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Abstract. Nearly all models in neural networks start from the as-
sumption that the input-output characteristic is a sigmoidal function.
We study a class of dynamical systems of neural network models with
saturated sigmoidal functions as their input-output characteristics. A
complete spectrum on the parameter space for all possible outcomes of
the dynamics is obtained. Under a stated condition we show that the
possible outcomes of the dynamics are all saturated or all-but-one satu-
rated fixed point attractors. An exact parameter region is given for all
saturated attractors and all-but-one saturated fixed points.

1. Introduction

Interestingly, to date, sigmoidal functions have been utilized in the vast ma-
jority of neural networks as the input-output characteristic [7], either on the
state space or on the weight space. The sigmoidal function is nearly saturated
outside a region, by suitably adjusting some parameters of the function. In the
present paper we report our recent work on neurodynamics defined by

N

yi(t + 1) = f(yz(t) + Z(aij +k2)7'jyj(t) + kl)a = 1, o '5Na t= 1a Ty (1)
Jj=1

where y(¢) = (i(t),i=1,---,N)e RN, A= (as,,j =1,---,Nyan N x N
matrix representing interaction between units (either weights or states), (ki, k2)
are two key parameters of the dynamics, N can be thought of either as the
number of neurons or the number of synaptic efficacies connected to the i-
th neuron, R = (rid;;,%,j = 1,---,N) plays the role of normalization with
r; > 0,4 =1,---,N, f is a saturated sigmoidal function which is continuous
and defined by

Ymax if T > ymax
f(@) =4 f(z) f(=z) is strictly increasing for = € [yyin,Ymax]  (2)
Ymin 2 <Ymin

Dynamics (1) can be realized either by a synchronous dynamics or asyn-
chronous dynamics[1]. A variety of methods (see [3, 6]) have been developed
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in recent years for exploring different aspects of the properties of dynamics (1)
with some further assumptions on f or A. In [3] and references therein the be-
havior of a neurodynamical system with a limiter function as its input-output
characteristic is analyzed. Nevertheless there are two severe restrictions which
prevent a wide application of the approach presented in [3].

1. Limiter functions have been applied in a few models and, because of this,
linear analysis can be carried out and informative results obtained as in
[6]. But nearly all models of neural networks start from the assumption
that the firing rate is a sigmoidal function of the summed inputs rather
than a linear function, although both allow single neurons to make linear
discriminations in the space of input features.

2. All results obtained in [3] are based upon an assumption that we exclu-
sively consider the set of all saturated attractors and tacitly suppose that
this is a generic case. This assumption is partly confirmed by Linsker
[5] for the limiter function, using both numerical simulation and theo-
retical proof. But he also points out the possibility of the emergence of
all-but-one saturated attractors, even in the limiter function case. When
we consider the (more general) sigmoidal function case (1), we are not
certain, at least at a first glance, what form of attractor occurs in general.

With the aim of providing a systematic and feasible tool for grasping some
informative properties of dynamics (1), here we generalize the saturated fixed
point attractor analysis on parameter space with limiter functions developed
in [3] to fixed point attractor analysis with saturated sigmoidal functions. By
this we mean the following.

e We perform an analysis on parameter space for the whole set of fixed point
attractors rather than only the set of saturated fixed point attractors. We
provide an argument to claim that we are only likely to observe the set
of all saturated or all-but-one saturated attractors for dynamics (1). In
other words, the generic outcome of dynamics (1) is an all saturated or
all-but-one saturated attractor.

¢ We derive a necessary and sufficient condition to test whether a given all
saturated ( all-but-one saturated ) state is an attractor (fixed point) or not
for any given set of system parameters. This result in turn enables us to
study Linsker’s model in a more general setting and consider the set of all
saturated attractors, as well as the set of all-but-one fixed points. Using
extreme value theory in statistics, we give an exact parameter region for
the threshold of the Hopfield model within which a stored pattern is an
attractor|[2].

Miller and MacKay [6] have carried out a detailed discussion directed at elu-
cidating the effect of different constraints—subtractive and divisive. They show
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that divisive enforcement causes the weight pattern to tend to the principal
eigenvector of the synaptic development operator(matrix AR), whereas sub-
tractive enforcement causes almost all weights to reach either their minimum
or maximum values. Our results on dynamics (1) partly serve as a comple-
ment of their results: under an exactly given condition we assert that only
all saturated or all-but-one saturated attractors are possible outcomes of the
dynamics, similar to the situation of subtractive enforcement.

Applications of our results to competitive learning[4], the Hopfield model,
Linsker’s model and a continuous time model can be found in our full paper

[2].

2. Fixed Point Attractors Of Dynamics (1)
2.1. All Saturated Fixed Point Attractors

" The following definition and theorem are keys for our further development of
the present paper. Without loss of generality we suppose that ypi, = —1
and ymax = 1. As we already pointed out in [3] saturated states in the space
{=1,1}" represent the most common outcome of many learning and retrieval
models of neural networks and so we address the following definition.

Definition 1 A fized point attractor y € {—1,1}¥ is called a saturated attrac-

tor if
N

k1 + Z(aij + ko)rjy; #0 for alli (3)
i=1

Restriction (3) will be relaxed gradually in the following subsection. The
case that one unit violates condition (3) is dealt with in the next subsection;
the case of more than one unit not satisfying (3) is discussed in subsection 2.3..

Motivated by the Hopfield model(see [2] ) we introduce the following defi-
nition.

Definition 2 The quantity
hi(y) == Z aiiTj — Z aiiT; (4)
JjeTt(y) jeJ~ )

is called the local field of the i-th neuron where J*(y) = {i,y; =1}, J (y) =
{i,y; = —1}. We say that there is a local field gap between neurons in J*(y
and J(y) if and only if

i h; > h; 5
in hi(y) > max hi(y) (5)

In spite of the fact that dynamics (1) is a generalization of what we consider
in [3], the proof of the following theorem is similar to that of Theorem 2 in [3].
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Theorem 1 (see also theorem 2 in [8]) y is a saturated attractor of dynamics
(1) if and only if
di(y) < k1 + kac(y) < da(y) (6)

where the slope function c(y) = [} jc7-(y)Ti — 2 jes+(y) T4] and two intercept
functions

X‘ + —_— ,i - +
dy (y) :{ maxcre-h] I £ o
and
_ [ mines-[=hi(y)] TG #¢
da(y) —{ o €I (y) 1IG) ®

In other words, o saturated state y is a saturated fixed point attractor of dy-
namics (1) if and only if there is a local field gap between neurons in J*(y)
and J~(y).

These two functions dy and dy were introduced in 1993(see [3] and references
therein) but their physical meaning, extremes of local fields, is clear only after
we apply Theorem 1 to the Hopfield model [2].

2.2. All-But-One Saturated Attractors

Now we consider the set of all-but-one saturated attractors. Without loss
of generality we assume that 31 € (—1,1) is the only unsaturated state and
y; € {~1,1} with
N
ki + Z(aij + kg)rjyj #0 (9)
j=1
for i # 1.
Since y;, ¢ # 1, are saturated fulfilling condition (9) our arguments of the
previous subsection hold which imply that

di(y) < k1 + &(y)k2 < da(y). (10)
for

&y) = Z rj — Z i +yim

_ J€J(y) J€Jt(y)
) dz(y) = min [ Z QT — Z a;ry + aﬂylrl] (11)

ieJ=(y) , )

B J€J(y) je€It(y)

dify) = | o )[ Z aijTj — Z aijTj + aayiri)
\ Y jer-(y) jed*(y)

Note that there is a slight difference between the definition of d’s and d’s: the
maximum and minimum for dy and d; is taken over a set of N elements, but
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for dy and d; it is over a set of N — 1 elements. For y1 we have the following
identity
N

v = flyr + Y_(a1; + ka)rjy; + k)
i=1

or equivalently

dV(y) =k +&y)ks = f 1) —y1 — Z ayr; + Z 1575 — a11Y1T1
jeJ*H(y) eI~ {y)
(12)
Hence the parameter region of (ki, k2) in which y, an all-but-one saturated
state, is a fixed point of dynamics (1) is not empty if and only if

di(y) < d(y) < da(y) (13)

. Under condition (13) the parameter region for y to be a fixed point of dynamics
(1) is the line given by

{(k1, k2) : by + E(y)k2 = d(y)}

Theorem 2 Under condition (9) an all-but-one saturated configurationy is a
fized point of dynamics (1) if and only if (k1,k2) is in the set

. {(k1,k2) : di(y) < k1 + &(y)k2 = dD(y) < da(y)} (14)

Remark 1 For an all saturated configuration y except one unit say y; which
violates restriction (3)

N

ki + Z(alj + kl)ijj =0 (15)
J=1

we have a similar conclusion as Theorem 2, namely the parameter region in
which y is a fixed point is line (14) inside a band.

2.3. Other Forms Of Attractors

For concreteness of expression we assume that y;,y2 € (—1,1), the only two
unsaturated states, and y; € {—1,1} with the property

ki + Z(aij + ko)rjy; #0, (16)

M

for 7 # 1,2. After proceeding similarly as done above for all-but-one saturated
configuration, we readily see that a necessary and sufficient condition for y to
be a fixed point of dynamics (1) is



ESANN'1998 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 22-23-24 April 1998, D-Facto public., ISBN 2-9600049-8-1, pp. 147-154

da(y) > k1 + kaé(y) > di(y) (17)
and
d2(y) = ki + kally) = Yo oayri— > ayr —auyin
J€J~(¥) JE€J*(y)
, —a1ayer2 + () — n1 (18)
dg )(Y) =k +kily) = Z QT — Z a1;T; — 821171
J€I=(¥) JjeEJH(y)
—agay2r2 + [ (y2) — ¥2
where
¢ .
&y) = Z U Z Tj + Y171 + YaT2
) T _iETt)
! d(y) = Egljr(l )[ Y oagri— Y ayri +aayit + apyers]
) Ve w i€+ (y)
dily) = f?fx [ Z QijTj — Z aijT; + Y171 + QoY)
\ ) e () JET ()

(19)
An interesting new phenomenon occurs: the two lines corresponding to the
two unsaturated states defined by Eq. (18) are parallel, which indicates that
as long as

dP(y) # d (y) (20)

then the parameter region in which y is a fixed point of dynamics (1) is empty.
The fulfillment of Eq. (20) is a generic situation essentially depending on the
property of the matrix A. When f(z) = z, = € IR this conclusion has been
confirmed by Linsker[5] in his numerical simulation and theoretical proof.

Theorem 3 If and only if (k1, ko) is in the following set

{(k1, k2); du(y) < ki + )k = dP(y) = dP () < do(y)} (1)

an all-but-two saturated configuration y is a fixed point of dynamics (1).

Remark 2 If for an all saturated configuration there are two saturated units
not satisfying Eq. (3) or an all-but-one saturated configuration with one satu-
rated unit violating Eq. (9) we have a similar conclusion as in Theorem 3.

We are able to carry out a cascade study, continuing to consider three un-
saturated units and so on. The situation to ensure the existence of a nonempty
parameter region in which y is a fixed point of dynamics (1) becomes more and
more difficult when the number of unsaturated units is larger and larger since
it requires all parallel lines corresponding to unsaturated units to intersect. In

general two parallel lines k1 + &(y)ks = dgz) (y) and k1 + é(y)ks = d§2)(y) do
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not coincide. Hence we stop here and believe that the general outcomes of
dynamics (1) are all saturated and all-but-one saturated attractors.

In conclusion for dynamics (1) the full spectrum of its outcomes is summa-
rized in table 1.

ATTRACTOR TYPE PARAMETER REGION POSSIBILITY
y: all saturated A band determined by
da(y) > k1 + e(y)ke > di(y) Most Possible

(Theorem 1), independent of f

y: all-but-one saturated A line k1 + &(y)k2 = d(Y(y) inside
a band di(y) < k1 +&(y)k2 < da(y) Less Possible
(Theorem 2), dependent on f

y: all but two saturated Intersection of two parallel lines
inside a band Hardly possible
(Theorem 3), dependent on f

Table 1: The General Parameter Region

3. Conclusions

We have studied the dynamics of neural network models with saturated sig-
moidal functions as their input-output characteristics. A complete spectrum on
the parameter space for all possible outcomes of dynamics (1) is obtained. Un-
der a stated condition we have shown that the possible outcomes of dynamics
(1) are all saturated or all-but-one saturated fixed point attractors. An exact
parameter region is given for all saturated attractors and all-but-one saturated
fixed points. Our approach provides a systematic and feasible tool to deal with
nonlinear dyanamics in many neural network models[2].

In a single theoretical framework we have managed to treat diverse models
in neural networks[2]. The significance of this unified treatment lies in that,
in additional to some novel discoveries after revisiting these models, we have
exposed some common mechanisms behind them (for example we have under-
stood the physical meaning of dy and d; from the study of the Hopfield model
[2]) which will provide useful guidance in further designing and understanding
new models, both for learning and retrieving.
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