
                                                                                                                         

1.Introduction

In the last decade, some neural network controllers leading to stable control have been
presented[1][2][3]. One of common feature of these approaches appears to be that
they try to combine both adaptive control and the robust control technologies for
designing neural network controller. Where, the neural networks are used to
approximate the uncertainty with only unknown linear weights, the adaptive
technologies can then be adopted to update the weights and the residual modeling
error is controlled by a robust control scheme. Because the neural networks have to be
able to describe the system in a rather large working space around the whole
trajectory, the size of the neural networks may become very large for keeping the
modeling error within a permitted region. On the other hand, because of correlation of
neurons, the network training will face the interference from an other trajectory
segment before the ideal weights are achieved. This means that segmental training,
during which one segment of the trajectory is repetitively trained, is difficult. Another
problem is that the tracking errors may be quite large during the early stages of
learning because of poor approximation. In some cases, such as manipulator operating
on a complicated workspace or a mobile robot moving within a highly uncertain
environment, a large deviation from the desired trajectory may cause collision or even
damage.
In this paper, we present a different neural network to control a nonlinear system,
where the unknown nonlinearity can be represented by a linearly parameterized
approximation model. At first, in contrast to previous global parametric networks or
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Abstract. This paper presents a neural network controller for nonlinear
system trajectory tracking, which works in an iterative learning manner. The
controller is composed of many local neural networks and every point along
the desired trajectory has its own one for approximating nonlinearity only
nearby. This makes that every local neural network can be possessed of a
simple structure and less neurons. Because the neural networks are
independent from each other, the whole trajectory training can be divided
into several segments training, where we train a segment repetitively and
extend the trained segment step by step. Stability of the controller is ensured.
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local networks such as RBF neural networks where the neurons are distributed in state
space, we give every point along the desired trajectory an independent neural network
where the neurons are distributed along time axis. Then, it is trained from the view
point of iterative learning control (ILC)[4][5][6] instead of adaptive control. By
iterative learning control, the tracking performance of every point along the trajectory
can be improved through tracking the same trajectory many times. It is very suitable
for tracking a non-periodic trajectory with a finite time interval, which exists widely
in practical applications. On the contrary, the adaptive control based neural networks
can only converge to a desired continuous trajectory when the time t goes into
infinity. Moreover, in our scheme, the training of every local neural network  is
independent of the others. This makes the segmental training become possible. The
ability of segmental training is very useful in many cases. For example, it can be used
to ensure uniform boundedness of the tracking error during the whole process of
training. We can let the controller always measure the maximum tracking error along
the trajectory during the training. if the tracking errors at any trajectory point exceed a
predefined bound then the trajectory from this point is divided into two segments.
After that, the networks of the first segment are trained repetitively and the next
segment can be  trained until the tracking of the first one has reached a desired
precision. Therefore it works in a step by step manner and finally the whole trajectory
tracking can reach the desired precision. In addition, because every local network is
only used for approximating a local region around a specific point in the desired
trajectory, its structure can be selected to be very simple and with only less neurons.
Training this kind of simple neural networks can be easy and fast.

2. Description of iterative learning neural network

We start from a desired trajectory 
fd tttx ≤≤0),( . Our objective is to force the state

vector ),( itx  of the subsequent nonlinear system with affine input to follow the

desired trajectory exactly after a series of iterative learning:

fttituxtGxtfitx ≤≤+= 0                   ),(),(),(),(�                              (1)

where the i expresses the ith iterative training or tracking,
mnn RxtGRxtf ×∈∈ ),(  and  ),(  are unknown nonlinear continuous functions,

and mn RituRitx ∈∈ ),(,),(  are the state and control  input of the ith  training at time t,

respectively.
Because of the approximation capability of a neural network, we employ a linear
parametric neural network to express the nonlinear functions f(t,x) and G(t,x) as
follows:
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where LRxt ∈),(ϕ  is a vector composed of basis functions, which depend on what

kind of neural network we are using, for example, it may be a radial basis function
network [1][3], a high-order neural network[2], etc., it can even be any mathematical
approximation model with linear parameters such as a Taylor series, spline functions,
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etc.. The ,1 ,)( and  )( nlRtWRtW mL
l

Ln
f �=∈∈ ××  are the corresponding unknown

optimal weights of the neural networks. The quantities 
21  and εε  are the modeling

errors of the approximation and are supposed to be bounded on a compact region Ω.
Note that the above neural networks are different from the adaptive neural
networks[1][2][3], where it is assumed that the optimal weights are unknown
constants for the total trajectory. In equation (2), the optimal weights

)(  and  )( tWtW lf
can be time varying. This means that, for every time t or more exactly

every point along the desired trajectory, one can have different optimal weights. So,
instead of a unified neural network for the whole trajectory, equation (2) describes a
series of local neural networks for every point along the desired trajectory. From this
point, equation (2) is composed of local neural networks for every trajectory point but
the adaptive neural networks are global for the whole trajectory. Because every local
neural network is only concerned with the uncertainty in a neighborhood around a
particular point of the desired trajectory, the local networks are independent from
each other and the basis functions can be selected to be very simple.

3. Iterative training of the neural networks

At first, let the ith  training error be [ ] ),()(),(,),,(),( 1 itxtxiteiteite d
T

n −== � . In

order to deal with the modeling error, we adopt a deadzone scheme [6] and define a
modified error vector as

( ) ( )[ ]T
fnnfnff iteiteitititeite εεεεφφ /),(sat,,/),(sat),(  where),,(),(),( 111 �=−=∆

    (3)

and [ ]T
fnff εεε ,,1 �=  is an n-dimensional width of the deadzone.

Furthermore, we train following neural networks so that their outputs approximate the
unknown nonlinear functions at time instant t:
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where ,1),,(ˆ  and  ),(ˆ nlitWitW lf �= are the ith identification of the optimal weights in

equation (2).
Suppose the equation yxixtG =),,(ˆ  has a solution on a permitted region around the

desired trajectory )(txd
, which can be ensured by the projection algorithm [7]when a

rough knowledge about the bound of the parameters is available, then a control law
with least norm can be proposed as

( )),(),(),,(ˆ)(ˆ),,(ˆ),( 21 iteKiteKixtftxixtGitu d ++−= + �                        (5)

where +),,(ˆ ixtG  denotes the pseudo-inverse matrix of ),,(ˆ ixtG , )(ˆ txd�
 is an estimated

velocity of the desired trajectory. So, in our scheme, only the state of the desired
trajectory should be given but its velocity is not required. This is also a different point
from adaptive neural networks. In some cases, when the desired velocity has to be
obtained by differentiating a given trajectory, for example, the derivative may be
sensitive to the image noise for the feature based visual servoing, this point has
benefit.
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In this control law, we combine neural network compensations for both the velocity
and the nonlinearity with robust control (linear feedback). The linear feedback terms
of ),( and ),( 21 iteKiteK  are included to counteract the influence of the modeling errors

of 
21  and εε , respectively. Substituting (5) and (2) into equation (1) gives:

( ) ( )
( ) ( ) ( ) ( )),(),(),(),(),,(ˆ),(),(),(ˆ)()(ˆ
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(6)
From the criterion in [6], if the width of the deadzone is kept to be constant and the
initial error of the system can be controlled within the deadzone for every training,

namely injie fjj ∀=< for   ,1,),0( �ε , then 2
0

0

),(),( γ≤∑
=

∆

N

i

T iteite �  ensures that the tracking

error of every point along the trajectory will be less than a specified value described
by the deadzone, i.e.  

fjj
i

ite ε≤
∞→

),(lim , when the system tracks the desired trajectory

repetitively.  Then , based on equation (6), we want to meet above condition:
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For the first term, we know that, although the desired trajectory )(txd�
 is a function of

time t, it always remains constant at any specific time t for the repetitive tracking.
Hence, from the property of a positive real transfer function, if we select the
estimation of the desired velocity  as

),()(),(ˆ
0

jtejiFitx
i

j
d ∆

=
∑ −=�                                                 (7)

where F(i-j) can be any positive definite discrete matrix kernel whose z-transform is a
positive real discrete transfer matrix with a pole at z=1 , then we get
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For the same reason, The second term and the third term are upper bounded if the
weights of the neural networks are updated by

∑
=

∆−−=
i

j

T
ff xtjtejiFitW

0

),(),()(),(ˆ ϕ                            (9)

nljtuxtejiFitW T
i

j
lll �1   ),,(),()(),(ˆ

0

=−−= ∑
=

∆ ϕ                   (10)

where )( jiFf −  and )( jiFl −  are positive definite discrete matrix kernels as well.

Note that the training laws  (7),(9),(10) are updated through accumulations of the
repetitive tracking histories at a specific time t (a sample period in application). They
are different from the training law used by adaptive neural networks where the
weights are updated through integration of the state along the time axis t.
The next two terms are the robust control terms. The first one for the modeling error

1ε  can be written as
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If we let ( )
∞

>>= 111111   and  0,, εε fiin KKKdiagK � , which is bounded when we

consider the tracking problem on the compact region Ω, then it is less than zero.
For the last term, at first, we rewrite the control law in equation (5) to be
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( ) ( )

( ) ( )∑ ∑

∑∑

= =
∆∆∆∆∆

=
∆

=
∆

++′−+−=

++′−=+−

N

i

N

i

TTT

N

i

T
N

i

T

itKitEKuEiteeKiteeEKite

iteKiteEKuEiteiteKituite

0 0
2222

0
22

0
22

),(),(),(),(),(                              

),(),(),(),(),(),(

φφ

ε

If we let the control gain 
2K  be a positive scalar and further suppose that the

maximum norm of the E satisfies 
MfmfMfmfM

E εεεε  and   where,1/ ≤<  are the

minimum width and the maximum width in the deadzone vector, respectively, then
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When we let the control gain satisfy

02 >′
−

= u
E

E
K

MfMmf

M

εε
                                          (11)

then the last term is less than zero too.
In fact, the matrix E reflects the relative error of the approximation for the input
matrix G(t,x). So we should select a suitable type of basis functions such that they can
approximate the input matrix with a precision less than the ratio between

Mfmf εε  and  . When we make each width of the deadzone for different states equal,

this permitted range of the relative error can reach 100%.

Finally, we have  that ∑
=

∆

N

i

T iteite
0

),(),( �  is upper bounded and 
fjj

i

ite ε≤
∞→

),(lim .

The proposed neural networks in (2) are the approximations around the desired
trajectory for every time instant t or every sample period in application. Therefore,
they are independent from point to point or from segment to segment. This means that
we can divide the whole trajectory training into several segments training. This can
help us to avoid large deviation during the training. At the beginning, the system is
controlled by a untrained neural network controller. Under the control of this kind

 D-Facto public., ISBN 2-930307-00-5, pp. 153-158B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)



neural network, usually the tracking error will increase along with moving of the
desired trajectory. If the tracking errors at any trajectory point exceed a predefined
bound then the trajectory from this point is divided into two segments. After that, the
networks of the first segment are trained repetitively and the next segment can be
trained until the tracking of the first one has reached a desired precision. So it works
in a step by step manner, and finally the whole trajectory tracking can reach the
desired precision. It makes the tracking error during the training not exceed the
predefined bound. We think that step by step is also the learning manner of human
being. People prefer to resolve a complicated project into several segments, then they
learn all simpler segments repetitively. Before some basic goals are reached, they will
never move to the next step. In addition, although we distribute the networks over all
trajectory points, it does not mean an increase of the size of the networks because of a
simpler structure of every local network for every trajectory point. The training of
such a simple local network is faster than a global parametric neural network.

4. Conclusions

We have proposed a neural network controller for nonlinear system trajectory
tracking. The proposed method can be used for any approximation model with linear
parameters. In contrast to the adaptive neural network control scheme, our training
algorithm is derived from the view point of iterative learning control such that every
local neural network for a particular point of the trajectory is independent of the
others. This makes the repetitive segmental training become possible and every local
network can be selected to be very simple. This training law is described by a history
accumulation with a gain of positive definite discrete matrix kernel. It guarantees the
stability of the tracking system.
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