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Abstract.

In this paper we present an artificial visual system for autonomously
moving vehicles. In this system visual information, extracted from the
vehicle’s surroundings by means of motion detection and range estima-
tion strategies, is mapped onto a retinotopically ordered neural map. The
activity pattern elicited in this neural map is projected onto an interac-
tive competitive neural network which plans the next step of the vehicle
on its path towards a given target location. The system has been imple-
mented and tested for a two-dimensional, i.e. flat, world using computer

.simulations, giving encouraging results.

1. Introduction

Every autonomous moving system needs to observe its environment in order to
be able to carefully plan the direction of its next step towards a target location
without colliding with obstacles on its path. There are several constraints to
the problem of planning a path, like: a good solution should be energy efficient
and not harmful for the environment nor for the system itself. In nature,
this planning problem is successfully solved with the help of visual perception.
Small creatures like flies e.g. can perform even the most complex manouvres
without errors. This has convinced researchers to seek an artificial solution for
this problem based on the same principles and mechanisms found in biological
systems (Franceschini et al.,[1]). To gain an understanding of the biological
solution, parts of the visual system of insects have been modelled based on
behavioural experiments (Reichardt at al.[6]) as well as electro-physiological
measurements (Masteboek et al.,[4]).

2. Network Architecture

In order to be able to solve a path planning problem, based on visual input,
there are several tasks an artificial system has to perform. In our design,
the first task is to extract all relevant information from visual input that is
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needed to transform the visually observed environment into a set of usable
representations. The second task is to obtain from these representations a
clever estimate of the ranges of observed obstacles in the environment and to
map this information into a neural map. The third task is to use this neural
map in deciding how to take the next step of the vehicle towards a given target
location. How these tasks can be realized and implemented, will be described
in detail in the following subsections. The network has to rely not only on
its own visual input, but also on (task specific) information supplied by other
processes. One example of this is that the system has to “know” what {and
where) the target is. In our system the target is just a goal defined by a higher
order cognitive process that needs not to have a direct visual origin.

2.1. Visual Input

For reasons of simplicity, we assume a two-dimensional world, in practice these
are surroundings that are “flat”. Under these conditions obstacles can be de-
tected by so called “ring vision”. The two eyes are defined as collections of light
detecting elements regularly placed on a ring segment with fields of vision that
overlap. Each element has a sensitivity profile that can be described with a
Gaussian distribution with a half-width which equals the inter-detector angle.
The eyes can be moved back and forth over a small angle during operation,
in order to allow a scanning movement towards the body axis, which results
in an increase of the range of visual motion detection (Franceschini et al.,[2))
when the eyes are making a translational movement at a constant speed due
to vehicle movement.

2.2. Representations

The output of the light detecting elements form the static intensity represention
at any time. An array of directionally sensitive elementary motion detectors
(EMDs) based on the correlation model (Reichardt et al.[6], Mastebroek et
al.[4]) is extracting parallax movement information of contours and other con-
trast features of obstacles from the intensity information coming from the eyes
and thus generates a retinotopic movement representation. In order to get
proper movement information for an entire object and not only from its edges
or other features, the movement information should be expanded over the entire
object area. In “natural” environments, object textures will supply movement
information for an entire object. However, in artificial surroundings (like those
in our computer simulations) an extra “fill-in” mechanism is required to close
the information gap between the object boundaries. For reasons of simplicity,
objects have been chosen to be “light”, while de background is “dark”, so ob-
jects are easily identified and movement information is easily expanded over
neighbouring elements which detect similar static intensities.
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2.3. Building a Neural Map

To create a topographical neural representation of the environment, objects
are mapped to a number of neurones that represent a circular area in space
around the vehicle. A radial column of neurones in the map represents a circle
segment in the direction of an optical axis of one of the eye segments, while
a circular row of neurones represents a distance range as shown in figure 1.
By representing the environment in this way the neural representation will not
only be topograpical but also retinotopical.
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Figure 1: In the neural map each neuron represents an area in the system’s
environment. Movement and static visual information are combined in a set
of backpropagation networks to classify in which area on the map objects are
present. This results in a map with activated neurones in the areas where
obstacles are detected. Note that not all neurones and connections are shown
for reasons of clarity.

The movement representation obtained from the EMD array (and subse-
quent filling layer) together with the static intensity representation from every
eye segment and the translational speed of the system serve as an input for a
set of backpropagation (BP) networks, one BP network for each segment. Each
BP network estimates the distance at which an object is present and classifies
these distance on a scale from “very close” to “very far”. The activations on the
outputs of one BP network correspond to the activations in one column of the
earlier described neural map. The map that is formed in this way has a frame
of reference that is fixed to the system which means that the pre-processing of
the visual information described so far has to be repeated after each step of the
vehicle in order to update the neural map of the changed surrounding. In order
to be able to anticipate these changes continuously, the range classification has
to be performed at a high speed, this is the reason that BP networks are used
for this task.
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Figure 2: A sketch of the total artificial visual system. First the eye picks up
- light from its environment, then an EMD array extracts the parallax move-
ment of features in the image, the movement is expanded for an entire object
(optional, see text) and finally an array of BP networks estimates the ranges of
the objects and maps them onto a solving interactive and competitive neural
network.

2.4. Path Planning and Heading Decision

For solving the path planning problem, a method similar to the so-called
distance-transform or the wave-propagation method is used (Glasius et al.[3))
This method uses a topographical neural map in which through lateral inter-
actions the activation of a target position spreads through the network except
at the object locations. The target is then found by performing a “gradient
ascent” or “hill climbing” algorithm. For the network presented here, there are
two of these relaxation layers. In the first relaxation layer, only the neuron
corresponding to the area in which the target is located, is set to a constant
activation. The activity of all other neurones is given by:

yi(t+dt) = o [Zj "’«'a‘yj(t)}

25 Wij
1 j € Neighbours of 7
wy; = 1 j=12
0 otherwise

In the second relaxation layer neurones, corresponding to object locations
are inhibited to a certain percentage of their “unfixed” activation, i.e. the
activation generated by the corresponding neurones in the first layer. This is
easily done since the topography of the maps are chosen to be identical. By
inhibiting the object areas to a certain percentage, a less strict inhibition can
be realized at larger distances, so the target attraction still makes the system
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Figure 3: Some example solutién‘s:‘ Lefté Mbving through a “forest” of objects.
Right: Escape from an U-shaped group of obstacles.

roughly move towards the target even if there seems to be no direct path.
This enables the system to discover new openings, if any, when the spatial
resolution increases at closer range. The relaxation layer with the obstacle
inhibitions present can be used direcly to select a new heading towards the
target location. The activiation of the row corresponding to the nearest ranges
can be used to locate the heading of maximum activation and thus enables
the network to perform the hill-climbing algorithm. Selecting the maximum
activation is then easily performed by a competitive “winner takes all” layer.

3. Simulation Results

The discussed network has been developed and implemented using computer
simulations. In figure 3. some typical results are shown.

The solutions were generated using a network that could move in only 15
directions and classified the ranges in only 8 classes. To obtain smooth tra-
Jectories a small enhancement was introduced: the weights of the connections
from the elements in the inner row of the solving map to the heading decision
“winner takes all” layer were given a gaussian distribution with a maximum at
the forward side of the vehicle. A distribution like this is can be seen as giving
the system a field of attention; this makes moving forward more preferable over
very sharp turns (without excluding them). The concept of an attention field
is also found in biological systems. To increase the capabilities of the system,
objects near the “blind angle” in the rear of the visual field are extended by du-
plicating the information of the outer colunms into this region where no visual
input is available. This made it possible for the network to generate solutions
to escape from an U-shaped group of obstacles as shown in the right half of
figure 3.
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4. Conclusions

The simulated network works in fairly cluttered environments. Due to the con-
tinuous planning of the path to follow, obstacles and targets are in principle
not restricted to being at rest. Compared to a path solving system proposed
in (3] the capabilities are more restricted: this system is not capable of solving
problems requiring a representation of all obstacles in the system’s environ-
ment, i.e. including the representation of completely occluded obstacles. The
less strict inhibition of obstacle locations at larger distances partially makes
up for this lack of knowledge. This, and the fact that the system relies on in-
formation from other (cognitive)processes, is one of the main reasons that this
system will find its most promising applications as a low-level part of a larger
system in a visually navigating robot. More complicated tasks, like solving a
maze, requires a memory that stores currently invisible obstacles, so that they
can be included in a global planning. The network presented here [5], should
be used for simple subgoals, like “move from one end of the hallway to the
other” without having to worry about any obstacles residing there, like pieces
of furniture, doors being opened and people walking around. Improvements
could include a speed control system based on principles in [2] and a way to
mermorize occluded obstacles to improve the path planning mechanism.
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