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Abstract. This paper deals with the problem of nonlinear time series

prediction. The method uses a couple of �lters to decompose iteratively

the series. This sc heme leads to a time series which con tains the slo w est

dynamics and a hierarchy of detail time series which contain intermediate,

up to the highest, dynamics. The new series are then used for modeling

and predicting. The result obtained on the Mackey-Glass chaotic series

show the eÆciency of this approach.

1. Introduction

Let X1; X2; � � � ; X` be a stationary time series. Our objective is to pre-

dict the v alue ofXk+p; p � 1 using all the observations until the instant

k. F or this purpose, a function (or a link) betw een the observ ations

fX1; X2; � � � ; Xkg and Xk+p is to be constructed with a principal con-

cern in the prediction accuracy. Indeed, the optimal prediction sequencebX�

1 ; bX�

2 ; � � � minimize a criterion (the least squares in our case), i.e.

Cgen = lim
T!1

1

T

TX
k=1

Ef(bxk+p � xk+p)
2
jxk = Xk; xk�1 = Xk�1; � � �g: (1)

The solution of this minimization problem is given bybX�

k+p = Efxk+pjxk = Xk; xk�1 = Xk�1; � � �g: (2)

Unfortunately, this value can not be computed since the conditional prob-

abilit y densit yPfxk+pjxk = Xk; xk�1 = Xk�1; � � �g is unknown. The

criterion in Eq. (1) is replaced by the empirical criterion given by

Cemp =
1

`

`X
i=1

(Xi �
bXi)

2
: (3)

The relationship between bXk+p and the sequenceXk; Xk�1;��� is supposed

to be nonlinear of unknown nature with the following autoregressive formbXk+p = bf(Xk; Xk�1; � � � ; Xk�r+1): (4)
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Where r is the model's order. This fact suggests the use of techniques

like neural netw orks [8] or RBF [2]. In this context, tw o problems appear

� the model's order which is related to the curse of dimensionality,

� the estimator complexity con trol which is related to the under�tting

and o ver�tting problem.

In time series prediction, a challenge is to learn fast dynamics (equiva-

lently to high frequencies in the linear case) and, simultaneously cancel

noise. This challenge is directly related to the under�tting/over�tting

problem. Indeed, learning noise causes over�tting. Whereas, forgetting

fast dynamics leads potentially to under�tting. Our approach to resolve

this problem is based on a multiscale decomposition of the time series.

The decomposition is achieved using a low-pass and a band-pass �lters.

The iterative application of these �lters results in a trend series and a

hierarc hy of detail series which con tain information about the system's

dynamics at di�erent scales.

The paper is organized as follows: in the x2., the principles of multiscale

�ltering are brie
y recalled. In x3., the use of the obtained series for the

prediction is discussed. The application of the method is then illustrated

in x4.

2. The multiscale �ltering

The multiscale decomposition uses a low-pass and a band-pass �lters [3].

Applying this pair of �lters to the original time series leads to a �rst

series which con tains the trend (or slow er dynamics) and a second one

which is the di�erence between the original series and the trend. The

reconstruction of the original series is possible by summing up the trend

and the detail series.

The nature of the application imposes the use of causal �lters. In fact,

at the present moment, the future value of the series is unknown. Let

(hn); n 2 Z and (gn); n 2 Z be the impulse response of the low-pass

and high-pass �lters respectively. The causality and the reconstruction

constrain ts imply (
hn = gn = 0; n � 1;

h0 + g0 = 1;

hn = �gn; n � �1:

(5)

The simplest �lters satisfying Eq. (5) are the Haar �lters [6] given b y�
h0 = h1 =

1

2
;

g0 = �g1 =
1

2
:

(6)

This decomposition scheme can be performed several iterations. A t each

one, it consists on decomposing the trend series of the previous iteration.

Let xm = c0;m; m = 1; � � � ; ` be the original series,and let cN;m; dj;m; j =

1; � � � ; N; m = 1; � � � ; ` be respectiv ely the trend and the di�erent detail

levels obtained after N iterations. We can write then

xm = cN;m = cN;m +

NX
j=1

dj;m; m = 1; � � � ; `: (7)
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In this case,8><>:
cN;m = (h � h � � � � � h| {z }

N times

�x)m;

dj;m = (h � h � � � � � h| {z }
j�1 times

�g � x)m j = 1; � � � ; N:
(8)

Note that at each iteration, we may use a di�erent pair of �lters. These

how ever m ust satisfy the constraints given in (5). A simple application

of this remark is padding with zeros the impulse response of the �lters.

Thus, at iteration j, the lo w-pass and band-pass �lters, noted hj;: and

gj;:, are giv en by�
hj;0 = hj;2j�1 = gj;0 = �gj;2j�1 =

1

2
;

hj;m = gj;m = 0; m 6= 0; � � � ; 2j � 1:
(9)

The trend and detail series are used to predict the original series. This

will be sketched in the next section.

3. Time series prediction

The use of the w aveletcoeÆcients is motivated by the easy analysis

of the obtained series. In fact, the trend may be used to analyze the

system's slow est dynamics. The detail series dj;: contain the di�erence

betw een the time seriescj�1;: and cj;:, they inform about the importance

of the intermediate dynamics. The highest detail series includes the

fastest dynamics and noise. As the trend and the low est detail series are

practically noise free, the training and the complexity control of their

corresponding estimators are simpler than the ones of the original series.

However, if the information is totally embedded in noise in the highest

detail series, one can simply put at zero the corresponding predictions to

avoid the over�tting.

For each series, an estimator is constructed. The �rst idea is to treat

separately each time series. In this case we have [1]� bcN;k+p = bf0(cN;k; cN;k�1; � � � ; cN;k�r0 );bdj;k+p = bfj(dj;k; dj;k�1; � � � ; dj;k�rj ); j = 1; � � � ; N:
(10)

The choice of the estimators bf0; bf1; � � � ; bfN is related to the nature of the

time series. In this paper, only multila yer perceptrons are used.Each es-

timator has its proper order rj ; j = 0; � � � ; N . This method has the major

drawback of not taking into account the existing correlation betw een the

di�erent series. A more complex method consists in including, for each

series, an information about the other series (considered as exogenous

variables). This leads to the following estimators� bcN;k+p = bf0(cN;k; � � � ; cN;k�r; � � � ; dj;k; � � � ; dj;k�r; � � �);bdj;k+p = bfj(dj;k; � � � ; dj;k�r; � � � ; cN;k; � � � ; cN;k�r); j = 1; � � � ; N:

(11)
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The drawback of this method is that it increases the problem dimension-

ality. For each estimator, all the variables are took with the same order

in order to simplify the problem.

The sum of the predictions is put equal to the predictions sum; i.e.

bxk+p = bcN;k+p + bdN;k+p + � � �+ bd1;k+p: (12)

In this context, we have the follo wing property:

Property 1 If the estimator bf , of order r, is obtaine dby minimizing

the risk Cemp on the r aw data, and if the estimators bf0; bf1; � � � ; bfN , with
the same order r and the same number of neur ons, ar e obtaine d simulta-

neously by minimizing the following risk

C
w
emp =

1

`

`X
k=1

((cN;m+p�bcN;m+p)+ � � �+(dj;m+p� bdj;m+p)+ � � �)
2
; (13)

then, we have

minC
w
emp � minCemp: (14)

for all the estimators written as a linear or nonlinear combination of

linear projections of the input variables (multilayer perceptron and RBF

are within this class).

Proof: In the ab ove conditions, we write

bf =

sX
i=1

wi'(

r�1X
l=0

ai;lxm�l + ai;r); (15)

and8<:
bf0 =Ps

i=1
w0i'(

Pr�1

l=0
a00;lcN;m�l +

PN

n=1

Pr�1

l=0
a0n;ldn;m�l + a0i;r)bfj =Ps

i=1
w
j
i'(
Pr�1

l=0
a
j

0;lcN;m�l +
PN

n=1

Pr�1

l=0
a
j

n;ldn;m�l + a
j
i;r);

j = 1; � � � ; N:

(16)

So that, in the case wher e

a
0
i;l = a

j

i;l; j = 1; � � � ; N; (17)

all the estimators bf0; � � � ; bfN are proportional to bf . This implies the

equivalence between Cemp and Cw
emp under the constr aint (17). The Cemp

de�nition domain is a subspace of the one of Cw
emp. Finally, we conclude

that

minC
w
emp � minCemp: (18)

It is useful to note that this property is valid for linear AR models.

2

This propert yaÆrms that, under some conditions, the estimators us-

ing the w aveletcoeÆcients �ts more the data than the classical ones.

However, the prediction error reduction is not guaranteed. In order to

�nd estimators with good generalization properties, the cross-validation

method is used [7]. The order r may be �xed using some knowledge

about the series (e.g. the embedding space dimension in case of chaotic
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series) or using a statistical criterion (cross-validation [7]). The simula-

tion sho ws that the method using the wavelet coeÆcients is robust to the

order misspeci�cation; the generalization performance hardly varies with

r [6].

The use of the above described approach is illustrated in the next section.

4. Application

The method has been applied to the well known Mackey-Glass chaotic

series giv en by [4]

xk+1 = xk +
xk��

1 + [xk��]10
: (19)

The objectiv e is to compare our results with those obtained by other

authors on the raw data. The parameters of the series are the following:

� = 17, the sampling rate is � = 6 (only the sample x0; x� ; x2� ; � � � are

used), the training and the test sets are `train = 500 and `test = 1000

length respectively. Two prediction times were tested: p = 6 and p = 84.

The performance of the estimators is measured by the normalized error

on the test set, i.e.

e =

P`test

k=1
(xk � bxk)2P`test

k=1
(xk � x)2

; x =

`testX
k=1

xk; (20)

The decomposition of the series were achieved using the \padded with ze-

ros" Haar �lters overN = 4 levels. The model's order was �xed at r = 4

when p = 6 and at r = 6 for p = 84 (these values correspond to the em-

bedding space dimension of the Mackey-Glass series [4]). T able 1 shows

the results obtained with our method (last column), and those obtained

with classical methods (neural netw orks, RBF, local linear polynomials,

� � �); see [4, 5] and the references therein for more details on these meth-

ods. Our method is shown to be the more eÆcient since it increases the

prediction accuracy on the test set in the tw o cases.

p = 6 p = 84

neural networks 0.010 0.050

local linear polynomials 0.033 0.045

standard RBF 0.011 0.158

w eigh ted linear map 0.013 0.030

support vector machines 0.004 -

our method 0.002 0.023

T able 1:The results obtained with di�erent methods for p = 6 and p = 84.

 D-Facto public., ISBN 2-930307-00-5, pp. 341-346B
orks

0,
ES Netw

r 0
A l 

0ug
ra

2
NN Neu
e l 

'2 l 
s i

000 icia
 pr

 Artif
( A

p on 
B 8 

ro m 
e 2

ce iu
l -

edi pos
g 6

ngs ym
i 2

 -  S
u  

 E an
m ,

urope
)



5. Conclusion

In this paper, a method for predicting nonlinear time series w as pre-

sented, it is based on the multiscale �ltering. The obtained series contain

information on the system's dynamics at di�erent scales. This property

simpli�es the learning of the series with slow dynamics. It may also be

used to separate noise from relevan t information. For each new time se-

ries, an estimator is constructed, it may include some information about

the other series. The results obtained through the Mackey-Glass chaotic

time series substantiate our approach.
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