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We estimated the time scale over which information in the primary
auditory cortex is processed. An artificial neural network was used to learn
the temporal patterns of spikes. After learning, test patterns were input to
the network. Comparison of the accuracy of the network with that of the
maximum likelihood function computed from the spike count reveals that
the temporal patterns of spikes are closely related to stimulus
discrimination. Next, we constructed a tree-based model from a subset of
the spike trains with a fixed time resolution and validated the model with
another. By repeating this for different bin widths, we found that there are
no simple models for the time bin width larger than 50 ms. This indicates
that the time scale in the auditory cortex is not larger than 50 ms.

1. Introduction

Although the spike count has been widely used in studies based on single unit
recordings, there are no clear rationales for a particular choice of the time bin width
over which the number of spikes is summed. Since conclusions based on the results
of statistical analyses can be affected by the choice made, an accurate estimation of
the time scale of neural information processing is necessary. Moreover, the results of
studies indicate that neuronal information in some areas of the brain is carried in
terms of temporal patterns rather than in terms of the spike count. It is important to
estimate the time range of the temporal patterns of spikes in which meaningful
information is present.

2. Analyses by a multi-layer perceptron

The experimental procedures are described elsewhere [5,6,7]. Stimuli were pure tone
bursts with 11 different frequencies. Twenty spike trains were obtained for a stimulus
with a resolution of 1 ms without averaging. Since it is difficult to assume the form
of the distribution which the temporal patters of spikes follow, one needs to
construct models based on data sets and not assume the form of the models apriori.
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Artificial neural networks satisfy this requirement. First, we directly confirm that
temporal patterns of neuronal spikes in the primary auditory cortex carry more
information than the spike count by using spike sequences to train a three-layer
perceptron (input elements 35, hidden elements 1 or 2, output element 1, patterns 6)
with back-propagation as the learning rule. Although one spike train contains some
information over 350 ms, the number of spikes is averaged over 10 ms so that only
35 input elements are necessary. The learning data set consists of 6 spike trains (2
spike trains for 1 kHz, 70 dB SPL, 2 spike trains for 6 kHz, 70 dB SPL, 2 spike
trains for 12 kHz, 70 dB SPL). Convergence is considered to be attained when three
stimuli are discriminated with a small margin of error. At the same time, the
cumulative density function is computed from the spike count of the same learning
set. After learning is achieved, 6 spike trains (2 spike trains for 1 kHz, 70 dB SPL, 2
spike trains for 6 kHz, 70 dB SPL, 2 spike trains for 12 kHz, 70 dB SPL) that were
not used in the learning phase are input to the network while the stimulus is
predicted according to the cumulative density function computed from the spike
count. The temporal patterns of spikes were consistently superior to the spike count
in terms of stimulus discrimination ability in all but one of the 16 analyses. The
percents correct for the spike frequency and the temporal patterns were 33.3 and 43.8,
respectively. This indicates that temporal patterns can yield a more reliable prediction
in terms of stimulus discrimination than spike counts can.

3. Analyses by Tree-based models

If one decreases the time resolution of measurements or takes a larger time bin width
over which spikes are summed, the temporal patterns of responses will carry less
information. One can therefore estimate the marginal time bin width for which the
temporal patterns of responses are lost. For this purpose, one needs to generate
models from given sets of data. Taking the index of the time bin as the prediction
variable and the number of spikes occurring in the time bin as the response variable
should satisfy this requirement.

3.2. Tree-based model

Although tree-based models can be used to deal with factor response variables as well
as numeric response variables, theses should be considered an alternative for standard
linear models when it is used for numeric predictors and a numeric response variable
[1,2,3,4]. We construct tree-based models in the following manner. Spikes in a spike
train are classified into different time bins according to their time stamps. Since
spike occurrence is rather sparse, we performed averaging over 20 trials.
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Fig. 1 ‘

A tree-based model for a data set which has a numerical response variable (the number of
spikes) and a single predictor variable (the index of the time bin) is a step function with a
certain property which predicts the number of spikes from a given index of the time bin.
To construct the step function, we use the deviance defined by

n 2
dev(D) = ,El"yi = 2y m

where D, (xi,yi) and /li stand for a set of data, a two-dimensional data point, and the

value of the step function for the interval in which X; is contained, respectively. A split

on the x-axis is so created on the data that the difference in deviance between a node and
its two splits, i.e.,

A(dev) = dev(Dbe fore) —dev(D,..)

= dev(Dy,p,,,) ~ (dev(Dy) + dev(D,) )

is maximized where D; (D) is a subset of D whose elements lie in the left (right) half
of the split (from a to b, Note that the figures are schematically drawn). Then, new splits
are created on the terminal nodes which the first split has created such that A(dev) in
equation (2) is maximized (from b to c).

N
Let D= 'Ul (xl.,yl.) and (xi,yi) denote the data set and the { —th data where X ¥;
=

are the index of the time bin and the number of spikes (averaged over 20 trials)
occurring in the time bin. If the width of the time bin is set to 5 ms, the number of
time bins is equal to 70 (5 ms x 70 = 350 ms) in the current study. Since we have
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responses from 11 different stimuli, the total number of data points is equal to 770
(=11x70) when the time bin width is set to 5 ms. Then a tree-based model is
constructed so that the data points are approximated by a step which satisfies certain
conditions (see legend of Fig. 1).

3.2. Cross-Validation

A model constructed from a particular data set may be so overfit that the deviance
between that model and another data set generated from an identical source is
significant (“variance” is large). On the other hand, if the model is too underfit, then
the model cannot reflect the data set at all (“bias” is large). It is therefore necessary to
balance the variance which a model has towards data sets against the bias of the
model. One of the standard techniques to find a balanced model is called cross-
validation. Ten-fold cross-validation (constructing a model from 90% of the data set
and validating the model with the remaining 10%, then constructing another model
from another 90% of the data set, and so on) is employed for evaluation of the
appropriateness of the model. By changing the model size, one can see the
relationship between the model size and the deviance defined by equation 1.

Suppose that as the model size increases, the deviance decreases
monotonically. This means that there are no simple models which can be used to
predict the temporal patterns of spikes. On the other hand, if there are some local
minima in the deviance, then there are simple models. Figure 2 shows how the size
of the model is related to the deviance for neuronal spikes recorded during and after
presentation of various stimuli.
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Fig. 2

The graphs represent the relationship between effective model size (the lower
abscissa, see below for definition), deviance (the ordinate) and & (the upper abscissa,
see below). The curves were computed for two neurons; the temporal pattern of
neuron a {gel1112.01) is fairly regular (the time bin width is 25 ms) whereas that of
neuron b (gel1119.11) is random (the time bin width is 14 ms). For each point on the
curve, 10-fold cross validation was performed.

In the case of neuron a, when the size of the model is equal to 3, the deviance is the
minimum whereas there is no clear minimum for neuron b, which implies that the
temporal patterns of neuron b have no clear structure.

It is obvious that as the time bin is widened, the temporal patterns of
responses tend to become weaker. While a simple model exists for narrow time bins,
there are no clear minima for wide time bins (Fig. 3).
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Fig. 3

The relationships among the time bin width (the first column), the deviance (the
ordinate) and the model size (the abscissa) are computed from the spike trains of
neuron ge1119.01. Shrinking (the second column) and pruning [2] (the third column,
see below for definition) were employed to reduce the model size. As the time bin
width increases, the deviance tends to become a monotonically decreasing function of
the model size.



ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 33-38

Although the deviance at the local minimum and the model size which gives the
local minimum are dependent on how the trees are truncated (for one neuron, pruning
and shrinking give very different values, 1 ms and 50 ms), for all the neurons we
analyzed, it holds true that if the time bin width is larger than 50 ms, the deviance is
a monotonically decreasing function of the model size regardless of how trees are
truncated. This means that the time scale in the primary auditory cortex is not larger
than 50 ms [8].
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