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Abstract. Numerical evidence is presented for the occurence of on-
off intermittency (OOI) and attractor bubbling (AB) in the time series
of synaptic potentials of analog neurons with time-dependent synaptic
noise. The results were obtained for a single neuron with synaptic self-
connection and a network of two neurons with various weights of synaptic
connections.

1. Introduction

Discrete-time chaotic neurons and neural networks (NNs) of chaotic neurons
with continuous output function are a subject of intensive research [16,5,2,1], as
they are both complex enough to model chaotic behaviour of real neurons and
simple enough to allow efficient numerical modelling. The effect of noise on the
dynamics of such neurons is usually considered for the case of threshold noise.
Recently it was pointed out that another biologically significant source of noise
arises from the random release of chemical transmitters into synapses [7,6,8].
This kind of multiplicative noise, which we call here time-dependent synaptic
noise, may be modelled by updating weights of synaptic connections at every
time step according to a certain probability distribution. Analysis of quantal
synaptic noise has been carried out only in binary NN [7,6], though it was
suggested that application of this concept to analog neurons is straightforward
[7). In this paper we consider one of many possible effects which appear in
analog NNs due to this kind of noise, namely OOI and AB.

A chaotic system exhibits OOI when in the observed signal a sequence of
Jaminar phases, during which the signal is almost constant, and chaotic bursts
occurs [13,9]. The simplest model capturing essential features of OOI is the

linear map with the control parameter varying randomly in time [9]
Yn4l = GTnlYn + Ez';z (1)

Here, yy is the observed variable, zn, z,, are two non-correlated random vari-
ables with uniform distribution at the interval [0,1), a is the system control pa-
rameter and ¢ is the amplitude of additive noise. Ifé =0anda<e=2718...
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then y, converges to zero as n increases, independently on its initial value. If
¢ =0 and a slightly exceeds a, = e then a sequence of quiescent phases, when
yn = 0, and chaotic bursts, when y, ~ O (1) is observed. The distribution of
laminar phase durations obeys the scaling law P () o 7~%/2 and their mean
duration decreases with a as (r) « |a — a.|™* [9]. If £ > 0 then bursts appear
already if @ > a3 = 1 and the transverse instability of the attractor y, = 0
caused by noise or other factors is called AB [12,3] Recently, scaling laws e.g.
for the maximum burst amplitude and variance of y, as a function of a, £ were
obtained {15,4].

OOI and AB are ubiquitous in many physical systems, e.g. in systems with
symmetry, in the chaotic synchronization problem etc. [15], but to our knowl-
edge they have not been reported in NNs. Only a related problem of attractors
with riddled basins has been discussed for the case of back-propagation learn-
ing of chaotic time series by NN [11]. In the following, small analog NNs are
- considered in which OOI and AB occur due to the presence of time-dependent
synaptic noise. For simplicity we consider only the uniform and continuous
synaptic noise, i.e. at every time step n the synaptic connection weights are
chosen as w;; (n) = w;j Ty, where w;; is a constant connection strength and
Ty is a random variable with uniform distribution at [0,1). The results for
quantal noise (which occurs in biological neurons [7,6,8]) differ from this case
only quantitatively. The results below are also discussed as a special case of
OOI in coupled map lattices (CMLs).

2. On-off intermittency in a single neuron

A trivial example of OOI in a single neuron is obtained by considering analog
neuron with synaptic self-connection and zero threshold, in the absence of
external inputs and threshold noise

y(n+1) = fu (wizny(n)) (2)

where y (n) is the neuron output at time n, f,, () is a neuron activation function
and p is a neuron gain. If we assume a symmetric activation function f, (z) =
tanh (pz) with g = 1 then there is always a fixed point y, = 0 of (2). In its
neighbourhood the map (2) may be linearized to yield y(n + 1) = wiiz,y (n)
which is exactly the map (1) with a = wy; and € = 0. Then if |wi1| > wir . = e
a sequence of chaotic bursts in the neuron output is observed, separated by
laminar phases during which y, & 0. The actual behaviour of neuron output
depends on the sign of wy; and the initial condition y (0) (Fig.1a). If wi; > 0
then during the bursts the neuron is either inactive (y (n) < 0 for y (0) < 0) or
active (y (n) > 0 for y (0) > 0). If wy; < 0 the bursts consist in rapid switching
between the active and inactive state (Fig.1a). The duration of laminar phases
obeys the statistics P () o 773/2 (Fig.1b).

It should be noted that for f,, (2) = 1/ (1 + exp (—uz)) the map (2) has not
a fixed point y, = 0 and thus OOI does not occur.
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Figure 1: a) Time series of y(n) for w;; = 2.8 > 0, y(0) > 0 (top) and
wyy = —2.8 < 0 (bottom); b) log-log plot of P(r) vs. 7 for wy; = 2.75,
straight line has a slope -3/2

A less trivial example may be obtained in a model of chaotic neuron with
symmetric activation function and refractoriness [2,1]. Our investigation showed
that stronger refractoriness increased the OOI threshold while introducing the

dependence of the neuron state on its history, in general, decreased the thresh-
old.

3. On-off intermittency and attractor bubbling in two-
neuron neural networks with symmetric activation func-

tion

A two-neuron NN with parallel updating may be described by a map

yp(n+l) = fu (wnmﬁfl)yl(n)+w12w92)y2(n))
v+ D) = fu (wnely (1) + wialPys (n)) (3)

where a:%”), 1,j = 1,2 are non-correlated random variables. In this form we
deal with a two-dimensional CML. We start with the case f, (2) = tanh (uz)
and g = 1.

A simplest case to analyze is w1 = a, wis = 0; way; = ¢, wyy = b, with
a,b,e >0, ¢ € a,b. Then the neurons have strong self-connections and neuron
2 is weakly connected to neuron 1. As neuron 1 isindependent of 2, y; decreases
to zero if a < e and shows OOl if a > e. If a < e and b > e then neuron 2



ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 161-166

shows OOI. However when a > ¢ and 1 < b < e we observe AB in the time
series of y; — the dynamics of neuron 1 influences that of neuron 2 in a similar
manner as a weak external noise with amplitude €. If a < e the maximum
burst amplitude Y2, mqr of the output of neuron 2 suddenly increases with b at
b =e, and if a > ¢ it rises more gradually. For a < e the variance var (y;) of
the output of neuron 2 increases linearly with & —e. For @ > e, the variance
var (y2) has a tail for b < e, where the dynamics of neuron 2 is fully determined
by the influence of neuron 1, and gradually increases when b &~ e (Fig.2a). This
behaviour of y2,mar and var(ys) is typical of OOI and AB [15,4]. From the
point of view of CMLs we observed here AB in one map triggered by a second
map with OOL

0.16 = 00I2, AB1  |CH
”~~~
[ .
S
2] (a)
o
-
_ [nY]
M
0.05 <
1 -
- —
T 3
N ’,u* . O
~ N/
0.00 rrr 111y T rra T LT
2.50 270 290

Figure 2: a) var (y2) vs. b for one-way coupled two-neuron NN, ¢ = 1.0 - 10~°
(dots), € = 1.0 - 10™7 (dashes), ¢ = 0 (solid line), a = 3.0; b) type of activity
of individual neurons in a two-way coupled two-neuron NN, numbers 7 = 1,2
denote the neurons, ZE7 — y; (n) approaches zero with rising n, CH — chaotic
bursting

A more complex case is with wy; = a, wey = b, w1y = wo = € < a,b.
The "phase diagram” for two different values of ¢ is shown in Fig.2b. E.g. for
given a and € = 0.001 three different routes to chaos are possible. If a < 2.04,
then if b < e both y;, ys decay to zero and if b > e neuron 2 shows OOI and
neuron 1 shows AB. If 2.1 < a < e both neurons exhibit QOI as b is increased
above some critical value b, < e. An important feature is the decrease of the
OOI threshold with €, an effect already reported in big CMLs of equivalent
maps [14]. If a > e then neuron 1 shows OOl and neuron 2 shows AB. Both
transitions to chaos via OOl and AB have similar properties as in the case
of w1z = 0. However, b is now a function of a,e. As we could see coupling
different maps with OOI may lead to coexistence of OOI and AB in one system,
a property, to our knowledge, not reported in the literature on CMLs.
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The two examples above are interesting as they have much in common
with the current interest in QOI in CMLs, but connections among different
neurons are usually stronger than self-connections. In this case OOI is also
possible, e.g. in a system without self-connections and a symmetric weight
matrix wi; = waey = a. The OOI threshold in this case is again a, = e and it is
decreased by adding non-zero self-connections. The individual neurons exhibit
interesting behaviour: if at time step n e.g. y1 (n)y~ O(1) then y1 (n+ 1) =~ 0
and neuron 2 has exactly the same dynamics shifted in phase by one time
step. Thus there are plenty of laminar phases of unit length; this does not
influence the probability distribution of longer laminar phase durations and
OOI characteristics are still observed. OOI in similar CMLs with strong self-
connections has not been investigated yet.

. 4. On-off intermittency and attractor bubbling in two-
neuron neural networks with logistic activation func-
tion

If in Eq.(3) fu(2z) = 1/ (14 exp(—pz)) OOI can appear only under very re-
strictive conditions. E.g. it was shown in Ref.[15] that in a NN with wy; = -5,
wig = 5, way = —25, wae = 25 the period-doubling route to chaos is observed
with-a stable fixed point y1 = y2 = 0.5 for ¢ < 0.21. Treating u as the con-
trol parameter and increasing it above p. = 0.61, or, equivalently, keeping p
constant and proportionally increasing all synaptic weights, it is possible to
obtain OOI with laminar phases y;, y2 & 0.5 in the above-mentioned NN with
uniform time-dependent synaptic noise. However, the noise in all connections
must be perfectly correlated, i.e. at every n all 257 must be equal. Any small
lack of correlation between noise in different synapses or small deviation from
the exact values of synaptic weights results in AB rather than OOI. Thus NN
of logistic neurons are not expected to exhibit OOI in real experiments.

5. Conclusions

In this paper we have shown that OOI and AB can appear in analog NN
with time-dependent synaptic noise. The mechanism of their appearance is
exactly the same as in Eq.(1). This picture may be obscured in real neurons
by the influence of external inputs and threshold noise, but we think that these
phenomena should be considered as a possible cause of large-scale bursts of
neural activity.

The results presented here are also important in the investigation of OOI
in high-dimensional complex systems. So far, only CMLs of identical maps
have been considered in this context (see [14] and references therein). NN form
a natural basis for the investigation of OOI in systems consisting of different
coupled subsystems; some research in this line has been done only in magnetic
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systems so far [10]. As we have shown in such systems different parts of them
may exhibit OOI, AB or remain quiescent. We are going to extend the present
results to the case of large NN and to investigate the possible peculiarities of
scaling laws characteristic of OOI and AB in such systems. These results, and
the ones concerning NN with biologically motivated quantal time-dependent
synaptic noise will be published separately.
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