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Abstract.  In modelling the development of the oculomotor control system
using neural networks, it is important to determine the appropriate cost function
on which to train the models.  Whilst blur and disparity are fairly obvious error
components, choosing the regularization component is less easy.  In this paper
we explore the consequences of a number of the most reasonable possibilities
and investigate the extent to which other factors may dominate their influence.

1.  Introduction

The human oculomotor control system adjusts the accommodation (focusing) and
vergence (relative directions) of our eyes so that we can see objects clearly at
different distances.  It is able to generate quick and efficient transitions between
targets at different locations in the visual field.  Numerous control systems models
already provide a good account of the performance of the adult system for
unpredictable target sequences [1].  Neural network models have an advantage over
these systems in that, rather than being set up by hand to simulate adult performance,
they can be set up to learn to perform the given task as best they can [2, 3].  The
pattern of learning in the model should then correspond to the developmental changes
found in children and the fully trained network should match the adult behaviour.

In principle, the modelling process is straightforward.  The basic neural network
architecture is given by known physiology and/or the existing systems models.  We
know what the network is meant to be learning to do, namely minimizing blur and
disparity.  So we ‘simply’ need to use some form of gradient descent weight learning
to minimize an appropriate cost function, and then compare the resulting network
performance with empirical child and adult data.  In practice, the choice of cost
function is not so straightforward.  Whilst blur and disparity are fairly obvious error
components, choosing an appropriate regularization component is less easy.  This
paper considers a range of reasonable possibilities and examines their consequences.

2.  The Neural Network Model

The control systems for accommodation and vergence are very similar [1, 3, 4], so for
clarity of analysis we shall concentrate on a simplified version of the vergence system
as shown in Figure 1.  Each neuron and the plant in the model are leaky integrators
with empirically determined time constants.  They represent the action of assemblies
of real components, and activation flows between them via weighted connections.
There is a direct correspondence with the equivalent systems models [3, 4].  The first
pair of fast and slow neurons correspond to the standard phasic sub-system, the slow
tonic and bias correspond to the standard tonic sub-system, and there is a time lag of
0.15s in the feedback loop.  The systems models are linear and generally set up with
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weights SF = ST = FF = FT = FV = 1.  Assuming our neurons are to be linear over
their operating ranges allows us to conveniently normalise VS = VF = FV = TV = 1.
If our network’s free parameters SF, ST, FF, FT and BV satisfy ST.FF = SF.FT, we
have mathematical equivalence with the systems model.  The bias BV always tends to
assume a mean output value and has little effect on the discussion that follows.

As noted earlier, a crucial feature of our models is that, rather than setting their
parameters by hand so that their performance matches adult human performance, we
allow them to learn appropriate parameters to perform as best they can by carrying
out gradient descent on an appropriate cost function.  There are various maturational
factors, such as the quality of the vergence cues changing with age, that affect the
learning process [3].  Clearly, if we always minimize the cost function to the global
minimum, such details will not matter, but in practice we often end up in local
minima. In fact, one of the main reasons for formulating these models is to understand
the causes of abnormal developmental trajectories in children with view to identifying
precursors and designing remedial actions.  The aim of this paper is to determine an
appropriate cost function and explore how significant the choice of regularization is
compared with other choices which may potentially lead to different local minima.

3.  Regularization

The standard regularization approach [5] attempts to recover a function f(x) from a set
of data points {(xi , yi) ∈  Rd × R}i

N
1=    obtained by random sampling with noise.  This is

done by minimizing, e.g. by some form of gradient descent, a cost function such as

E f f y fi

i

N

i[ ] ( ( ) ) [ ]= − +
=
∑ x

1

2 λΦ

with a parameterized trade-off between a sum-squared error term keeping f close to
the data and a regularization term Φ[f] that enforces some form of smoothness.

Our problem is somewhat different, but has a similar solution.  We have a fully
dynamical system with feedback and training data parameterized by the time t.  We
require the network outputs (vergence responses) f(x(t)) to match the inputs (vergence
cues) x(t) as closely as possible given the network architecture and the constraint that
f(x(t)) must be suitably smooth despite the time lag in the feedback loop and x(t)
frequently being discontinuous.  We again have a trade-off between error and
regularization components, so we can re-use the above cost function with the
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Figure 1: Simplified neural network model of the vergence system.
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summation over i replaced by an integral over t,

E f f x t x t dt f[ ] ( ( ( )) ( ) [ ]= − +∫ )    2 λΦ .

In this paper we shall consider three natural forms of regularization functional:

  a) Φ[ ]f = 0

  b) Φ[ ]
( )

f
f t

t
dt

m

= ∫   
∂

∂

  c) Φ[ ] ( )f F dm= ∫    ω ω ω2 2       where      F f t e dti t( ) ( )ω ω= −∫     .

In practice we use discrete approximations to these integrals over finite ranges, so the
simple relation between the m = 2 case b and m = 1 case c is broken.  Case a is clearly
identical to the λ = 0 limits of cases b and c, but it is worthy of separate consideration
since it reveals the problem of output oscillations and the need for regularization in
the first place.  Case b attaches cost to the velocity of the eyes’ movement as has been
done previously [3].  Case c deals with the output oscillations more directly.  Working
with the Fourier transform F(ω) and the power |F(ω)|2 at frequency ω, allows us to
penalize the high frequency components and reduce the oscillations in that way [5, 6].
For completeness, we also consider using an alternative error term based on the L1
norm |f(x(t)) – x(t)| rather than the traditional sum-squared error.  The remainder of
this paper presents explicit simulation results that explore the consequences of these
choices as a function of the trade-off parameter λ and the extent to which their
differences are significant compared with those caused by other factors.

4.  Simulation Results

The model was repeatedly trained to asymptote on random sequences of natural
vergence values.  Figure 2a shows the model’s response to a step change of input
when trained without regularization (case a).  There is considerable overshoot and
oscillation, which is not observed in humans.  Figure 2b shows the more human-like
response produced by a typical regularized model.  We now compare the effect on
performance of the different cost functions discussed above.  To ease comparison
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Figure 2: Model responses for (a) un-regularized and (b) regularized training.
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between the models, in each case we shall plot the L1 error, both m = 1 regularization
costs, and an overshoot measure defined as the total vergence change (summed over
oscillations) in the direction opposite to the standard step producing it.  Figure 3
shows the effect of λ  on the final weights and costs for L1 error and simple velocity
regularization (case b, m = 1).  We see, as expected, a clear trade-off between error
and over-shoot as we increase λ.  Figure 4 shows the equivalent plots for the simple
Fourier transform regularization (case c, m = 1).  In this case we must suffer a much
larger error to remove the overshoot.  Figure 5 shows what happens with sum squared
error and sum squared velocity regularization (case b, m = 2).  The error required for
zero overshoot is larger again.  Finally, Figure 6 shows that no better results are
obtained for sum squared error with simple Fourier transform regularization (case c,
m = 1).  The remaining permutations and values of m perform even less well.

Taken together, Figures 3 to 6 show that, whilst an increase in trade-off parameter
λ for any cost function results in a reduction in each of the velocity cost, Fourier cost
and overshoot at the expense of increased error, there is considerable variation
between cases.  It follows that choosing a convenient cost function and showing that it
can result in responses with human-like smoothness is not sufficient to support a
claim that we have found the unique accurate model of human performance.

One common feature of the trained models in all four cases plotted is the tendency
for SF ~ FT to be several times ST ~ FF.  This is very different from the structure of
typical systems models which, we noted above, are set up with ST.FF = SF.FT.  For
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Figure 3: λ dependence of weights and costs for L1 error and velocity regularization.
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Figure 4: λ dependence of weights and costs for L1 error and Fourier regularization.
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comparison, Figure 7 shows what happens when the models of Figure 3 are trained
under this systems model constraint.  We get a radically different pattern of weights,
yet the costs and output response curves are hardly distinguishable.  Moreover, if we
remove the constraint on the weights and continue the training, we find that the
weights are stable, suggesting that we have at least two roughly equivalent local
minima considerably separated in weight space.

5.  Conclusions and Discussion

We have explored the use of different cost functions in neural network models of
oculomotor control and found that both velocity and Fourier transform regularization
give good, but slightly different, final performance.  Perhaps a more surprising result
is the discovery that our network models naturally learn a somewhat different
structure to that assumed in traditional engineering style systems models [1, 4].  The
networks’ output responses are very similar though.  This means that it is no longer so
obvious that the existing systems models should be considered a sensible starting
point for our network models simply because they already provide a good account of
human responses [3].  Rather, we should start again from known physiology, and if
our models learn different structures to the systems models, we must either find fault
with the performance of those systems models, or think more carefully about our
modelling assumptions.

The above results suggest that, as long as we use near optimal values of the
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Figure 6: λ dependence for Squared error and Fourier regularization.
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Figure 5: λ dependence for Squared error and Squared velocity regularization.
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regularization parameters λ and m, factors other than the details of the regularization
will have a more significant influence on the weights that are learnt.  We have seen
above that constraints on the weight patterns (such as might, for example, arise from
innate brain layout) have a big effect.  Further simulations suggest that allowing
different weights to have different starting values and/or different learning rates can
also result in the model ending up in different local minima.  These features, as well
as λ  and the regularization function, have presumably been fine tuned by human
evolution.  This is probably a fruitful direction to pursue for future research in this
area and neural network control systems more generally.

Finally, we have previously shown that regularization in the form of a simple
polynomial weight cost can account for the empirical pattern of response gains found
in vertical disparity adaptation [2].  It is natural to ask if the regularization functions
used in this paper to smooth the transitions between vergence responses can also
account for the vergence adaptation data.  Unfortunately, preliminary simulations
suggest that the answer is ‘no’.
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Figure 7: λ dependence for Systems Model parameterised version of Figure 3.
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