estimate is preserved (for the proof, see [4] ).

Theorem 2. Suppose that Assumptions A and B are verified. Let €, 2 w—w, and
consider the largest closed ball N(f.) with radius 7. and center in the origin such
that &, € N(7.). If there exists a choice of p, for which the inequality
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[~16KA €] pu® + (6* — 8kA%r, — 16KAS°E) p + 6° > 0 (5
is satisfied, the second—order equation (2kAp®)E* + [u(u +62)% — p(p + 6%)°
+4kA% pry, + (SI_cAu(u +6%) + 4EAu2) s‘] E42EA% 2+ k(p+6%)ry+[8kA(n+6%)° +
2k AP +8EAp(p+82))E% +[8RA% (u+6%) + 4R A% plery + (04 87)° + p(p +82)*)e = 0
has the two real positive roots £~ and £t with €~ < €1 . Then, if the choice of p
yields also the fulfillment of the inequality ) }

p?+2 (8% —kAET —3kAE) p+ (6* — 2kA  r, — 4kAS%€) > 0 (6)
we have metoo || £, Vi< &t
O

3. Simulation results and conclusions

The proposed algorithm, called WEST (Weights ESTimator), has been compared,
for both classification and function approximation, with the following learning algo-
rithms: BPX (error back-propagation, with momentum and adaptive learning rate),
LM (Levenberg-Marquardt optimization [6]), EKF (iterative extended Kalman filter-
based training). The simulations have been performed with the Neural Network
" Toolbox of MATLAB [7]. For BPX and LM we have used, respectively, the functions
trainbpr and trainlm of MATLAB; EKF and WEST have been properly implemented.
To perform the minimization of the cost function (2), we have used the LM algorithm
of MATLAB.

As regards classification problems, as testbed for our algorithm we have chosen
a generalized 2-input XOR in the domain [0,1] x [0,1]. We have used a network
with 2 hidden neurons, trained through 2000 points uniformly distributed in the
domain. The output corresponding to a class has been set to 0.9 when the input
vector belongs to that class, —0.9 otherwise. For each algorithm 10 trials have been
performed, with different random initializations of the weights; the final results are an
average of those obtained in the runs that reached a global minimum, where a global
minimum is considered reached when the mean squared error is under an heuristically
fixed threshold (otherwise, we say that the network occurred in a local minimum).
The test set consists of 11 x 11 uniformly distributed points; the temporal window
N for WEST has been chosen equal to 99. As can be seen in Figure 1, the best
error convergence is for LM and WEST (note that, to reduce the computational effort
for EKF, the MSE has been calculated only every 200 patterns). If we consider the
computational burden and the memory requirements of LM [7], it turns out that
WEST is preferable; moreover, note that our algorithm is the only one that never
stops at a local minimum.

As regards function approximation, we have trained a network with 30 hidden

z3+y2 . ;
Ti(4) the domain [—10,10] x

units to approximate the function f(z, y) = n
[~10,10] (see Figure 2).

The training set has been generated considering 2000 input/output pairs uniformly
distributed in the domain; for the window size of WEST we have chosen N = 249.
In Figure 3 (a) to (d), we show the approximation of the function obtained through
BPX, LM, EKF, and WEST training, respectively. Note that only LM and WEST
succeed in detecting the minimum of f; the behavior of the MSE networks error,
not shown owing to the lack of space, is analogous to that presented for the XOR

problem ([4]). The lowest value of the MSE on the test set is for LM (see the table),
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Figure 1: mean-squared error for BPX (a), LM (b), EKF (c), and WEST (d)
training algorithms, in the classification problem.

Figure 2: the function to be approximated

but WEST is very near; moreover, it provides an approximating function as good
as the one of LM, but obtained with a reduced computational load and memory

requirements (at each iteration, it deals with a 121 x 250 Jacobian matrix, whereas
LM with a 121 x 2000 one).

type of XOR approximation
training | MSE | local minima MSE
BPX 3.18 3/10 0.0013
LM 3.14 4/10 0.0007
EKF 3.11 5/10 0.0011
WEST 3.16 0/10 0.0008

To conclude, we summarize the most interesting features of the proposed new
training algorithm: bounded network error (see Theorem 1), robustness (see Theorem
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2), reduced computational burden, no need for successive linearization.

(a)

~10 -10 -10 -10

Figure 3: approximation of the function obtained through BPX (a), LM (b),
EKF (c), and WEST (d) training algorithms.
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