
Adaptive learning rate control for
“neural gas principal component analysis”

Wolfram Schenck, Ralph Welsch, Alexander Kaiser, Ralf Möller ∗

Computer Engineering Group — Faculty of Technology
Bielefeld University — POB 100131, D-33501 Bielefeld — Germany

wschenck(at)ti.uni-bielefeld.de

Abstract. We propose a novel algorithm for adaptive learning rate con-
trol for Gaussian mixture models of the NGPCA type. The core idea is
to introduce a unit–specific learning rate which is adjusted automatically
depending on the match between the local principal component analysis
of each unit (interpreted as Gaussian distribution) and the empirical dis-
tribution within the unit’s data partition. In contrast to fixed annealing
schemes for the learning rate, the novel algorithm is applicable to real on-
line learning. Two experimental studies are presented which demonstrate
this important property and the general performance of this algorithm.

1 Introduction

“Neural gas principal component analysis” (NGPCA) [4] belongs to the class
of Gaussian mixture models which approximate data distributions by sets of
multivariate Gaussian distributions. NGPCA is based on the vector quantization
method “neural gas” (NG) [3]; instead of simple codebook vectors, local PCA
(“principal component analysis”) (e.g., [5]) units are distributed over the training
data. Each PCA unit is adapted to its partition of the data. In this way, NGPCA
can represent curved data distributions by combining many PCA units each of
which performs local linear approximation and local dimensionality reduction.

NGPCA is an online learning method. In each training step, a data point
x is presented to the network. Afterwards, the units are ordered according to
the NG ranking scheme, and each unit’s center, eigenvectors, and eigenvalues
are adapted with a specific learning rate determined via the ranking process.
For this reason, the PCA has to be carried out with online methods like robust
recursive least squares (RRLSA) [5]. NG relies on two global parameters in
every training step, the global learning rate ε and the neighborhood range ρ.
These follow an annealing scheme and decay exponentially from initial values
εmax,ρmax to final smaller values εmin,ρmin (for the last training step Tfinal). In
this way, the training process allows first for quick adaptation and finally for
fine–tuned (but slow) learning. However, fixed annealing like this cannot cope
with non–stationary training data (for example in sensorimotor coordination
tasks in adaptive robotics) once the learning rate has dropped to small values.
This limits NGPCA (as presented in [4]) to applications with stationary data.

For this reason, we replaced the fixed annealing scheme for the learning rate
ε and the neighborhood radius ρ by an adaptive process which adjusts both ε

∗This work was supported by the German Science Foundation (DFG) under grants
MO1037/1-2 and EXC277 (Center of Excellence “Cognitive Interaction Technologies”).

213

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



and ρ depending on the match of the units to the underlying data distribution.
Moreover, the learning rate ε becomes unit–specific. In this way, never-ending
online learning becomes possible, even for non–stationary data distributions. In
the following, this adaptive process is specified. Furthermore, we present the
results from tests on synthetic data distributions and real world robotic data.

2 NGPCA algorithm

The training data for an NGPCA model consists of vectors xt ∈ X ⊂ IRn. The
model itself is composed from N local PCA units each of which is defined by a
tupel {ci,Wi,Λi, λ

∗
i }, with i = 1, . . . , N . Wi contains the estimated eigenvec-

tors in the m principal directions, Λi is a diagonal matrix with the corresponding
eigenvalues λi,j (j = 1, . . . ,m). λ∗

i is the estimated residual variance for each
of the n − m minor directions. The codebook vector ci ∈ IRn finally defines the
center of the PCA unit.

In each training step t, one vector xt from the training set is drawn at
random (in the following, the index t is omitted). For every unit, the volume–
normalized1 Mahalanobis distance di (incl. the reconstruction error) is deter-
mined (see Eqn. (3.10) in [2]), yielding the vector d of all distances di(x). A
rank ri(d) = 0, ..., N−1 is assigned to each unit: A rank of 0 indicates the closest
and a rank of N − 1 the largest distance to the vector x. After the ranking, an
effective learning rate αi is computed for each unit:

αi = ε · hρ(ri(d)) (1)
This effective learning rate is used for the adaptation of all elements of the
tupel {ci,Wi,Λi, λ

∗
i }.2 The function hρ(r) = exp (−r/ρ) ensures that not only

the best–matching unit is updated, but every unit with a factor exponentially
decreasing with its rank. The neighborhood range ρ and the global learning rate
ε in training step t are determined by an annealing process as described before.

3 Adaptive learning rate control

Our algorithm for adaptive learning rate control is intended to replace the fixed
annealing scheme for the neighborhood range ρ and the global learning rate ε.
Instead, each unit i gets its own specific learning rate εi which changes during the
course of training. This learning rate should be large if the unit is badly adapted
to its partition of the training data, and small otherwise. For this reason, each
local PCA unit is matched with the empirical distribution of data vectors {x}
assigned to it. First, for a given x the principal components y are computed:
y = WT (x−ci). It is assumed that ideally — for a perfectly adapted local PCA
unit — the principal components yj (j = 1, . . . ,m) are themselves drawn from
one–dimensional Gaussian distributions with variances λi,j .

Given this assumption, a function g(yj) = exp
(−y2

j / (2λi,j)
)

is specified to
determine the adaptation quality of the PCA unit separately for each principal

1Volume–normalized means here that all units are treated for the computation of the dis-
tance values as if they had the same elliptical volume.

2The centers are updated as specified in NG [3], the local PCAs with RRLSA [5].

214

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



x

y

z

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

t = 20000
N = 18

(a)

x

y

z

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

t = 20100
N = 18

(b)

x

y

z

0

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

t = 40000
N = 18

(c)

x

y

z

0

1

2

3
4

5

6

7 8
9

10

11

12

13

14

15

16
17

t = 40000
N = 18

(d)

Fig. 1: Course of adaptation: (a) UDM–NGPCA after 20000 training steps on
the RLS distribution (composed from the gray data points; the PCA units of the
model are depicted as ellipsoids with axis half–lengths

√
λi,j); (b) at step 20100,

now on the vortex distribution; (c) after 40000 training steps; (d) for comparison:
classical NGPCA after 40000 training steps, the first 20000 of them on the RLS
distribution, the last 20000 on the vortex.

direction j. It was shown in [7] that the expectations of g(yj) amount to 1/
√

2 for
all principal directions of a perfectly adapted unit, thus the deviations from this
value indicate the adaptation quality. In our implementation, the expectations
of g(yj) are computed with a low–pass filter and stored in a state vector bi of size
m for each unit i. Each element bi,j is updated by bi,j ←− (1−βi) bi,j +βi g(yj)
in every training step. The low–pass parameter βi depends on the rank of the
unit to reflect the soft assignment of data vectors to units: βi = μhρ(ri(d)).
The parameter μ was set to 0.01 in all studies of this paper. Finally, an overall
matching parameter Di is computed for each unit based on the squared differ-
ences between the bi,j values and 1/

√
2: Di = (2/m)

∑m
j=1

(
bi,j − (1/

√
2)

)2
.

Di varies between 0 (perfect match) and 1 (strong mismatch, bi = 0).3 Fi-
nally, the unit–specific learning rate εi is determined by

εi = (εmax − εmin)
√

Di + εmin

3One has to note that all local data distributions with the appropriate projections will lead
to a Di value of zero, thus this measure is not unique and works only in conjunction with
learning rules which align the principal directions to the data (as PCA naturally does).

215

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250  300  350  400

Le
ar

ni
ng

 r
at

e

Training steps [x100]

Time Course of the Learning Rate

Unit
2
4
7

10

Fig. 2: Learning rate εi for four selected units (for details see text).

and the overall neighborhood range ρ by

ρ = (ρmax − ρmin)
√

(1/N)
∑N

i=1 Di + ρmin.

εi replaces ε in (1), otherwise the basic NGPCA training algorithm stays un-
changed. The important modification is that the fixed annealing scheme for
ε and ρ is replaced in this way by an adaptive solution based on “unit–data
matching” (this variation of NGPCA is called UDM in the following).

In addition, a wake–up heuristic has been incorporated by which the vector
bi is set to zero (which implies a strong increase of εi) whenever a unit i has
not been the winner of the ranking process for a certain number of training
steps. Throughout the studies in this paper, this number always amounts to 25
multiplied with N . This wake–up heuristic is necessary to speed up the training
process whenever the distribution of the training data is abruptly changed.

4 Experimental studies and results

4.1 Study 1: Non–stationary low–dimensional data

In this experiment, a UDM model4 with N = 18 units was first trained on a two–
dimensional synthetic data distribution (“ring–line–square”/RLS, see Fig. 1a)
for 20000 training steps (m = n = 2). After this period, the UDM model ap-
proximated the RLS distribution very well. At step 20001, the data distribution
was completely changed to a distribution with vortex shape and smaller range
in x-direction. In this way, the fit of the model to the data became suddenly
very bad, and the local PCA units started to move and to change their shape
(see Fig. 1b for step 20100). Training on the vortex continued until step 40000.
Fig. 1c shows that finally the UDM model arrived again at a very good fit with
the (changed) data distribution. For comparison, a classical NGPCA model
(termed CLASSIC in the following) was trained with the same parameters (for
an annealing period of Tfinal = 40000). The final result is depicted in Fig. 1d.
Although the change of the data distribution took place in the middle of the

4Parameters: εmax = 1.0, εmin = 0.01, ρmax = 1.5, ρmin = 0.02 .

216

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



Table 1: Grasping error Egrasp, average results (std. dev. in brackets)
N = 50 N = 100

m = 3 m = 5 m = 9 m = 3 m = 5 m = 9

CLASSIC 1.7 (0.28) 2.1 (0.47) 6.9 (1.7) 1.3 (0.14) 1.5 (0.19) 4.0 (0.98)

UDM 2.0 (0.34) 2.0 (0.45) 6.6 (2.2) 1.3 (0.14) 1.7 (0.21) 4.0 (0.93)

Table 2: Grasping error Egrasp, best results (std. dev. in brackets)
CLASSIC 1.3 (0.06) 1.2 (0.11) 1.9 (0.28) 0.96 (0.06) 1.0 (0.05) 1.4 (0.18)

UDM 1.4 (0.09) 1.3 (0.08) 2.2 (0.33) 0.93 (0.05) 1.0 (0.16) 1.7 (0.15)

annealing process, the CLASSIC model did not manage to rearrange its units
for a good match with the vortex distribution. These courses of training are
typical and can be easily reproduced. They illustrate that UDM is far superior
to CLASSIC when abrupt changes of the training data distribution occur.

Fig. 2 shows the time course of the learning rates εi for four selected units
of the UDM model for the training on the RLS/vortex distributions. After 5000
training steps on the RLS distribution, the learning rates settled down at a low
level. Soon after the change to the vortex distribution at step 20000, the learning
rates started to oscillate around large values for 7000 steps until all units had
approached the vortex distribution. Finally, the learning rates converged again
to small values. Thus, the adaptive learning rate control worked as intended.

4.2 Study 2: Stationary medium–dimensional data

In the second experiment, we tested if UDM models reach the same approxima-
tion quality as CLASSIC models. For this purpose, we used a stationary data
set from a real–world robotic application. This data set contains around 3200
learning examples5 for a kinematic control task: A robot arm with six rotational
joints has to grasp a block which has been fixated before by a camera head. Each
data vector has n = 68 dimensions, 20 of which encode the input (position and
orientation of the block) and 48 of which the output (a pre–grasping and a
grasping posture for the robot arm) (for a detailed specification see [6]).

We varied the number of principal components (m = 3, 5, or 9) and the
number of units (N = 50 or 100). For each of these task conditions, we tested
81 different combinations of the maximum and minimum ε and ρ values6 and
trained 10 models for each of these combinations. After model adaptation, we
determined the resulting grasping error Egrasp of the model when used as kine-
matic controller in the robotic task (see [2] on how to use an NGPCA model
as feedforward controller). The grasping error is a weighted sum of different
translational and rotational deviations from the ideal grasping posture; lower
values are better; values around 1.0 indicate a very good performance.

Table 1 reports the average results over all parameter combinations, Table 2
the respective best result obtained among all the combinations. Both methods

585% training data, 15% test data for the generation of the presented results.
6εmax = 1.0/0.7/0.4, εmin = 0.07/0.04/0.01, ρmax = 2.0/1.0/0.5, ρmin =

0.05/0.03/0.01, Tfinal = 30000 .

217

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



excel for 100 units with 3 principal components (3 is also the intrinsic local
dimensionality of the arm data distribution). Overall, UDM and CLASSIC show
a similar grasping performance with regard to the average values (sometimes
UDM is fractionally better, sometimes CLASSIC). This picture changes slightly
in favor of CLASSIC with regard to the optimum achievable results in Table
2. CLASSIC outperforms UDM in nearly all task conditions by a very small
margin; however, UDM manages to achieve the overall lowest grasping error
(0.93) and thus might be superior to CLASSIC if the right training parameter
combination (incl. N and m) is selected.

5 Conclusions

We proposed a novel algorithm for adaptive learning rate control which replaces
the fixed annealing scheme of NG. It was applied to Gaussian mixture models of
the NGPCA type. Its core idea is to introduce a unit–specific learning rate which
is adjusted automatically depending on the match between the local PCA of each
unit (interpreted as Gaussian distribution) and the empirical distribution of the
training data vectors assigned to the unit. In addition, the global neighborhood
range is adjusted in a similar way considering the total match of all units.

In contrast to classical NGPCA with its fixed annealing scheme, the novel
algorithm (called UDM) is applicable to non–stationary data distributions. This
was shown for synthetic data distributions which abruptly changed their shape.
Furthermore, UDM performed overall as well as classical NGPCA on stationary
real–world robotic data. A related algorithm is the PLSOM approach originally
developed for self–organizing maps [1] which we adapted to NGPCA in a previous
study [7]. However, the results in [7] show that the UDM approach is overall
superior to our PLSOM adaptation.

In conclusion, these results suggest that the proposed algorithm can be suc-
cessfully applied to a broad variety of data approximation tasks which require
real online learning on non–stationary data distributions.

References

[1] E. Berglund and J. Sitte. The parameter–less self–organizing map algorithm. IEEE
Transactions on Neural Networks, 17(2):305–316, 2008.

[2] H. Hoffmann. Unsupervised Learning of Visuomotor Associations. MPI Series in Biolog-
ical Cybernetics. Logos Verlag, Berlin, 2004.

[3] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. “Neural-Gas” network for vector
quantization and its application to time–series prediction. IEEE Transactions on Neural
Networks, 4(4):558–569, July 1993.

[4] R. Möller and H. Hoffmann. An extension of neural gas to local PCA. Neurocomputing,
62(1):305–326, 2004.

[5] S. Ouyang, Z. Bao, and G.-S. Liao. Robust recursive least squares learning algorithm for
principal component analysis. IEEE Trans. on Neur. Netw., 11(1):215–221, 2000.

[6] W. Schenck, H. Hoffmann, and R. Möller. Grasping to extrafoveal targets: A robotic
model. New Ideas in Psychology, 2009 (online).

[7] R. Welsch. Adaptive Lernratensteuerung für Neural Gas Principal Component Analysis.
B.Sc. thesis, Comp. Eng. Group, Faculty of Technology, Bielefeld University, 2009.

218

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.




