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Abstract. Using a nonlinear 15-state helicopter model in 6 DOF,
two di�erent neural control systems, both acting as rate damping, have
been designed and compared. They are both based on the reference
model direct inverse scheme, but they di�er each from the other for the
identi�cation of the inverse model: the �rst one is a MIMO feedforward
two-layered neural network, while the second one is a combination of
three MISO feedforward two-layered neural networks connected in par-
allel. The strong dynamic cross-coupling, that characterizes the model,
has enabled us to verify the actual MIMO capability of both the neu-
ral rate damping con�gurations. However the multi-MISO version has
demonstrated to have a more robust adaptive ability.

1. Introduction

The helicopter represents a very complex dynamic system, whose special fea-
tures can be summarized as follows: it can operate in a very wide range of
ight conditions; its response characteristics and the piloting strategy may
vary signi�cantly depending on ight condition; in most ight conditions, the
command response is characterized by very strong cross-couplings in all axes,
so that each control action needs to be associated with a proper compensation
action; it is dynamically unstable in almost the whole ight envelope; its com-
mand system architecture and the inertia associated with the rotoric ow �eld
introduce a measurable intrinsic delay between the command action and the
response. These characteristics a�ect not only the activity of the pilot but also
that of the control systems that equip the helicopter. The neural technology
has already demonstrated to be an e�ective alternative to conventional con-
trol techniques for �xed-wing aircraft applications (a wide bibliografy on this
subject is reported [1]). The helicopter ight dynamics control perhaps repre-
sents one of the most evident situations where neural technology is favoured
over conventional methods: it allows adaptive and fault-tolerant control, with a
considerably reduced gain-scheduling activity; it handles MIMO (Multi-Input-
Multi-Output) control, without increasing the complexity of the structure; it
can be applied even when the plant is characterized by strong non-linearities.

In [2] the neural technology was used to implement a MIMO terrain-follo wing
autopilot, for a 9-state nonlinear helicopter model in 6 DOF. This full-authority
controller was based on the reference model direct inverse scheme reported in
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�gure 1 (also known as predictor-corrector); the inverse model was identi�ed
with a MIMO feedforw ard two-layered neural network, trained on-line, while
the emulator was identi�ed with a MIMO feedforw ard two-layered neural net-
work, trained o�-line. The same scheme is used to implement the rate damping
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Figure 1: Predictor-corrector scheme

that will be described in the third paragraph. The aim of the work is to com-
pare the performance of two di�erent versions of this controller: the �rst one
is substantially similar to the autopilot of [2], the second one is based on the
same structure but the inverse model is identi�ed by three MISO (Multi-Input-
Single-Output) networks connected in parallel.

2. Helicopter mathematical model

The 15-state nonlinear helicopter model in 6 DOF (extensively described in
[3]), identi�es a twin engine helicopter belonging to the 2.5 tons class. The
equations of motion can be written in a compact and explicit form, as follows:

_X = f(X;U) (1)

where X represents the state vector, while U = (�0 �1s �1c �0t)T is the control
vector which is made up of the main and tail rotors pitch angles, that are
supposed to be applied directly on the blades. This means that the dynamics
connected to the pilot's action, to the actuators and to the mechanical interlinks
has not been modeled.

In the ight simulations which will be presented, the initial condition is
a stable and non-minimum-phase trim point, where the helicopter (equipped
with a SAS that acts on the latero-directional variables) exhibits three os-
cillatory damped modes, the phugoid (!ph = 0:1319 rad=s �ph = 0:0923),
the short period (!sp = 2:3789 rad=s �sp = 0:6064), the Dutch roll (!dr =
2:9161 rad=s �dr = 0:3287) and two subsidences, the spiral mode (�s = 1:0703)
and the roll mode (�r = 1:2055).
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3. The MIMO adaptive Rate damping

The rate damping is the heart of any helicopter automatic ight control system
(AFCS). Due to the command system architecture (the swash plate) it acts
mainly on the angular rates p, q and r of the overall system. The rate damping
has a twofold task: to avoid the angular motions to arise, unless the pilot
maneuvers on purpose (for instance as a consequence of a gust); to improve
the angular motion response to a pilot maneuver. The rate damping operation
is very simple: sensors detect angular rates values di�erent from zero (the
reference value); the error signal, calculated from the di�erence between the
actual and the reference signal, is fed to the controller, which activates the
cyclic (�1s e �1c) and the tail rotor collective (�0t) actuators. The maneuver
commanded by the controller cancels the undesired angular rates, but, since
this happens with a certain delay, as regarding disturbance, the attitude may
have changed. The rate damping is not able to bring the helicopter back to the
original attitude and this is one of the reasons why the rate damping is not an
independent control system. For this reason, during simulations the attention
will be focused on the rates variables, while the attitude variables trends will
not be considered.

As shown in �gure 2 the rate damping is a MIMO con trol system with three
control variables (�1s, �1c and �0t) and three controlled variables (p, q and r).
During simulations, the main rotor collective pitch is supposed to be held at
�xed values.
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Figure 2: Rate damping working scheme

3.1. MIMO identi�cation of the inverse model

The most simple way to implement the MIMO rate damping consists in iden-
tifying the inverse model with a single MIMO net work, having three inputs (p,
q and r) and three outputs (�1s, �1c and �0t). The inverse model is identi�ed
through a scheme that can be drawn back to the ARX type model [4]. It has
been chosen a feedforward two-layered neural network, where the input layer
is the second order regression vector (19 neurons, i.e. 18 plus the bias), the
hidden layer 16 neurons have a bipolar hyperbolic tangent activation function,
while the 3 output layer neurons have a linear activation function. On the
whole the network is nonlinear.

Both the forward and the inverse model are trained o�-line with the Levenberg-
Marquardt method [5], based on the bac k-propagation technique. To make the
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controller adaptive, the inverse model must be trained on-line: the technique
used is described in [2]. It belongs to the Recursive Identi�cation methods
category, where the weights update is based on the step by step calculation of
the derivative matrix:

	(k) = 5�y(k) �= 5�ŷ(k) = 5u(k�1)ŷ(k) � (5�u(k � 1)) (2)

It is important to point out that the (i; j) element of the 	 matrix, namely the
derivative of the ith output with respect to the jth element of the � vector�, is
calculated summing the contributions �ltered through all the command signals:

	(i; j) = 3
@ŷ(i)

@�(j)
=

@ŷ(i)

@u(1)

@u(1)

@�(j)
+

@ŷ(i)

@u(2)

@u(2)

@�(j)
+

@ŷ(i)

@u(3)

@u(3)

@�(j)
(3)

3.2. Multi-MISO identi�cation of the inverse model

An alternative method to implement the MIMO rate damping consists in iden-
tifying the inverse model through three MISO networks, connected in a parallel
stucture, following the scheme reported in �gure 3. Each network has three
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Figure 3: Inverse model identi�cation through three parallel MISO networks

input variables, the angular rates, and a single output variable, that is one of
the three control variables. Adopting the same ARX model described above,
each network turns out to have 12 neurons in the input layer; for the hidden
layer it has been chosen to maintain the 16 neurons of the MIMO net work. On
the whole the inverse model dimension is increased, meaning that the number
of connections is almost doubled: 675 for the three MISO networks vs. the 355
of the single MIMO net work. Obviously also the computation cost is increased,
anyway the ensuing advantages are not negligible.

The inverse model weights update is performed through the calculation of
three 	m matrices, according to the form:

	m(k) = 5�m ŷ(k) = 5um(k�1)ŷ(k) � (5�mum(k � 1)) (4)

whose generic (i; j) element can be written as follows:

	m(i; j) =
@ŷ(i)

@�m(j)
=

@ŷ(i)

@um

@um
@�m(j)

(5)

which means that the e�ects of the mth matrix weights on the outputs are
�ltered exclusively through the mth control signal.

�� collects the inverse model weights matrices in vector shape
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Figure 4: On-line training of the inverse model in calm air: MIMO (a) and
multi-MISO (b)

4. Results and Conclusions

Results are presented in form of comparison between the angular rates trends.
The lower part of each diagram represents the required control maneuver. Fig-
ure 4 shows the behaviour of the two controllers trained on-line in a situation
of calm air (the helicopter is ying with a speed of 50m=s at the height of
100m): their performances are comparable since both are able to control the
MIMO dynamic system. The greater dimension of the m ulti-MISO controller
would seem to penalize this solution, but the next test-case demonstrates that
the multi-MISO con�guration features more robust adaptiv e capabilities. Fig-
ure 5, in fact, reports the behavior of the two controllers in a gust event: a
vertical gust of 5m=s suddenly occurs after 10 seconds from the controller ac-
tivation; it goes on for 0:5 seconds and then disappears. In this situation the
pure MIMO con troller clearly demonstrates to be inadequate to control the
MIMO dynamic system, while the m ulti-MISO controller continues to perform
well. The explanation lies in the comparison between the (i; j) elements of the
	 and 	m matrices: in the 	 matrix three di�erent gradient descent direc-
tions are suggested (eq. 2) and the controller is obliged to follow the forth one,
namely the mean one, that is not necessarily the best; on the contrary, in the
	m matrix the learning algorithm gives a more detailed piece of information,
directly selecting the optimum gradient descent direction (eq. 4).

List of Symbols

BP Back-propagation algorithm
e Error signal
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Figure 5: On-line training of the inverse model in a gust event: MIMO (a) and
multi-MISO (b)

fpq rgT Angular rates vector (roll, pitch and yaw rate)
u Control signal
U Controls vector, i.e. main rotor collective pitch (�0), main rotor longitudinal and

lateral ciclic pitch (�1s and �1c), tail rotor collective pitch (�0t)
X State vector
y Output signal
y1 Hidden layer neurons
ŷ Approximate output signal
f'�  gT Attitude variables vector (bank, pitch and yaw angle)
� Inverse model weights vector
	 Derivatives vector
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