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Abstract. In this paper experiments are presented to apply Self-
Organizing Map (SOM) and Learning Vector Quantization (LVQ) for
training mixture density hidden Markov models (HMMs) in automatic
speech recognition. The decoding of spoken words into text is made using
speaker dependent, but vocabulary and context independent phoneme
HMMs. Each HMM has a set of states and the output density of each
state is a unique mixture of the Gaussian densities. The mixture densities
are trained by segmental versions of SOM and LVQ3. SOM is applied
to initialize and smooth the mixture densities and LVQ3 to simply and
robustly decrease recognition errors.

1. Introduction

The automatic speech recognition (ASR) has long traditions as a prototype
application for ANNs. Huge efforts have also been invested to study the ASR
itself, but it has turned out to be such a difficult problem that the satisfac-
tory solution to the general task is still open. Despite scientific challenges the
benefits of even slight improvements are evident, however, because there are
already a substantial amount of different ASR applications going on.

The commonly applied approach for the speech to text transformation can
be briefly characterized by three successive stages. The first stage is to extract
the suitable features from the speech signal. The next stage is to match the
features with the statistics of the expected models and construct the model
sequences that could most likely correspond the obtained sequence of features.
The last stage is then to select the best alternative text decoding by taking
also account of the content restrictions of the current ASR task.

In the Neural Networks Research Centre at the Helsinki University of Tech-
nology the emphasis in ASR has been on the speaker-dependent recognition
of unlimited vocabulary. The “Neural Phonetic Typewriter” [3] and its later
developments have several years been a test bench for the SOM and LVQ algo-
rithms [4]. Currently, the system models phonemes by HMMs (hidden Markov
models) [9]. where the output densities are based on tied Gaussian mixtures.
The parameters of the Gaussian mixtures are learned automatically from the
training samples using the SOM [6, 5|. The segmental LVQ3 training [7] opti-
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mizes the model parameters by learning from the simulated recognition results
on the training data. This paper completes the comparison [7] to standard
training methods by some new modifications and speech data. The last step
in the learning process is to automatically generate DEC rules (Dynamically
Expanding Context) [2] to correct the observed differences between the output
strings of the recognizer and the correct written form of the phoneme combi-
nations.

2. Training the HMMs

The objective is to use the collected speech samples to train the phoneme mod-
els to decode the samples with as few misrecognitions as possible. While using
the training data extensively, special care must be taken to avoid overlearn-
ing. Another point is the strong interdependence between the segmentation of
the data and the optimal model parameters. The commonly used segmental
training optimizes simultaneously the segmentations and the parameters in an
iterative process that performs segmentation and parameter adaptation steps
in turns.

2.1. Segmental SOM

Due to various phenomena in speech the models capable of accurate recog-
nition must usually have hundreds of thousands of parameters. The optimal
parameter value estimation would require an excessive amount training data
and very eflicient training methods by which the essential features of data could
be learned in a feasible time. In practice, the limits of data must be accepted
and smooth representations learned instead of models full of very fine details.

In SOM the smoothness of representation is obtained by not tuning sin-
gle units independently towards the special input space areas, but tuning the
neighboring units on the SOM grid as well. The structure of the SOM will
eventually fit the feature space structures as well as it can and reflect also the
density function by the density of the SOM units. Because the neighborhood
decreases gradually, the close adaptation to the training data occurs only for
the input space areas that are well represented in the samples.

The first stage in the training of the mixture density HMMs by SOM is to
initialize the mean vectors. One SOM is trained for each phoneme using pre-
segmented training data. The SOM is then applied to divide the training data
into smaller partitions, one for each SOM unit. Each of these data partitions
initializes then one Gaussian mixture component. The second stage is to seg-
ment or re-segment all available speech data by the obtained initial MDHMMs
and adapt the models by a batch SOM iteration. This second stage is iterated
using gradually decreasing neighborhood until acceptable models are reached.

The batch SOM iteration for MDHMMs [5] resembles the parameter adap-
tation in the conventional Viterbi training by the segmental K-means (SKM)
algorithm [9]. The difference is to adjust as well the neighboring mixture com-
ponents (by the SOM topology) of the best-matching one. When the SOM
neighborhood radius has decreased to zero the following iterations will equal to
SKM iterations. A simple example of how to adjust the best-matching mixture
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component and how it affects the total mixture density is shown in Figure 1a.
For the adaptation of the mixtures by the segmental SOM c.f. [5].

The SKM is the simplest version of the set of conventional maximum like-
lihood training algorithms for MDHMMSs. At the other extreme there is the
iterative Baum-Welch (BW) algorithm [9], which directly maximizes the likeli-
hood of the data given all the models, not only the sequence of best matching
models and mixture components in them as in the SKM. The BW adapts the
parameters of the states according to the posterior probabilities computed for
each state in each frame of the sample. The posterior probability computa-
tions for all training samples to estimate all the parameters involves, however,
laborious computations and often due to modeling assumptions and other rea-
sons the obtained posteriors may be too inaccurate for successful estimation.
In Table 2 a segmental version of the BW (BW sl, a.k.a. embedded BW),
which adapts only the most probable states, is tested as well. It is rather near
to the weighted adaptation of mixture components in SKM (sometimes called
embedded BW as well). The fundamental difference between the BW and the
segmental SOM is that BW adapts all the mixture components by their ap-
proximative probabilities, but in SOM the adaptation is localized around the
best match, which maintains the smoothness and ordering of the map.

2.2. Segmental LVQ3

Since neither the Viterbi training nor the SOM is designed to minimize recog-
nition errors, the error rate is optimized by applying discriminative training.
Popular methods are, e.g. the corrective training c.f. [8], and the MCE/GPD
(minimum classification error/generalized probabilistic descent) c.f. [1]. The
segmental LVQ3 [7] resembles the former ones, but consists of simpler opera-
tions and local adaptations and is in that way a more suitable to be integrated
to “neural” methods.

Figure 1: a Adjustment of a mixture density towards one observation (the short
vertical line) to increase its likelihood for a HMM state (the basic K-means type
adaptation). The modified parameters are the centroid of the nearest Gaussian
and the mixture weights (the sum of weights is always one). The resulting new
pdf for this simple one-dimensional three-mixture case is shown dashed. b A
mixture density of an incorrect state is adjusted away from the observation to
decrease the likelihood (the basic adaptation in discriminative training). The
nearest Gaussian and the mixture weights are modified accordingly.

The segmental LVQ3 operates in two different modes depending on the
outcome of the recognizer for the training sample (word). For incorrect re-
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sult the discriminative learning is applied, but otherwise only the simple SKM
adaptation. In principle, the adjustments are equal to performing a kind of
batch version of the LVQ3 [4] to the parameters of the best state sequence
that produces the correct result and of the corresponding state sequence for
the incorrect result. A simple example of how to adjust mixture densities in
one dimension is shown in Figure 1. For a correct state the adjustments of the
output density occur as in the Figure la and for an incorrect state as in the
Figure 1b. For the exact description of adaptation laws c.f. [7].

The segmental LVQ3 differs from the original corrective training and the
MCE/GPD, mainly because it does not try to relate the extent of each indi-
vidual parameter modifications to any exact measure of the misclassification
of the whole training token. The non-discriminative mode is added instead to
gain more robustness over the initialization and stability between the positive
and negative adaptations. One motivation is to join the stability of the SKM
to the corrective training. The segmental LVQ3 is as well very close to the
extreme case of the MCE/GPD where the sigmoidal loss is approximated by
a piece-wise linear function and the L, norm by the L., norm, and thus it
approaches the similar convergence as the MCE/GPD.

2.3. SOM topology in HMMs

Figure 2: The structure of a high-dimensional mixture density is visualized by
plotting the responses of the individual mixture components for one input. The
140 mixture components are organized into a 10x14 grid. In the rather smooth
view a the SOM radius is decreased to one. When the neighborhood radius
decreases to zero (b) only coarse ordered structures can be seen.

In a typical HMM based speech recognition process, the major computational
effort is required for the mixture density values of each state for each new
feature vector. Thus, in addition to the accuracy, the mixture densities must
be simple to compute and flexible to approximate for the low-probability states.
Since the pool of Gaussians for a HMM is rather large and usually only a small
subset of Gaussians will have a significant value at a time, the mixture density
can be well approximated by using only the significant mixture components. A
couple of fast search methods that exploit the SOM topology of the mixtures
are given in [6]. For example, the total average recognition time of one word
can be decreased by 42 % [5] by using the so-called topological K-best search.
The observed average increase of the error rate was from 5.9 % to 6.5 %. This
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is due to the increased inaccuracy of the search when the ordering declines as
in Figure 2. For the segmental LVQ3 the loss was not much bigger (from 5.3 %
to 5.9 %) for the same speed improvement which suggests that some useful
topological structure preserves even through the further training.

3. Experiments

Init. | HMM training | 70 mixt. | 140 mixt.
SOM | SSOM 5.6 4.9
SOM | SLVQ3 54 4.7
SOM | SSOM+SLVQ3 5.6 4.9
KM | SKM 6.3 5.5
KM | SGPD 5.8 5.5
KM | SKM+SGPD 5.6 4.9

Table 1: The average test set error rates for some alternative training methods.

In the experiments the speaker-dependent HMMs were trained for 10 Finnish
speakers (6 males and 4 females) using three of the four recorded 350-word sets
per speaker. The fourth set is left out for testing only. The 80-dimensional
feature vector is a concatenation of five sets of 15 cepstrum coefficients and
the power of the signal computed from 16 ms signal windows and averaged
over different time spans and positions relative to the current window [7]. The
HMM of each phoneme includes a chain of five states and a pool of maximum
140 Gaussians with a fixed diagonal covariance matrix. The error rate is the
sum of inserted, deleted and changed phonemes divided by the correct number
of phonemes and averaged over all the speakers. In the Table 1 the basic SOM
is used for initialization [6] followed by 10 epochs of segmental training (or
545 by method combinations) using the whole training data as a batch. The
reference method includes K-means initialization and SKM and/or segmental
MCE/GPD training [1] thereafter.

In the Table 2 some modifications of the SKM and BW reference methods
are tested: Adjusting of only the best state (BW sl, default for SKM) and
adjusting the 3 closest mixtures per state without weights (k3) and with weights
(w3). The adaptation weight in weighted SKM is the ratio of the contribution
of a single mixture component to the whole density of the state. In BW the
weights are the probability approximations.

4. Conclusion

This paper presents experiments and motivations for SOM and LVQ3 based
MDHMM training methods and some reference methods. The experiments are
made by testing the methods in a prototype speech recognition system, which
transforms speech to text in a vocabulary independent way. The new tests
complete the comparisons {7] by using more versions of the standard train-
ing methods and new speech data. The improvement from the best reference
method in terms of the average reduction of phoneme errors is not very large,
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HMM training | Rate% || HMM training | Rate%
SKM 5.5 BW 7.9
BW sl 74
SKM k3 7.6 BW s1,k3 11.5
SKM w3 5.4 BW sl,w3 7.4
SKM w20 5.4 BW s1,k1 7.6

Table 2: The average test set error rates for some modifications of the reference
training method using the same K-means initialization for 140 mixtures per
phoneme. The results are averages for five speakers.

but still about 5 %. The test results show, however, that the segmental K-
means or GPD/MCE alone cannot give the best results even after rather long
training. Issues omitted here, such as comparisons of alternative feature vec-
tors, initialization methods, convergence speeds to good error rates and the
statistical significance of the differences have been presented in [6, 7]. Since
the principles of the suggested segmental training methods suit to a wide range
of other classification tasks involving sequential state models with stochastic
observations, the further work is to proceed testing in different databases and
applications.
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