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����������One of the attractive features of Self-Organising Maps (SOM) is the 
so-called “topological preservation property”: observations that are close to 
each other in the input space (at least locally) remain close to each other in the 
SOM. In this work, we propose the use of a bootstrap scheme to construct a 
statistical significance test of the observed proximity among individuals in the 
SOM. While computer intensive at this stage, this work represents a first step in 
the exploration of the sampling distribution of proximities in the framework of 
the SOM algorithm. 
 
 

����
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The SOM algorithm was introduced by Kohonen in 1981 and has been the focus of a 
sizeable amount of attention in the scientific community since then. Numerous 
applications have been proposed (see Kohonen [1995] for a representative list of 
them) and the theoretical properties have been carefully studied (see Cottrell, Fort & 
Pagès [1998] for a review of the established results up to now). Henceforth, we will 
consider here that the SOM algorithm is familiar to the reader. 
 
One of the most attractive features of SOM, (in particular for applications in the field 
of data analysis), is the so-called “topological preservation property”: after 
organisation through the training algorithm, observations that are close to each other in 
the input space (at least locally) belong to units that are neighbours (or are actually 
within the same unit). A question that has not received a lot of attention to date is the 
statistical significance of the observed neighbourhood in the SOM obtained after 
learning. Having observed that two individuals from the analysed sample belong to 
neighbour units, what is the probability that they are actual neighbours in the 
population? In other words, what is the sampling distribution of the observed 
proximity and is it possible to propose a statistical test to assess their significance? 
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To answer this question, we will first recall the central ideas of the bootstrap, as 
introduced by Efron [1979] and address/solve specific difficulties encountered when 
applying the bootstrap in the field of neural-networks (for references on bootstrap 
procedures and their applications, see e.g. Efron, Tibshirani [1986, 1993], Freedman 
[1981,1984], LePage, Billard [1992], Noreen [1989], …). We will clearly define the 
concept of proximity, propose a bootstrap procedure adapted to the SOM algorithm 
and introduce a Binomial test to assess the statistical significance of observed 
neighbourhoods. Before concluding, we will apply our propositions to three simulated 
data sets and to a real database.  
 

!�����������������������������������������	����
 
In real applications, the SOM algorithm is used on a finite data set, which can be seen 
as a sample from some unknown distribution. One important question that arises about 
the resulting map is: "Is it reliable?". We propose the use of the bootstrap approach to 
evaluate the reliability of the map on both the point of view of ������������	� 
(evaluated by the sum of squares intra-classes, cf. eq. 1) and the �
���	���		� 
�����������
 (evaluated by the stability of the observed proximity on the map). 
 
The quality of the quantification is evaluated by the sum of all the distances between 
the observations and their winning code vector (the weight vector of the closest unit 
which is the representative vector of the class they belong to). This sum is called 
����	���	� in the quantification theory, and ���� 	�� �����
�� �����������
� by the 
statisticians. It can be expressed by: 
 

∑ ∑
= ∈

=
8

L &[

LM

LM

����������
1

2 ),(  eq.1 

 
where � is the number of classes (or units), �L is the �-th class, �L is the code vector of 
class �L, and � is the classical Euclidean distance in the data space. 
 
Let us recall that the decreasing function associated with the SOM algorithm for a 
constant size of neighbourhood and finite data set is ��
�����	�������
�������������
��

��
��
�� �	� ��
� �
���	��� �����
�. But actually, in the last part of the iterations no 
neighbour is considered. And at the end, the SOM algorithm is equivalent to Simple 
Competitive Learning and minimises exactly the ������� value. 
 
The bootstrapped samples will help us to study the stability of the distortion by 
estimating it and its standard deviation regardless of the learning (which depends on 
the initialisation, order of data presentation, decrease of the neighbourhood size, and 
the adaptation parameter, etc.). 
 
In regards to the stability of the neighbourhood relation, it is simply evaluated by the 
number of cases where, during the bootstrap process, two observations are neighbours 
or not neighbours. The stability of neighbourhood therefore has to be evaluated for a 
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couple of observations and, classically, we have to define the radius of neighbourhood 
at which the proximity is taken into account (see equation 2). For any pair of data �L 
and �M,  

�

������
��� �

%

E

E

ML

ML

∑
== 1

,

,

)(
)(  eq.2 

where �����E
L�M!�" is an indicator function that returns 1 if the observations �L and �M 

are neighbours at the radius, �# for the bootstrap sample,  # and � is the total number 
of bootstrapped samples. A perfect stability would lead �� �L�M to always be 0 (never 
neighboured) or 1 (always neighboured).  
 
The application of the bootstrap procedure to the SOM algorithm raises two specific 
problems: 

- for MLP, the minimised function has a sizeable amount of local minima. Part 
of the variability of the estimated statistics (�������#� �� �L�M) can be due to 
this convergence problem. As in Zapranis and Refenes [1999] (cf. supra), we 
will analyse the impact of the "convergence difficulty" on the stability of the 
estimations (see section 4 of the paper). 

- to evaluate �����E
L�M!�", it is necessary to say that �L and �M must be part of the 

bootstrap sample, , which is in no way guaranteed. To solve this problem, 
we use the same approach as in Efron and Tibshirani [1993]: the �� �L��M(�) is 
evaluated only on the parts of the bootstrap samples that contain the 
observations �L and �M. 

 
The proposed bootstrap procedure is resumed in figure 1.  The terminology we will 
use to present our results is the following: 

- if no re-sampling is done (in order to analyse the variability of the results due 
only  to convergence problems), we will talk of Monte-Carlo (�") 
simulation, 

- if re-sampling is done, we will talk of Bootstrap (�) simulation, 
- if, for each bootstrap iteration, the SOM Map is initialised at random (in the 

input data space), we will talk of Common Monte Carlo ("�") or Common 
Bootstrap ("�) (depending on the activation of re-sampling or not), 

- if, for each bootstrap iteration, the SOM Map is initialised with the weight 
vectors obtained after the convergence of the initial learning, we will talk of 
Local Monte Carlo (��") or Local Bootstrap (��), 

- if we do the same computations as in the previous point, but we add a small 
random perturbation to the weight vectors, we will talk of Local Perturbed 
Monte Carlo (���") or Local Perturbed Bootstrap (���). 
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We can study the significance of the statistics �� �LM(�), by comparing it to the value it 
would have had if the observations fell in the same class (or in two classes distance of 
less than �) in a completely random way. 
 
Let � be the total number of classes and $ the size of the considered neighbourhood. 
The size, $, of the neighbourhood can be computed from the radius, �, by: $ = (2� + 1) 

for a one-dimensional SOM map (a string); and $ = (2� + 1) 2 for a two-dimensional 
SOM map (a grid). For a fixed pair of observations, �L and �M�,�with random repetition, 
the probability of neighbouring would be $/�. If we define a Bernoulli random 
variable with probability of success $%�, (where success means: "�L and �M are 
neighbours"), the number, &, of successes on � trials is distributed as a Binomial 
distribution, with parameters � and $%�. So, it is possible to build a test of the 
hypothesis H0  "�L and �M are only random neighbours" against the hypothesis H1 "the 
fact that whether �L and �M are neighbours, or not, is meaningful". 
 
If � is large enough (i.e. greater than 50), the binomial random variable can be 
approximated by a Gaussian variable and, for example, with a test level of 5%, we 

conclude to H1 if & is less than 




 −−

�
$

�
$

�
�
$

� 196.1 , or greater than 






 −+

�
$

�
$

�
�
$

� 196.1 . 

This gives a level of significance to the presence/absence of the neighbourhood 
relations. 
 
 

%������	���	�
��
 

%����&��������
����������
 
The results that we present and analyse here have been obtained on three simulated 
data sets1; each one representing a specific situation. We will call them: Gaussian_1, 
Gaussian_2 and Gaussian_3. In each case, they are two-dimensional data sets, 
obtained by random drawing in an uncorrelated Gaussian distribution. They are 
represented respectively in figures 2, 3, and 4. The first data set shows a situation 
where there is only one cluster of observations. The second contains three clusters of 
equal variance and some overlap. The third is also composed of three clusters, but of 
different variance and no overlap. Each data set is composed of 500 individuals. And, 
for data sets Gaussian_2 and Gaussian_ 3;  observations 1-166, 167-333 and 334-500 
are in the same cluster. 

                                                           
1 Complementary results have been obtained with several real data sets but the simulated ones 
allow us to clearly illustrate the results of particular interest. 
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For the sake of conciseness, the results presented here are limited to a one-
dimensional SOM Map (or string), composed of either 3 or 6 units. Classically, the 
neighbourhood and the learning rate are decreasing during the learning. 
 
 

%�!�*��	��	�	��������������� ������
+��
�������������	����
 
The first point we present, with attendant results, is the variability of ��������due to 
convergence of the SOM algorithm. The point here is to see if the existence of local 
minima can introduce variability in the estimation of �������. Table 1 summarises the 
coefficients of variation, (CV)2 , for the distribution of ������� obtained by CMC (no 
re-sampling and random initialisation at each iteration); Table 2, the CV obtained by 
LMC (no re-sampling, fixed initialisation at each iteration); and, Table 3, the CV 
obtained by LPMC (no re-sampling, small random perturbation of the fixed 
initialisation). Each result presented here has been established with 5000 independent 
samples3. For the sake of conciseness, the results for �� �L�M are not presented here.  

                                                           
2 The coefficient of variation CV is equal to 100 σ/µ, where σ is the standard deviation, µ, is 
the mean value. 
3 Such a large number of samples, in practice, is not necessary (100 being enough); but, we 
wish to be certain of the numerical stability of the results. 
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The comparison shows quite clearly that the stability of the ������� estimation does 
not rely on the mode of initialisation of the bootstrap procedure. By switching from 
CMC to LMC (or PLMC), i.e. by fixing the initialisation of the weight vectors, the 
obtained coefficients of variation are almost the same. This result is very different 
from those obtained by Zapranis and Refenes [1999] when applying bootstrap to MLP 
and emphasise the great robustness of the SOM algorithm. The most interesting result 
that appears in tables 1 through 3 is the important impact of the number of units on the 
CV in Gaussian_3 cases. As can be seen in figures 2 and 3, Gaussian_3 is the only 
case with well-separated asymmetric clusters. It is clear that the "natural" number of 
units should be 3 and,  in some sense, a SOM Map with 6 units is over parameterised. 
The stability of ��������seems, at first sight, to indicate the wrong choice of number of 
units. It is this point in particular that we will explore in the next section of this paper. 
 

 
 3 units 6 units 
Gaussian_1 0.052 0.045 
Gaussian_2 0.051 0.046 
Gaussian_3 0.076 0.101 
,�����$�"���	�	
������+��	��	�
����
������������"����
���
��"�����

-"�".�
 
 3 units 6 units 
Gaussian_1 0.053 0.044 
Gaussian_2 0.049 0.045 
Gaussian_3 0.064 0.103 
,����!$�"���	�	
������+��	��	�
����
��������������������
��"�����

-��".�

�
 3 units 6 units 
Gaussian_1 0.052 0.045 
Gaussian_2 0.051 0.046 
Gaussian_3 0.067 0.101 
,����%$�"���	�	
������+��	��	�
����
��������������������� ������
��

"�����-���".�
�
�
�
�
�

 

%�%������	
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	���	
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Table 4 shows the CV’s of ������� obtained from the three simulated data sets 
presented in section 3.1; as well as on a real data set called POP 4. The results have 
been obtained using 100 bootstrap samples. They confirm those highlighted in the 
previous section. For Gaussian_1, where there is only one natural cluster, the CV of 
������� exhibits oscillations around 0.45. For Gaussian_3, as expected, the addition of 
a fourth unit generates a large increase in the CV. As shown in table 4, for the POP 
data set, the increase of the CV of ������� is situated near the addition of the seventh 

                                                           
4 This actual data (extracted from official public statistics for 1984) was used in Blayo, F. & 
Demartines, P. (1991): '���� ���(����)��	*��	��	�+��
�,	�	�
���
������
�*	�-���	�.��
��
�
������
��/�in 0�	�

������	���1 ��234, Ed. A.Prieto, Lecture Notes in Computer Science, 
Springer-Verlag, 469-476. It contains 6 variables (annual population growth, mortality rate, 
analphabetism rate, population proportion in high school, GDP per head, GDP growth rate) for 
53 countries. 
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or eighth unit. The result seems to be surprising for the Gaussian_2 data set; where 
there is no increase of the CV of ������� when adding a fourth unit. The explanation 
lies in the strictly symmetrical form of the three clusters and in their overlapping 
positions (the instability of the location of the fourth unit does not change the level of 
������� obtained from one bootstrap sample to another bootstrap sample).  
 

Number of units Gaussian_1 Gaussian_2 Gaussian_3 POP 
1 0.052 0.043 0.055 0.046 
2 0.045 0.060 0.089 0,079 
3 0.059 0.054 0.065 0.073 
4 0.055 0.049 0.144 0.068 
5 0.044 0.066 0.152 0.085 
6 0.051 0.047 0.120 0.088 
9 0.054 0.047 0.109 0.147 
12 0.037 0.049 0.092 0.180 
15 0.040 0.040 0.080 0.187 

,����)�$�"���	�	
������+��	��	�
����������������	
�������������
����������

 
Pair of   
obs. 

Gauss_2 
3 units 

Pair of  
obs. 

Gauss_3 
3 units 

Pair of countries POP (U=0) 
6 units 

POP (U=1) 
6 units 

137/43 
Cl1/Cl1 

1 137/43 
Cl1/Cl1 

0 49/21 
Turkey/Upper Volta 

0.04** 0.65** 

137/255 
Cl1/Cl2 

0 137/255 
Cl1/Cl2 

1 49/13 
Turkey/Cuba 

0*** 0.22*** 

137/437 
Cl1/Cl3 

0 137/437 
Cl1/Cl3 

0 49/47 
Turkey/Sweden 

0*** 0.05*** 

137/70 
Cl1/Cl1 

1 137/70 
Cl1/Cl1 

0 49/19 
Turkey/France 

0*** 0*** 

137/278 
Cl1/Cl2 

0 137/278 
Cl1/Cl2 

0 49/20 
Turkey/Greece 

0*** 0.25*** 

43/255 
Cl1/Cl2 

0 43/255 
Cl1/Cl2 

0 21/13 
Upper Volta/Cuba 

0*** 0*** 

43/437 
Cl1/Cl3 

0 43/437 
Cl1/Cl3 

0 21/47 
Upper Volta / Sweden 

0*** 0*** 

43/70 
Cl1/Cl1 

1 43/70 
Cl1/Cl1 

1 21/19 
Upper Volta / France 

0*** 0*** 

43/378 
Cl1/Cl1 

0 43/378 
Cl1/Cl1 

0 47/19 
Sweden/France 

1*** 1*** 

255/437 
Cl2/Cl3 

0 255/437 
Cl2/Cl3 

0 13/47 
Cuba / Sweden 

0.02** 0.81*** 

255/70 
Cl2/Cl1 

0 255/70 
Cl2/Cl1 

0 13/19 
Cuba / France 

0.02** 0.78*** 

255/378 
Cl2/Cl3 

0 255/378 
Cl2/Cl3 

0 13/20 
Cuba / Greece 

0.69*** 0.97*** 

,����/$�#�0 
�	�����
	���� ����������	
���������������������
**significant at 5 %                                                                 ***significant at 1%  

�
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�����
������+��	�
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������������
 
In this section, we present results concerning the stability of the neighbourhood 
relations that appears in the SOM maps. The first three "pair" columns concern the 
neighbourhood with radius r=0, (i.e. the observations are considered as neighbours 
only if they belong to the same class). The last column shows the results for the POP 
data set with a radius neighbourhood of 1 (i.e. the observations are neighbours if they 
belong to the same class or to two adjacent classes). 
 
Table 5 shows the results concerning �� �L�M. In the columns "Pair of obs", the cluster 
ownership are mentioned for the observations two in number and for data sets Gaus_2 
and Gaus_3 (e.g. the first pair of observations of Gaus_2 data set is 137/43; Cl1/Cl1 
means that observation 137 is a member of cluster 1 and observation 43 is a member 
of cluster 1). For the POP data set, we mention the country names. The number of 
units is mentioned in the title of the columns. All estimations have been computed 
with 100 bootstrap samples. The levels of significance have been calculated from a 
Binomial distribution with +=1/6 (cf section 2). The main results are as follows: 

− For the Gaus_2 data set, we obtain strictly what was expected: if two 
observations are in the same cluster, the probability they belong to the same 
unit is 1 (and vice-versa). We have to remember that the SOM algorithm is a 
stochastic one… 

− For the Gaus_3 data set, the conclusions are the same as those obtained for 
the Gaus_2 data set; except for observation 137, which is wrongly associated 
with observations of the second cluster. In figure 4, we mark this observation 
with a red point. As we can see, it is located in the second cluster (while 
issued from the first one). This corresponds with an error of classification 
since its location and the results obtained by bootstrap are fully coherent. 

− For the POP data set, the observed similarities between the countries agree 
with the economic situation in the year 1984, as far as we know. It is 
necessary to study the map in a more detailed way to fully interpret the 
results, but it is out of the scope of this paper. However, it is evident that 
France is completely different from Upper Volta (presently Burkina-Faso), 
and that France and Sweden are very similar with respect to the considered 
variables (see appendix). 

 

)��"�
�� �	�
�
 
These are preliminary results, but are nonetheless very promising. We intend to pursue 
these tracks by: 

- systematically studying how to determine the correct number of units using 
the coefficients of variation of the ������� for the bootstrapped samples, 
according to the number of units;  
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- analysing the stability of the neighbourhoods according to the number of 
units more deeply (as we saw, the stability disappears when the number of 
units is over-dimensioned); 

- applying these methods to numerous real  data and applying, in this context, 
well-known numerical optimisations to the Monte-Carlo procedure. 

 
We think that this kind of work can supply the innumerable users of the SOM maps 
with a new tool that can make them increasingly confident in the power and 
effectiveness of the Kohonen algorithm. 
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