
Limitations of Hybrid Systems

Barbara Hammer,

University of Osnabr�uc k, Dept. of Mathematics/Comp. Science,
Albrech tstra�e 28, 49069 Osnabr�uc k, Germany

Abstract. We examine the ability of combining symbolic and subsym-
bolic approaches b y means of recursively encoding and decoding struc-
tured data. We show that encoding of symbolic data is possible in this
w ay { hence neural netw orks seem well suited for control or classi�cation
in symbolic approaches { whereas decoding requires an increasing com-
plexit y of the decoding function { hence netw orks with this dynamics are
not adequate for producing structured data. Real labeled tree structures
reject a smooth encoding in general.

1. Introduction

In many areas of application data possesses both symbolic or structured ele-
ments and real valued or numerical attributes; for example web sites contain
textual information and links to other sites, chemical structures can be de-
scribed by single elements and their connection, pictures can be represented
by a special arrangement of simple graphical objects, . . . [2]. F urthermore
in purely symbolic areas the main information lies in the structural aspects {
characterizing a formula by only enumerating the single variables and symbols
seems not appropriate. Hence there is an increasing interest in neural netw orks
dealing with structured data. Including the structural aspects of the data leads
to better performance compared to standard subsymbolic approaches [12] and
enables subsymbolic adaptation in symbolic domains in a natural way [7].

Here we focus on methods which combine symbolic and subsymbolic com-
ponents by means of some in general adaptive encoding and decoding of the
respective data { terms, formulas, and tree structures on the one side and real
vectors of �xed dimension on the other side. F requently, the encoding and de-
coding process applies a standard neural netw ork recursively to the data where
the recursion corresponds to the recursiv estructure of the input or output,
respectively. An early description of this paradigm are Hinton's distributed
reduced descriptors [5], Pollac k's RAAM [11], and Plate's holographic reduced
representation [10]. Recent extensions include LRAAM [13] or folding and
recurrent net w orks [7,14], the former encoding general trees, the latter lists.

We consider the ability of encoding and decoding with such mechanisms in
principle. After a formal de�nition of the dynamics it is shown that encoding
of symbolicdata to a �xed dimensional vector can be performed in this w ay
whereas decoding of vectors in to terms or formulas requires an increasing com-
plexit y of the decoding function.If tree structured data with real valued labels
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is dealt with, every proper encoding and decoding is necessarily a trivial encod-
ing in the worst case. Since we focus on the computation dynamics the results
hold for ev ery mechanism which uses the same dynamics no matter whether
and how it is trained. Due to space limitations we will omit all but one proof.

2. De�nition of the dynamics

��k denotes the set of trees with labels in � � R
m where every node except the

empty node ? possesses exactly k successors. This structure covers symbolic
terms in a natural w ay: the labels come from a �nite alphabet denoting the
function symbols, the subtrees represent the subterms of the function symbol.
If � denotes a real vector space, hybrid data like web sites is covered: the labels
represent features of the basic objects such as the size of a html document, the
tree structure is given b y the interconnection of the data, i.e. the links.

A nonempty tree is denoted by a(t1; : : : ; tk) where a is the root's label
and t1, . . . , tk are the k subtrees. Mimicking the recursiv enature of trees
constitutes a natural w ayof de�ning an encoding and decoding of the data,
i.e., encoding starts at the leaves and recursiv elyencodes the subtrees of a
tree with some simple encoding function, decoding recursively applies a simple
decoding function to a vector in order to obtain the label of a node and codes
for the k subtrees until we arriv e at the leaves (see Fig. 1); formally:

De�nition 1 A function enc : � � (Rm )k ! R
m and initial context s 2 R

m

induces an encoding function E enc

s : ��k ! R
m where

E enc

s (t) =

�
s if t = ? ;
enc(a; E enc

s (t1); : : : ; E
enc

s (tk)) if t = a(t1; : : : ; tk) :

A function dec = (dec0; dec1; : : : ; deck) : R
m ! � � (Rm )k and �nal set F �

R
m induces a decoding function D dec

F : Rm ! ��k where

D dec

F (x) =

�
? if x 2 F ;
dec0(x)(D

dec

F (dec1(x)); : : : ;D
dec

F (deck(x))) otherwise .

This dynamics is common in neural net w orkliterature dealing with hybrid
systems: In the LRAAM enc and dec are standard feedforward netw orks which
are trained such that the composition produces the identity [13]. In Plate's
approach enc and dec are �xed mappings, sums of convolution and correlation
[10]. Folding and recurrent neural netw orks combine an encoding part given
by a feedforward netw ork with a further netw ork mapping the encoded trees to
the outputs [7,14]. Both parts are trained simultaneously for the speci�c task.

3. Encoding and decoding of symbolic data

First we consider purely symbolic data, i.e. � = f1; : : : ; Bg. We ask the ques-
tion whether these trees can be encoded into a �nite dimensional vector space
with the proposed dynamics. I.e., does a mapping enc exist such that E enc

s is
injectiv e on all trees or on the subset of trees of some arbitrary but restricted
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Figure 1: Example for the enc oding/decoding dynamics: Applying a mapping
enc recursively to the single nodes and the already encoded subtr ees yields a
repr esentation for the tree as a vector of �xed dimension. Applying a mapping
dec recursively to the vector outputs the labels and codes for the subtrees.

height? If so, what is the complexity of enc? This is of interest if the approach
is to be applied to learning tasks involving logical formulas, for example.

Theorem 2 There exists a mapping enc : ��(R2 )k ! R
2 and s 2 R2 such that

E enc

s is inje ctive. For every T 2 N enc can be appr oximated by a feedforward
network such that the induced enc oding is injective on trees up to height T . The
number of neurons is independent of T , the activation can be any function with
nonzero and continuous second derivative in the neighborhood of one point.

Hence injectiv eencoding is possible in principle and requires a limited
amount of resources which is inpedendent of the maximum input height of
the trees. F urthermore, this dynamics has some nice properties: It leads to
universal approximators of mappings ��k ! R

n if the output is combined with
a standard feedforward netw ork [4]. It has been successfully applied in several
applications [7,12] indicating the ability of storing the relevan t attributes of a
tree in such a way that the information can be used in further neural process-
ing. How ev er,when dealing with very large trees the �nite precision of the
computation and inherent noise reduce the computational properties to the
pow er of at most tree automata [8,9,14] and numerical problems may arise [1].

Now the question arises as to whether the above decoding dynamics allows
a reconstruction of the encoded trees with a neural netw ork. In general this
depends on the concrete encoding function. First we consider a special function
enc and show that trees of a restricted and almost linear structure allow proper
decoding. One interesting special case are linear trees, i.e. lists.

Theorem 3 Assume that for every t 2 S � ��k the number of leaves is re-
stricted by b. Then enc : � � (R2b )k ! R

2b , dec : R2b ! � � (R2b )k, and
s 2 R

2b exist such that D dec

fsg Æ E
enc

s yields the identity on S. F or every �nite

subset S0 in S enc and dec can b e appr oximated by a feedforward network such
that the identity on S0 is appr oximated. The number of neur ons onlydep ends
on b and k. The activation function can b e any squashing function with a non-
vanishing and continuous second derivative in the neighborho odof one point.

Hence encoding and decoding is possible for almost linear trees and lists
with the proposed dynamics; the RAAM and LRAAM, for example, can suc-
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ceed if applied to a corresponding learning task. Of course, this does not hold
automatically for every mechanism where enc and dec are not trained but de-
�ned a priori or for every activation function. A netw ork with linear activation
functions cannot solve the decoding task with a limited number of neurons.

The argumentation for this fact uses a combinatorial quantity of a net-
w orkarchitecture: The VC-dimension of a function class F : X ! f0; 1g
is the largest number of points x1, . . . , xl 2 X which are shattered by F ,
i.e. for every mapping d : fx1; : : : ; xlg ! f0; 1g some function f 2 F exists
with f jfx1; : : : ; xlg = d. If F maps to R w econsider fg j 9f 2 F ; g(x) =
H(f(x) � 0:5)g instead. The VC-dimension caracterizes information theoretic
learnability. Besides, it measures in some sence the richness or complexity of
the class and hence can be used to obtain low er bounds for the parameters.

Theorem 4 If 2T points in R
m are to be mapped to 2T sequences of length

T which appr oximate all binary sequences of length T (i.e., a value > 0:5
corresponds to the label 1, a value < 0:5 corresponds to the label 0) with some
function D dec

Y where dec is a fe edforward network with linear activation function

then dec possesses 
((T= lnT )1=3) neurons.

Note that this result does not rely on the fact ho wthe sequences are en-
coded as points in R

m . F urthermore, nearly all reasonable de�nitions of how
the decoded values are in terpreted do not a�ect the result. Hence recursiv e
linear netw orks are not appropriate for decoding of symbolic data with a linear
structure in principle. In concrete applications usually the sigmoidal activation
function is used which allo ws a proper encoding and decoding of almost linear
trees. Decoding of general trees requires an increasing number of neurons:

Theorem 5 Assume points in R
m exist which are appr oximatelydecodedto

all binary trees of height at most T with labels in f0; 1g with some D dec

Y . If

dec is a fe edforward network, the number of neurons is bounded by 2
(T ) if the
activation function is the standard sigmoidal function or piecewise polynomial.

Proof: dec = (dec0; dec1; dec2) : R
m ! R�Rm�Rm giv es rise to a recurrent

net w orkE enc

s : R�1 ! R � R
m induced by enc : R � R � R

m ! R � R
m ,

(x; y; z) 7! (dec0(z); (1� x) � dec1(z) + x � dec2(z)) :

If D dec

F maps the value z to some tree t then �1 ÆE
enc

(0;z), �1 being the projection

to the �rst component, maps an ybinary sequence of length i to some node
in the i th lev el of the tree t; the exact number of the node depends on the
sequence: [0; : : : ; 0] is mapped to the leftmost node in the i th level, [1; : : : ; 1]
is mapped to the rightmost node, the other sequences lead to the nodes in
betw een.The last component is not relevan t; see Fig. 3.
If points in R

m exist which are approximately mapped to all trees of height
T in f0; 1g�2 with D dec

F then the neural architecture �1 Æ E
enc

(0; ) shatters all bi-

nary sequences of length T with last component 1: One can simply choose the
second part of the initial context corresponding to a vector z which encodes a
tree of height T and leaves according to the dichotomy.
enc can be computed adding a constant number of neurons with some at
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Figure 2: An appropriate input to the recurr ent network as de�ned in Theorem
5 restores a path of the tree D dec

Y (z), the length of the input sequence indicates
the length of the path, the entries 0 and 1 stand for the left or right subtree,
resp ectively,dec0 yields the output label.

most quadratic activation function and it can be approximated arbitrarily well
adding a constant number of sigmoidal units. Consequently, the VC-dimension
of �1ÆE

enc

(0; ) restricted to inputs of height at most T is limited by O(N3T ln(qd))

if the activation function in dec is piecewise polynomial with at most q pieces
and degree at most d � 2. The V C-dimensionis limited by O(N4T 2) if the
activ ation functionis the standard sigmoidal function [3,6]. In both cases N
denotes the number of neurons in dec. The low erbound 2T�1 for the VC-
dimension leads to the bound N = 2
(T ) for the neurons in dec. 2

Note that it is not important how the trees are encoded. F urthermore, a
more sophisticated decoding of the single binary nodes or using other standard
activ ationfunctions leads to the same bound since for an yreasonable modi-
�cation theV C-dimension ofthe recurren t net w ork as de�ned inthe proof is
still bounded by some polynomial in the number of nodes and maximum input
height. Consequently, the decoding formalism requires an increasing amount of
resources even for purely symbolic data. Hence a formalism like the LRAAM
can deal only with restricted situations, i.e. almost linear trees or limited height,
whereas these restrictions do not apply to methods which merely focus on the
encoding, like recurrent and folding netw orks. This constitutes a motivation
for the success of folding netw orks in practice compared to the LRAAM [12].

4. Structured data with real v aluedlabels

Up to no ww eha veconsidered the encoding problem from a set theoretical
point of view, dropping the question whether similarity of trees is mirrored
by a small euclidian distance of the codes. If data with real labeled nodes is
to be encoded, the possibility of similarity preserving encoding is essential for
the encoding and decoding in general. Continuous data can only partially be
reco vered if the vector encoding is nested. Unfortunately, results from topology
tell us that proper encoding of real valued data is not possible in general:

Theorem 6 Assume enc : [0; 1]� (Rm )k ! R
m is continuous. Then for every

tree structure with more than m no des tr eest and t0 of this structure and at least
one pair of c orresponding labels l in t and 1�l in t0 exist with E enc

y (t) = E enc

y (t0).
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This result does not rely on the special dynamics but only on topological
issues. Hence hybrid data with real valued nodes cannot be encoded in general.
However, since for an a priori limited number of real values direct encoding is
possible in an obvious w ay,the abilit y of the abo vedynamics to deal with
symbolic data and restricted real valued information as input can be stated.

5. Conclusion

The ability of combining symbolic and subsymbolic methods in principle has
been investigated. We have focused on approaches which encode and decode
the respective data such that the processing mirrors the recursiv enature of
the data as proposed in [2,5,7,10,11,13]. Encoding of symbolic data is possible
in principle. In contrast, decoding requires an increasing number of resources,
unless very restricted data is dealt with. Encoding of real valued trees is not
possible in general. Hence neural net w orksseem w ellsuited if applied as a
con trol mechanism or classi�cation tool to classical symbolic approaches. Ad-
equate recovering of structured data requires a more sophisticated dynamics.
However, in a concrete application the possibility of learning an adequate dy-
namic rather than the in principle existence is to be examined additionally.
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