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Abstract. This work demonstrates that a special neural net approach
to graph matching can be applied successfully in the domain of classifica-
tion, learning and knowledge discovery. This neural net which performs
quantitative similarity estimation and common subgraph computation
is included as a component in different learning and classification algo-
rithms. It is shown that compared with other approaches high classi-
fication accuracy is obtained and plausible, comprehensive generalized
descriptions of interesting classes of objects are produced.

Introduction

Machine Learning and Knowledge Discovery, Classification and Pattern

Matching, more and more complex objects have been considered during the
last years. So, objects often are not represented by feature vectors as usual,
but ‘as complex aggregations of partial objects and their relations. In gen-
eral, operations like the comparison or the generalization of such relational or
structured objects lead to NP-complete problems. A second difficulty is the
quantitative estimation of the similarity or the distance between such objects.
This paper shows how a neural net approach can be used to solve these prob-
lems. In the first section a family of metrics in the space of labeled graphs is -

nt,

roduced. Then it is shown how an approximation of the distance between

graphs and the corresponding matching is computed using an artificial neural
net. After that an outline of some applications of the method in classification
and learning is given. At last, the results obtained for a benchmark dataset
are compared with the results of other learning algorithms and classifiers.

2.

The Distance between Graphs

Labeled graphs are described by a 6-tuple G(N,V,l,e, L, E), where N and

set

V = N x N are the nodes and the e}i\%es of G, respectively!, L and F arbitrar

s of node and edge labels and [ : N — L and e : V — E are mappings whic

assign a label to every node or edge of the graph.

During the last years, different measures of the distance or the similarity

between graphs have been introduced. The majority of them are based on
the computation of a best mapping between the graphs, see for instance {25,

8,

22, 9, 3, 5, 24]. Only a few of them show metric properties.  We suggest

the following family of distance measures for graphs with metric properties.
Let G = (Ng,Vg,lg,eg,Lg,EG) and H = (NH,VH,IH,CH,LH,EH) be two
graphs and h a one-to-one mapping from Ng[h] C Ng to Ng[h] C Ng. Assume

1Without loss of generality, we consider complete graphs.
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that sy : Eqg x Eg — [0,1] and sy : Lg X Lg — [0, 1] are given similarity
measures for the sets of node and edge labels. 8 > 0 is a problem dependent
parameter that weighs the node matchings with respects to the edge matchings.
Then the following distance between G and H can be defined:

Versy (h) = > svlea((zi,x;)), en((h(z:), h(z;))))
("'"i:a".‘i)ENG[h]Z
Var|s, (k) + sy(lg(z),lg(h
d(G, H) = 1 — max GH|sv (h) ﬂerNG[h] ~(l(z),la (h(x))) L)
n max(|Ng|, |Nul)(max(|Ng|, [Nu|) — 1+ B)
This measure is an extension of the measure used and explained in [21].
It can be shown that Eq.(1) describes a family of metrics, if the similarity
measures sy and sy are obtained by sy (l1,12) = 1—dn(l1,02) and sy (e1,e2) =
1 —dy(e1, e2) from two metrics dy and dy for nodes and edges, respectively.

3. A Neural Net for Graph Mafching

" Eq.(1) can be transformed in the following objective functions of a quadratic
programming problem:

‘ |Ng| [Nl ING||NH|
FO= i (o35 s +53 D)

$,§=1k =1 =1 k=1

(3)

Gk = { SN (lG(CBS,lH(yk)) or SN(IG(foSIeH (we)) <én } 4

zi,&j € Ng,yr, y1 € Ny are nodes of the two graphs, fn, 0y € [0, 1] additional
constraints on the minimum similarity of pairs of labels of nodes, edges or node-
edge-node-triples which are accepted as a part of a match. So f*(o) describes
an optimal mappig between G and H.

It is well-known that such programming tasks can be solved using artificial
neural nets from the family of Hopfield nets ([14, 16, 6, 11, 26, 1]). Despite
of the fundamental criticism of these approaches, for instance in [4, 6], we
hold the view that the quality of the solutions which can be produced in a
smaller time (as compared to exact algorithms) by such neural nets is sufficient
for many problems, provided the structure and the parameters of the net are
theoretically founded (see [20] for the approach described in this paper). This
view is confirmed by the results from Section 4.1. and 4.2.. In our applications,
a neural net approach for graph matching developed in [10, 28, 20] has been
used. A pair of graphs can be transformed into a neural net whose stable states
describe both a good mapping between the graphs and, using the energy of a
state corresponding to a low energy, an upper bound for the distance between
the graphs. The structure of the net is derived from the compatibility graph
of the two graphs. Therefore the definition of the compatibility graph of two
graphs (see [2]3) is extended as follows:

Definition 1 (extended compatibility graph (CG)) The compatibility
graph (N,V,l,e, M C Ng x Ng x [0,1], W = [—penalty,1]) of two graphs
G = (Ng,Vg, lg,eq,Eq,Lg) and H = (Ng,Va,lg,eq,Lu, Ex) is con-
structed as follows:

—penalty for i = j V k =1, penalty > 0
wijp =4 0 for SV(CG((“;”{)); e ((ye, 1)) < bv

sv(ea((i,2;5)), e ((yk, w))) else
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. 0N = {(2,9,sn(ec(z),er(y))) : ¢ € Ne Ay € Ny Asn(la(),lu(y)) >

N
e Edges (n,m) = ((zi, Yx), (x5, %)) of nodes n,m € N where z; # z; Ay #
u Asv(ec((2i, 25)), e ((ye, wi)) > Ov are labeled

sy (ea((®s,2;)), en ((ye, 0n))-
e Edges n,m € N,n# m where i = jV k =1 are labelled —penalty.

This CG is transformed into a neural net (Uxg, C) using the following rules:
o For every node of the CG, create a unit of the net.
o For every edge ((xi,¥x), (;, %)) of the CG with a positive label w;; ki
create a (symmetric) connection (u, u’) with a positive weight w((u, u’)) ~
w;; ki (an excitatory connection) between the corresponding units of the

net.
o For every edge ((i,yx), (zj, 1)) of the CG with the label —penalty cre-
ate a (symmetric) connection (u,u’) with a negative weight w((u,u’)) ~
1:ilpe'na‘{ty (an inhibitory connection) between the corresponding units of
e net.

Every unit gets a bias input I(u,?) which depends on the weight w; x of the
corresponding node in the CG. The state of a unit is given by its potential
p(u,t) € (—oo,+00). A unit is called active, if p(u,t) > 0. The units are

updated synchronously, following the rule:

p(u,t+1) = (1-d)p(u,t)+ Z w((u, v'))o(v,t) + I(u,t) (5)
{u’:3(u,u’)eC}

: 0 <0 :
o(u,t+1) = { plu,t+1) }, ifp(u,t+1){ €[0,1] } (6)
, 1 >1

The exact weights w((u, u’)) of the connections and the bias are chosen accord-
ing to the labels in the CG and the selected distance measure. The parameter
d causes the potential of a unit to decrease if the input of the unit does not
exceed a certain threshold. In [20] it is shown that the net reaches a stable
state which corresponds to a good solution of the problem if certain conditions
are fulfilled for the weights and parameters of the net.

The stable state defines a mapping between similar subgraphs of the two
original graphs. On the basis of this mapping and some definition of a gener-
alization of labels of nodes and edges, a generalized common subgraph of the
graphs can be produced. The program MATCHBOX is a tool for approximate

gra%h matching and generalization of gra.lphs on the basis of the approach de-
scribed in this section. MATCHBOX is able to process directed and undirected
graphs with complex node and edge labels. Labels can be feature vectors con-
taining components like numerical values, members of ordered and unordered
sets or concepts in a conceptual hierarchy. Additional knowledge can be in-
cluded by weighting the features, using MATCEBOX’s estimation of the distri-
bution of the feature values, choosing an appropriate distance from the families
of metrics given in Section 2. or modifying the net.

4. Applications

4.1. Distance-Based Classification

This section describes how the approach from Section 3. has been applied to
the problem of classification and the discovery of classification relevant features
in a dataset of organic chemical compounds. The dataset consists of two parts
containing 42 and 188 compounds which occur in automobile exhaust fumes and
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also in many industrial chemical processes (see [18]). Many of these structures
are mutagenic compounds, i.e. can cause cancer. So it is interesting to find
substructures which distinguish mutagenic and non-mutagenic substances or
occur frequently in mutagenic substances. The compounds are represented by
their bond graphs whose nodes are labeled by atom type and charge.

Using the definition in Eq.(1) of a distance between graphs and the neural
net for its approximate computation a distance-based classifier can be con-
structed which predicts the mutagenicity of a compound from its structural
formula. Thereflc))re some nearest neighbor classifiers have been implemented.
Nearest neighbor classifiers show high accuracy and stability, for instance when
noise occurs in the data. On the other hand, the accuracy of nearest neighbor
algorithms depends strongly on the selection of an appropriate distance mea-
sure. Thus, the good classification results of a NN-classifier in Table 1 are an
indication for an appropriate choice and sufficiently correct computation of the
distance measure. The best results for the mutagenesis dataset are obtained by
using the Variable Kernel Method described in [23, 7] and its extension from

[17] where the number of instances used for classification is reduced.

4.2. Learning of Prototypes

Sometimes we want not only to distinguish between mutagenic and non-
mutagenic compounds but also to find common structural properties of mu-
tagenic compounds or substructures which may cause the mutagenicity of sub-
stances. So generalized prototypes (see [27]) can be determined. A generalized
prototype o% a group of graphs is a common subgraph of these graphs where
the labels of the nodes and edges can vary within certain ranges. An example
of a generalized prototype produced by MATCHBOX is shown in Fig.1.

Often a class of objects cannot be described by a single prototype because
the class consists of several subclasses. A prototype has to be determined for
every subclass. There are several possibilities to find such subclasses. Two
methods for finding prototypes for subclasses are sketched in this section. A
detailed description can be found in [21].

The distance-guided generalization produces prototypes by finding simi-
lar subgraphs of similar graphs of the same class. This process stops when
subgraphs are produced which occur in graphs of another class, too. Thus,
some kind of clustering of the dataset is performed where the number of clus-
ters is determined by the number of subclasses. The prototypes created by
this method have been used for classification in a 1-NN-classifier. The re-
sults shown in Table 1 demonstrate that the prototypes are good represen-
tatives of the subclasses. Another method uses the subclass decomposition
of the datasets given by a decision tree which has been learned in advance.
Geibel’s TRITOP ([13]) is a special decision tree which uses a graph repre-
sentation and decomposes the object space according to structuraf proper-
ties of the objects. TRITOP constructed decision trees for the mutagenesis
datasets which show very high classification accuracy. TRITOP’s decomposi-
tion of the dataset can be used as a basis for a prototype construction by
MATcHBOX by generalizing all objects corresponding to a leaf in TRITOP’s de-
cision trees. In Fig.l the prototype produced by MATCHBOX for a subset of 8
mutagenic substances is shown, which is consistent with the result obtained by
the logical learning method Progol ( 18{). Compared with TRITOP’s description
of the subset one(A1,42),type21(42),n(A1) or Progol’s rule active(A) :-
atm(A,B,c,21,C), bond(A,D,E,2), bond(A,B,D,1), the prototype descrip-
tion gives an understandable, comprehensive description of the common prop-
erties of the compounds contained in the subset.

Together with the corresponding decision tree, the prototypes are a means
of visualization and explanation of the decision tree’s classification criteria.
In addition, they provide hypotheses about structural properties that cause
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C-or-Hetero-Atom
Type one-ofiC21,N34)
Charge in [-0.494,0.046)

C-or-Hetero-Atom
Type one-off C21,C26,N34)
Charge in [-0.494,0.046)

O-Afom
Type 040
Charge in [-0.414,-0.354]

ype
Charge in [0.786, 0.846]

C-Atom
Type one-0fiC21,C26)

¢ C-or-Hetero-Atom
Charge in [-0.056,0.187] Type one-of {052,C26,C21,N34,572)
Charge in [-0.496,0.098]
C-Atom
H-Ak
Type one-of {C14,C22,C10} Type ‘1’;‘3
Charge in [-0.133,0.587] Charge in [0.036,0.205]

Figure 1: A generalized prototype of mutagenic substances

il | I88 T 42 | I88 T42° ]
Linear Regression -0.85 | 0.67 ]| Prototype I-NN 0.80 | 0.81
Neural Net (Backprop) | 0.86 | 0.64 || Variable Kernel k-NN, k=3 | 0.91 | 0.83
CART 0.83 | 0.83 || Variable Kernel k-NN
Progol 0.81 | 0.86 || reduced set of instances
Progol-S2 . 0.88 | 0.83 || k=6 {088 | 0.86
INDIGO 0.86 | 0.89 k=10 0.88 | 0.88

Table 1: Classification accuracy for the mutagenesis datasets

other properties like mutagenicity. Moreover, the decision tree classifier can be
replaced or extended by a prototype classifier.

5. Results

The right part of Table 1 gives a summary of the classification accuracy (mean
cross-validation accuracy) using the classifiers described in Section 4. For com-
parison, the left part of the tab%e shows the results obtained by other classifiers
on the same dataset taken from [12] and [15]. Obviously, the neural net ap-
proach from Section 3. is a good basis for the distance-based classification and
prototype generation of structured objects. An advantage of this approach is
that it processes structures in a neural net without converting them into other
representations which often causes a loss of structural information. Graphs of
different sizes can be processed without preprocessing. Further, the parameters
of the net need not be tuned by hand for different datasets but are set auto-
matically on the basis of a theoretical investigation. Only paraimeters which
have to do with the selection of an appropriate distance measure must be fitted
to the problem. Dependent on the chosen measure, not only isomorphic, but
also similar subgraphs are found.

The implementation MATCHBOX can be included easily in programs of
Machine Learning and in classification algorithms. Other applications of the
approach, for instance in case-based reasoning (see [19]) and logic programming
have been investigated successfully.
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