
Bootstrap for neural model selection

Riadh Kallel1, Marie Cottrell1, Vincent Vigneron1;2

1 MATISSE-SAMOS UMR 8595 2 CEMIF
90, rue de Tolbiac 40 rue du Pelvoux

75634 Paris cedex 13 91020 Evry Courcouronnes
kallel,cottrell@univ-paris1.fr vvigne@iup.univ-evry.fr

Abstract

Bootstrap techniques (also called resampling computations techniques) have
introduced new advances in modeling and model evaluation [10]. Using resam-
pling methods, the information contained in one observed data set is extended to
many typical generated data sets. These procedures based on computer simulation
and cross validation are the last resort when no classical inference is possible due
to the intrinsic complexity of the problem: they can avoid to estimate the noise
distribution from the residuals, like in Monte-Carlo approach which is based on a
hypothesized noise distribution.

Resampling allows the modeler to construct a series of new samples which are
based on the original data set, and then to estimate the stability of the parameters.
Properties such as convergence and asymptotic normality can be checked for any
particular observed data set. In most cases, the statistics computed on the generated
data sets give a good idea of the confidence regions of the estimates. In this paper,
we debate on the contribution of such methods for model selection, in the case
of feedforward neural networks. The method is described and its effectiveness is
checked through a number of examples.

1 Multilayer Perceptrons (MLP)

Suppose a set of n independent observations of a continuous variable y that we have to
explain from a set of p explanatory variables (x1; x2; : : : ; xp). We want to use the non
linear models called Multilayer Perceptrons. These models are nowadays commonly
used for non linear regression, forecasting, pattern recognition, and are particular ex-
amples of artificial neural networks.

We consider in the following a multilayer perceptron (MLP) with p inputs, one
hidden layer with H hidden units and one output layer.

In such a network, units are organized in successive layers with connexions con-
necting one layer to the following one. See Cheng et Titterington [2] or Hertz et al. [8]
for details or references.

 D-Facto public., ISBN 2-930307-00-5, pp. 61-68B
orks

,
ES tw

r 0
A Ne
u 0

N l
g 0

N ra
e 2

'2 Neu
s l

000 l
 i

 icia
(r

p tif
B p

ro Ar
e A

ce on
l

edi m
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro S
)

pean
,

The model can be analytically expressed in the following form : the output y is
given by

y = �0

0
@w0 +

HX
h=1

wh�(bh +

pX
j=1

wjhxj)

1
A+ � (1)

where � is the residual term, with zero mean, variance �2 (with normal distribution or
not),

y is a continuous variable,
�0 is the identity output function
� is (in most cases) the sigmoid

�(x) =
1

1 + exp(�x)
:

Let � = (w0; w1; : : : ; wH; w11; : : : ; wpH) be the parameter vector of the network
and let y(x; �) the computed value for an input x = (x1; : : : ; xp) and a parameter
vector �. There are H(p+ 1) +H + 1 parameters to be estimated.

Classically, if there are numerous data, the first step consists in the division of the
supplied data into two sets : a test set and a training set. The so-called training set
f(x1; y1); : : : ; (xm; ym); (1 � i � m;m < n)g; is used to estimate the weights of the
model by minimizing an error function 1

m

Pm
i=1 (yi � y(xi; �))

2 using optimization
techniques such as gradient descent, conjugate gradient or quasi-Newton methods...

The resulting least squares estimator of � is denoted by �̂, and the resulting lack of
fit for training is the learning error

MSEa =
1

m

mX
i=1

�
yi � y(xi; �̂)

�2
: (2)

The training set is used to derive the coefficients (weights) of the model and the
resulting model is tested on the test set. A good regression method would generalize
well on examples that have not been seen before, by learning the underlying function
without the associated noise. The test error can be defined by

MSEt =
1

n�m

nX
i=m+1

�
yi � y(xi; �̂)

�2
: (3)

Most optimization techniques (that are variants of gradient methods) provide local
minima of the error function and not a global one. Practically, different learning con-
ditions (initialization of weights, learning adaptation parameter, sequential order in the
sample presentation, : : :) give different solutions that it is difficult to compare. It is
not easy to know if a minimum is reached, because the decrease of the error function is
slow, an over-learning phenomenon can occur, etc...For these reasons, numerous stop-
ping and validation techniques are proposed, see for example Borowiak [1], or Hertz et
al [8].

 D-Facto public., ISBN 2-930307-00-5, pp. 61-68B
orks

,
ES tw

r 0
A Ne
u 0

N l
g 0

N ra
e 2

'2 Neu
s l

000 l
 i

 icia
(r

p tif
B p

ro Ar
e A

ce on
l

edi m
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro S
)

pean
,

For multilayer perceptrons, the choice of a model is equivalent to the choice of
the architecture of the network. If one has to select a model among a lot of them, an
exhaustive method would consist in exploring the whole set of possible models, and in
testing all these models on the given problem. The estimation of the performances is
then a very crucial point, all the more so since many factors intervene to complicate this
evaluation. It is necessary to be certain that the convergence has occurred, to have at
disposal a good quality criterion which allows to decide what is the best model.

2 Bootstrap for parameter estimation

Bootstrap techniques were introduced by Efron [5] and are simulation techniques based
on the empirical distributionof the observed sample. Letx = (x1; : : : ; xn) a n-sample,
with an unknown distribution function F , depending on an unknown real parameter
�. The problem consists in estimating this parameter � by a statistic �̂ = s(x) from
the sample x and in evaluating the estimate accuracy, although the distribution F is
unknown.

In order to evaluate this accuracy, B samples are built from the initial sample x, by
re-sampling. These samples are called bootstrapped samples and denoted by x�b.

A bootstrapped sample x�b = (x�b1 ; : : : ; x
�b
n) is built by a random drawing (with

repetitions) in the initial sample x : PU(x
�b
i = xj) =

1
n ; i; j = (1; : : : ; n), where PU

is the uniform distribution on the original data set x = (x1; : : : ; xn).
The distribution function of a bootstrapped sample x

�b is F̂ , i.e. the empirical
distribution of x . A bootstrap replicate of the estimator �̂ = s(x)

�̂
�b = s(x�b). For example, for the mean of the sample x, the estimator is s(x) =

1
n

Pn
i=1 xi, and a bootstrap replicate will be s(x�b) = 1

n

Pn
i=1 x

�b
i .

Then, the bootstrap estimate of the standard deviation of �̂ denoted by �̂boot(�̂) is
given by

�̂boot(�̂
�) =

"
1

B � 1

BX
b=1

�
�̂
�b
� �̂

�

(:)
�2# 1

2

and

�̂
�

(:) =
1

B

BX
b=1

�̂
�b
:

It is computed by replacing the unknown distribution functionF with the empirical
distribution F̂ . In conjonction with these re-sampling procedures, hypothesis tests and
confidence regions for statistics of interest can be constructed.

In the following, the method we propose as a tool to select a MLP model is similar to
the bootstrap method, since it relies on re-sampling techniques, but it is non parametric.

3 Bootstrap applied to selection model for MLPs

Let B0 be a data set of size n,

B0 = f(x1; y1); : : : ; (xn; yn); (1 � i � n)g

 D-Facto public., ISBN 2-930307-00-5, pp. 61-68B
orks

,
ES tw

r 0
A Ne
u 0

N l
g 0

N ra
e 2

'2 Neu
s l

000 l
 i

 icia
(r

p tif
B p

ro Ar
e A

ce on
l

edi m
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro S
)

pean
,

where xi is the i-th value of a p-vector of explanatory variables and yi is the re-
sponse to xi.

From the original data set B0 (called initial base), one generates B bootstrapped
bases B�b ; 1 � b � B, (i.e. B uniform drawings of n data points in B0 with repeti-
tions). For any generated data set B�b , an estimator of the MLP parameter vector �,

denoted by �̂
�b

, is found by application of the backpropagation algorithm [9] for exam-
ple, but any minimization algorithm can be used. So the bootstrap procedure provides

B replications �̂
�b

for model (1).
Then we use B0 as a test base, and evaluate for each b = 1; : : : ; B and each i =

1; : : : ; n the residual estimate

��btest;i = yi � y(xi; �̂
�b
):

The study of the histogramms of these estimated residuals allows to evaluate the
distribution of the error term �, to control its whiteness, etc. For each bootstrapped

sample B�b , b = 1; : : : ; B, (that is for each �̂
�b

), the sum of squares of the residuals on
the test base B0 is computed:

TSSE(b) =
nX
i=1

�
��btest;i

�2
as well as the mean of the squares of the residuals on the test base B0,

TMSE(b) =
1

n

nX
i=1

�
��btest;i

�2
:

So, we got a vector TMSE whose mean value is �boot = 1
B

PB
b=1 TMSE(b) and

standard deviation is �boot = 1
B�1

hPB
b=1 (TMSE(b) � �boot)

2
i1=2

.

These two values measure the residual variance of the model, estimated from the
bootstrapped samples, and the stability of the parameter vector estimations. So this
technique allows to evaluate a model from only one sample (without splitting it into a
learning base and a test base, which decreases the number of data used for the estima-
tion).

To choose between several architectures M1;M2; : : : , these computations are re-
peated for each of them, and the best one will be this one that has the best compromise
(the ideal is to simultaneously minimize �boot and �boot).

The approach is summarized in table 1.
Two main disadvantages must be outlined

� the computer simulation time: if n or p is high, computation time can be very long
even with second-order optimization techniques as BFGS, but it still remains less
than empirical exploration.

� the repetition of extremal data: the risk exists to select a re-sampling data set
for which iterative methods will converge with difficulty. But ignoring these
repetitions could introduce a bias.

 D-Facto public., ISBN 2-930307-00-5, pp. 61-68B
orks

,
ES tw

r 0
A Ne
u 0

N l
g 0

N ra
e 2

'2 Neu
s l

000 l
 i

 icia
(r

p tif
B p

ro Ar
e A

ce on
l

edi m
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro S
)

pean
,

1. To generate B samples of size n by random drawings with repetitions in
the initial base fB0g = f(x1; y1); : : : ; (xn; yn)g. Let us denote by fB�bg =
f(x�b1 ; y

�b
1); : : : ; (x�bn ; y

�b
n)g the b�th bootstrapped sample, b = 1; : : : ; B.

2. For each bootstrapped sample, b = 1; : : : ; B, to estimate � by minimizingPn
i=1[y

�b
i � y(x�bi ; �)]2, we get �̂

�b
.

3. The bootstrap standard deviation is given by:

�boot =
1

B � 1

"
BX
b=1

(TMSE(b) � �boot)
2

#1=2
;

where

�boot =
1

B

BX
b=1

TMSE(b):

Table 1: Re-sampling algorithm (bootstrap procedure) used to compute �boot and �boot
(typically 20 � B � 200).

Many other re-sampling procedures have been proposed in the statistical literature:
cross-validation, Jackkniffe,etc : : : See Hamamoto [7] and Borowiak [1] for details.

4 Examples

4.1 Example 1: Linear model

We wish to illustrate the method on a simple linear case. Consider the problem of fitting
a linear model

y = �0 + �1x1 + �2x2 + : : :+ �pxp + �:

We simulate a data set B0 = (x(i)1 ; x
(i)
2 ; yi); i = 1; : : : ; 500 by putting

x
(i)
1 = i; x

(i)
2 = i

1

2 ; yi = 2 + 0:7x(i)1 + 0:5x(i)2 + �i

where �i is a random variable which possesses the distributionN (0; 4).

B = 50 bootstrapped samples are built, and three models with different architec-
tures are compared.

Model M1: p = 2, y = �0 + �1x1 + �2x2 + �

Model M2: p = 1, y = �0 + �1x1 + �

 D-Facto public., ISBN 2-930307-00-5, pp. 61-68B
orks

,
ES tw

r 0
A Ne
u 0

N l
g 0

N ra
e 2

'2 Neu
s l

000 l
 i

 icia
(r

p tif
B p

ro Ar
e A

ce on
l

edi m
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro S
)

pean
,

Model M3: p = 3, y = �0 + �1x1 + �2x2 + �3x3 + �, with x(i)3 = i
3

2 and �3 = 1

For each model, we compute �boot(Mi) and �boot(Mi).
In this case (see Tab.2 and Fig.1 on the left), it is evident that the best model is the

model M1, that is the true model.

4.2 Example 2: Non-linear modeling with simulated data

We simulate a data set B0 = (x
(i)
1 ; x

(i)
2 ; yi); i = 1; : : : ; 500, by computing yi as a noisy

output of a multilayer perceptron, defined by
p = 2 input variables,
one hidden layer and 4 neurones on the hidden layer,
� = (0:5;�0:1; 0:2;0:5;�0:4;0:2; 0:1;3; 0:3;2;0:5; 0:1;0:2; 2;0:2;3; 0:1),
� possesses a distributionN (0; 0:04).

B = 50 bootstrapped samples are built, and three models with different architec-
tures are compared.

Model M2: two inputs, one hidden layer with 2 hidden neurons
Model M4: two inputs, one hidden layer with 4 hidden neurons
Model M3: two inputs, one hidden layer with 6 hidden neurons

For each model, we compute �boot(Mi) and �boot(Mi).
In this case (see Tab.2 and Fig.1 at the right), it is evident that the best model is the

model M2. It is not the true model, but it is the best. It is not so surprising since the
Multilayer Perceptrons are always over-parametrized, and that there is no unicity of the
multilayer perceptron function which can model a given function.

4.3 Example 3: Non linear model with real data

In this section, we study a real data set to set the efficiency of the model selection
method that we propose.

The power peak control in the core of nuclear reactors is explored. The problem has
already been studied in the past, namely by Gaudier [6], who constructed a neuronal
model with 22 input variables, 2 hidden layers, (the first one with 26 neurons, the other
with 40 neurons). The model accounts for physical localization of uranium bars and
diffusion processes, and was set to reproduce the classical calculus code, while winning
in terms of computing time.

B = 50 bootstrapped samples are built, and three models with different architec-
tures are compared.

Model M40: 22 inputs, two hidden layers with respectively 26 and 40 hidden neu-
rons

Model M35: 22 inputs, two hidden layers with respectively 26 and 35 hidden neu-
rons

 D-Facto public., ISBN 2-930307-00-5, pp. 61-68B
orks

,
ES tw

r 0
A Ne
u 0

N l
g 0

N ra
e 2

'2 Neu
s l

000 l
 i

 icia
(r

p tif
B p

ro Ar
e A

ce on
l

edi m
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro S
)

pean
,

Model �boot �boot
M1 3.9525 0.0155
M2 3.9020 0.5985
M3 3.9475 0.4259

Model �boot �boot
M2 0,04277 0.00019
M4 0.04271 0.00029
M6 0.04277 0.00028

Model �boot �boot
M30 0,0473 0.0052
M35 0.0599 0.0069
M40 0.0492 0.0049

Table 2: �boot and �boot for the three models in each example.

Figure 1: Boxplots for �boot for the three models in each example.

Model M30: 22 inputs, two hidden layers with respectively 26 and 30 hidden neu-
rons

For each model, we compute �boot(Mi) and �boot(Mi).
In this case (see lower table Tab.2 and lower figure Fig.1), the conclusion is not

evident, perhaps the model M30 seems to be the best, (its residual variance is the small-
est), but the more stable is the model M40. In that case, it is necessary to study other
architectures, more different from the 3 that we have considered.

 D-Facto public., ISBN 2-930307-00-5, pp. 61-68B
orks

,
ES tw

r 0
A Ne
u 0

N l
g 0

N ra
e 2

'2 Neu
s l

000 l
 i

 icia
(r

p tif
B p

ro Ar
e A

ce on
l

edi m
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro S
)

pean
,

5 Provisional conclusion

These examples indicate that our techniques can be used for a great variety of situations.
But, even if the first results are promising, we have now to apply them to many other
cases, and to try to prove theoretical results in order to assess our method.

References

[1] D.S. Borowiak (1990) Model discrimination for nonlinear regression models,
Marcel Dekker, New York.

[2] B. Cheng, D.M. Titterington (1994) - Neural networks : a review fom a statistical
perspective. statistical science, 9,n� 1, p 2–54.

[3] McCullagh, P. et Nelder, J. A. (1988) Generalized Linear Models, Chapman &
Hall, seconde édition, Monographs on Statistics and Applied Probability 37.

[4] Efron, B and Tibshirani R. (193) An introduction to the bootstrap, Chapman and
Hall.

[5] B. Efron (1979) The convex hull of a random set of points. Biometrika, 52, p
331–342.

[6] F. Gaudier (1998) Optimisation et réseaux de neurones pour le repositionnement
des barres de combustible nucléaire, Thèse de doctorat de l’université Paris VI,
ENS Cachan.

[7] Y. Hamamoto, S. Uchimura et S. Tomita (1997) - A bootstrap technique for Near-
est neighbor classifier design. IEEE Transactions on PAMI, 19,n� 1, p 73–79.

[8] J. Hertz, A. Krogh et R. Palmer (1991) Introduction to the theory of neural com-
putation, Addison-Wesley, Redwood City, CA.

[9] D.E. Rumelhart, G.E. Hinton, R.J. Wiliams (1986) Learning internal representa-
tions by error propagation, Parallel distributed processing, 18, Cambridge, MIT
Press.

[10] A. Zapranis, A.-P. Refenes (1999) Principles of Neural Model Identification, Se-
lection and Adequacy, Springer, London.

 D-Facto public., ISBN 2-930307-00-5, pp. 61-68B
orks

,
ES tw

r 0
A Ne
u 0

N l
g 0

N ra
e 2

'2 Neu
s l

000 l
 i

 icia
(r

p tif
B p

ro Ar
e A

ce on
l

edi m
g 28

ngs iu
i -

 - pos
u 6

 E ym
m 2

uro S
)

pean
,

