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Abstract. In this article we focus on a statistical method for nonlinear
time series analysis of data-sets used in supervised neural netw ork train-
ing. A new method for identifying a minimal neural input-vector with
maximum information content is proposed. Further, we demonstrate the
capabilit y of the mutual information for nonlinear time series analysis of
real measurement data. F rom the viewpoint of information theory this
approach provides optimal solutions for a large variety of problems.

1. Introduction

One of the basic postulates of information theory is that information can be
treated like a measurable physical quantity, such as density or mass. Whenever
en tities of the real world are interacting, an abstract ow of information occurs.
Quantifying this ow of informationis of vital in terest for the determination
of implicit causalities and hence for the construction of proper training-sets for
neural netw orks. The mutual information is capable of identifying arbitrary
dependencies, while the coeÆcient of correlation (CoC) fails to detect nonlin-
ear dependencies between arbitrarily distributed random variables. Another
adv antage of this quantity is its applicability to multi-dimensional time series.

2. Mutual Information

The mutual information I(�; �) can be interpreted as the quantity of informa-
tion obtainable about a random variable �, from the prior knowledge of another
variable �. Two, possibly multivariable, signals fxng and fyng can now be in-
terpreted as realizations of the random processes f�ng and f�ng. In this case,

ESANN'2000 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2000, D-Facto public., ISBN 2-930307-00-5, pp. 439-444



H(�)

fxng

H(�)

fyng
I(�; �) = H(�) +H(�)�H((�; �))

H((�; �)) �H(�)

H((�; �))�H(�)

Irrelev ance

EquivocationChannel

Figure 1: Shannon's model for the o wof information through an abstract,
symmetric message-channel contaminated with noise.

the mutual information is used to measure the ow of information and thus the
degree of statistical dependency betw een both random variables.

Shannon introduced the concept of mutual information for the quantitativ e
description of abstract message-channels. Figure 1 depicts Shannon's model
for the ow of information through an abstract, symmetric message-channel
contaminated with noise. The received information H(�) is comprised of the
mutual information I(�; �) and the irrelevance H((�; �))�H(�) resulting from
disturbances. H((�; �))�H(�) describes the equivocation, i.e. the information
which is actually lost by the channel and is never receiv ed.

This pragmatic methodology is based upon the introduction of an adequate
entropy-measure H . F or the discrete random variable � with a probability
distribution fpmg, the entropy-measure H is de�ned as

H�(�) := H�(fpmg) =

8>><
>>:

1
1�� log2

MP
m=1

p�m : � � 0; � 6= 1

�
MP
m=1

pm log2 pm : � = 1

: (1)

Later, CHINTSCHIN[2 ] and FADDEJEW [3] formulated an axiomatic char-
acterization of H . The mutual information for tw o discrete random variables �
and � is then de�ned as I(�; �) := H(�)� [H((�; �)) �H(�)], where H(�) is the
A-priori uncertainness of � and H((�; �)) �H(�) is its remaining A-posteriori
uncertainness, if � is kno wn.
Let P = fpmg

M
m=1; Q = fqng

N
n=1 and S = fsm;ng

M;N
m=1;n=1 be probability distri-

butions of the random variables �; � and (�; �), respectively. Let further � be
uniformly distributed, with qn = N�1 for n = 1; :::; N . The mutual informa-
tion I2(�; �) = H2(�) +H2(�)�H2((�; �)) has the following properties:

1. Symmetry: I2(�; �) = I2(�; �)
2. Limitation: 0 � I2(�; �) � min(H2(�); H2(�))
3. Independency: I2(�; �) = 0 () � and � are statistical independent.
4. Determination: I2(�; �) = H2(�) () � is a function of �,

I2(�; �) = H2(�) () � is a function of �.

F or arbitrary random variables � and �, 0 � I2(�; �) holds if and only if at least
� is uniformly distributed.

 D-Facto public., ISBN 2-930307-00-5, pp. 439-444B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)



3. Matrix Calculus

In order to formulate the estimation algorithm for the mutual information,
an appropriate matrix calculus [5] is presented. Since the algorithm requires
uniformly distributed time series, the original measurement-data is transformed
to absolute rank numbers.

f �R(k)gKk=1 �

0
B@

R0(1) R0(2) � � � R0(K)
...

...
. . .

...
RD(1) RD(2) � � � RD(K)

1
CA : (2)

The matrix in Eqn. 2 depicts the transformed (D + 1)-dimensional measure-
ment data. Each time series Rd(k)g

K
k=1 is comprised of K sample-points.

F or the computation of the required entropy measure H2(�), every row-vector
fRd(k)g

K
k=1 of the above matrix has to be considered separately. This is done

by computing rank-distance matrices

Æd;(j;k) �k Rd(j)�Rd(k) k; j; k = 1; :::;K (3)

for each d = 0; :::; D. The K2 en tries of the matrix Æd;(j;k) represent the
distances betw een pairs of absolute rank-numbers in a particular sequence
fRd(k)g

K
k=1. The entries in Æd;(j;k) are further used for computing binary rank-

distance matrices

Bd =

0
B@

bd;(1;1) bd;(1;2) ::: bd;(1;K)

...
...

. . .
...

bd;(K;1) bd;(K;2) ::: bd;(K;K)

1
CA : (4)

F or a prede�ned distance parameter�d, with 0 � �d � K. The entries of Bd
are set according to the rule

bd;(i;j) :=

�
1 : Æd;(i;j) < �d
0 : ? :

(5)

Figure 2 shows the binary rank-distance matrix of a measurement signal. The
binary matrices still con tainall information about the statistic dependencies
of the underlying time series, with respect to a prede�ned coarseness level �d.

Let B0; :::; BD; D 2 IN be binary matrices as introduced in Eqn. 4. The con-
junction of multiple binary matrices is de�ned as follows:

D̂

d=0

Bd := (b0;(i;j) ^ ::: ^ bD;(i;j)); i; j = 1; :::;K: (6)

The correlation integral C��;K is no w obtained as the relativ eweight of the
resulting binary matrix:

C��;K =
1

K2

KX
i;j=1

 
D̂

d=0

Bd

!
=

1

K
+

2
4 2

K2

X
i<j

 
D̂

d=0

Bd

!3
5 : (7)
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Figure 2: Left: Binary rank-distance matrix B of a measurement signal. Right:
Binary matrix of a pure stochastic process, showing no statistic dependen-
cies. Binary rank-distance matrices of signals without statistic dependencies
are equally gray. The gray-lev el increases if the distance parameter� decreases.

Finally, an approximation for the entropy measureH2(�) of a (D+1)-dimensional
random variable with its realizations f�x(k)gKk=1 is

H2(�) � � log2(C��;K) = � log2

0
@ 1

K
+

2
4 2

K2

X
i<j

 
D̂

d=0

Bd

!3
5
1
A : (8)

This approximation is further used to obtain a measure for the mutual infor-
mation I2(�; �) = H2(�) +H2(�)�H2((�; �)).

4. Nonlinear Time Series Analysis of Combus-

tion Pressure Data

An example for the demonstration of the introduced method is taken from the
�eld of automotive engineering. One particular point of interest from the view-
point of combustion-control, is the determination of the 50% energy-conversion-
point (ECP) solely from combustion-pressure data[4]. The 50%-ECP is de�ned
as the crank angle position at which 50% of the fuel-mass in the cylinder has
chemically reacted during the course of combustion [1].
Figure 3(a) depicts a small portion of the set of in-cylinder curves used for the
calculation of the GMIFs. In Fig. 3(b), multiple iterations of the General Mu-
tual Information betw een the in-cylinder pressure and the 50%-ECP are plotted
against the crank-angle. Considering one particular iteration, each value of the
GMIF is computed from all measurements of the in-cylinder pressure curve at
a certain crank-angle position. F or instance, at position +21Æ the �rst itera-
tion of the GMIF reaches its maximum. This position is considered the most
relevant point of the in-cylinder pressure with respect to the determination of
the 50%-ECP. For the computation of further points, this particular position
is assumed to be known, while an additional input is tak en from the set of
sample-points and varied. Hence, the next input-sequence is now a realiza-
tion of the tw o-dimensional random variable (�xi

; �xi1
). Continuing with this
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Figure 3: Iden ti�cationof relevant points from a set of in-cylinder pressure
curv es.

strategy , an ordered sequence of points with the highest information conten t,
can be successively iden ti�ed. As depicted in Fig. 3(b), the normalized mu-
tual information I2(�; �) is converging to its upper limit 1:0 when considering
larger sets of sample-points. This procedure terminates when the maximum
gain of mutual information betw een successive iterations drops below a prede-
�ned threshold.
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Figure 4: Presentation of the input-vector with the highest information conten t
to a Neural Net w ork.The neural structure has previously been trained with
the identi�ed input-vector taken from a separate training-set to determine the
50%-ECP.

Figure 4 depicts the presentation of the in-cylinder pressure curve at the iden-
ti�ed crank-angle positions to a previously trained neural network. It can be
observed, that the selected points are not equally distributed. Hence, we can
draw the conclusion that training a neural structure with equally spaced input-
vectors is not a reasonable choice for the investigated problem.
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5. Conclusion

In this paper we demonstrated the application of the general mutual informa-
tion as a quantitativ e method for measuring the information conten t of sample-
points of the in-cylinder pressure curve with respect its according 50%-ECP.
This general approach has been employed for iden tifyinga sequence of most
relevant sample-points in the pressure-signal of a combustion-engine.

The concept of mutual information can be utilized for the reduction of the
input dimension of neural netw orks. In our case,w e were able to reduce the
size of the input-vector from 34 to ten sample-points. This maintained the
qualit y of the solution and increased the computational performance.

Due to the generality of this approach, the concept of a mutual information
can be applied for the nonlinear analysis of arbitrary data-sets. The introduced
method represents a general and constructive framework for the preprocessing
of neural netw ork training-data.

References

[1] M. Bargende. V erbrennungs- und Ladungswechselanalyse. In Stuttgarter

Symposium Kraftfahrwesen und Verbrennungsmotoren, pages M8.1{M8.16,
Stuttgart, 1995.

[2] A. J. Chintschin. Der Begri� der Entropie in der Wahrsc heinlichk eitsrech-
nung (russ. Orginalarbeit). InArbeiten zur Informationstheorie I, volume 2,
pages 7{29. Deutscher Verlag der Wissenschaften, Berlin, 1961.

[3] D.K. F addejew. Zum Begri� der Entropie eines endlichen Wahrschein-
lichkeitsraumes (russ. Orginalarbeit). In A rbeiten zur Informationstheorie I,
volume 2, pages 86{90. Deutscher Verlag der Wissenschaften, Berlin, 1956.

[4] R. O. M�uller. Modernes Motormanagement mit Neuronalen Netzen. PhD
thesis, University of W�urzburg, Department of Computer Science, 1998.

[5] B. Pompe. Measuring statistical dependencies in a time seris. J Stat. Phys.,
73:587{610, 1993.

 D-Facto public., ISBN 2-930307-00-5, pp. 439-444B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)


