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Abstract. A variational Bayesian formulation for a manifold-constrained
Hidden Markov Model is used in this paper to segment a set of multivari-
ate time series of electromyographic recordings corresponding to stroke
patients and control subjects. An index of variability associated to this
model is defined and applied to the robust detection of the silent period
interval of the signal. The accuracy in the estimation of the duration of
this interval is paramount to assess the rehabilitation of stroke patients.

1 Introduction

The Transcranial Magnetic Stimulation (TMS) of the cerebral motor cortex can
evoke waves in the electromyographic (EMG) recording of muscle activity. Cor-
tical stimulation can elicit excitatory as well as inhibitory effects. One of the
latter is called the cortical silent period (CSP). When TMS is delivered over the
motor cortex while the subjects maintain voluntary muscle contraction, the CSP
is a pause in ongoing EMG activities that follows the motor-evoked potential.
The duration of the CSP is an important parameter to gauge the recovery
of stroke patients and to provide them with a prognosis. It is known [1] that
the shortening of the SP in the affected side is related to an increase of its
excitability, indicating an improvement of the motor function of the patients.
The measurement of the CSP is sometimes troublesome due to the nature of the
signal. The existing measurement methods are yet imprecise and are known to
yield a significant error due to the sensitivity to noise of this kind of data [2].
The main purpose of this study is to provide an accurate technique for CSP
estimation based on a multivariate time series (MTS) segmentation process that
behaves robustly in the presence of noise. For this, we resort to a manifold-
constrained Hidden Markov Model (HMM). The formulation of this model within
a variational Bayesian framework imbues it with regularization properties that
minimize the negative effect of the presence of noise in the EMG MTS. A novel
index of variability (IV') is defined for this model. It is capable of providing reli-
able estimates of the CSP duration by pinpointing its offset time with precision.
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2 EMG recordings from stroke patients and controls

Motor disabilities caused by stroke have been the target of several recently de-
veloped therapies shown to be more effective than standard physiotherapeutic
approaches [3]. Several basic neuroscience studies have shown that music train-
ing produces rapid changes in motor-related brain areas ([4],[5]). In Musical-
Supported Therapy (MST), musical instruments are used to train motor func-
tions in patients suffering from mild to moderate paresis after stroke.

For the current study, several chronic stroke patients were involved in MST
therapy, in order to provide the first evidence, in the form of TMS-induced EMG
recordings, of the possible neuroplastic changes induced by it.

Motor-evoked potentials were obtained from the first dorsal interosseus (FDI)
muscle of the hand contralateral to the stimulated hemisphere. Both hemispheres
were tested. CSP was registered for all subjects. Stimulation of the motor
cortex in both hemispheres with contralateral voluntary FDI muscle activation,
controlled with a pression gauge, was performed. EMG data corresponding to a
total of 15 pulse stimulations were recorded for each subject (including several
control subjects). The signal was windowed from 125 ms prior to stimulus onset
to different durations. The recordings result in 15 time series for each subject.

3 Variational Bayesian Generative Topographic Mapping
Through Time

When defined within the Statistical Machine Learning framework, manifold
learning models can be made to rely in sound principles, while embodying at-
tractive properties such as data visualization, adaptive parameter optimization
and ease of extensibility. Generative Topographic Mapping Through Time, or
GTM-TT [7], is one such technique, defined as a manifold-constrained HMM. Tt
is capable of providing simultaneous clustering of MTS and their visualization
in low-dimensional representation spaces. GTM-TT was recently assessed in [6].

The presence of uninformative noise in the analyzed data and the associated
problem of overfitting can seriously hamper the modeling of MTS. In its basic
formulation, GTM-TT is prone to overfitting unless active regularization meth-
ods are applied. The reformulation of this model within a Bayesian framework
confers it with regularization capabilities in a natural way by penalizing over-
complex models through the use of appropriate priors. The implementation of
this Bayesian reformulation using variational techniques results in the Varia-
tional Bayesian GTM-TT (VB-GTM-TT), which has previously been shown to
deal effectively with the problem of overfitting [8].

Avoiding a direct Maximum Likelihood approach, variational inference de-
fines a lower bound for the marginal log-likelihood of the model, as

np(X) =1 [ 3 p(2.X/0)p(0) dO (1)

all Z
where X are the MTS data; Z are the hidden states defined by the model; and
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© are the model parameters, including a matrix with the centroids or prototypes
embedded in the model manifold Y, initial state probabilities 7, and transition
probabilities A. These parameters depend, in turn, on a set of hyperparameters
v, X, €, o, dg, sg. The complete model is graphically illustrated by Fig. 1.
Details on model optimization and parameters estimation can be found in [8].

Fig. 1: Graphical representation of the Bayesian GTM-TT. Variables are noted
by circles, parameters, by squares, and hyperparameters, by rounded squares.

3.1 Index of Variability

GTM-TT can facilitate the identification and visualization of change-points and
sudden transitions in MTS [6]. Change-points, in the low-dimensional visual
data representation provided by the model, correspond to sudden jumps between
usually distant model states. Instead, subsequences of little variability over time
will often clump in few model states or even remain in a single one over time.
Beyond the MTS exploratory visualization that GTM-TT can provide, we need
a well-defined measure of MTS variation to allow us to identify and quantify
change-points. In GTM-TT, we expect sudden transitions to be accompanied
by sudden increases of the model likelihood [6], so that the weighted mean of
the emission probabilities in logarithmic form can be used as an Index of Vari-
ability (IV): IV, = =", ri.nInp (X,|2zn, = k), where 7, is the responsibility
(a posterior probability) taken by a hidden state z,, = k out of K for each point
T, in the MTS.

Unfortunately, this measure is prone to be affected by the presence of noise
and, therefore, it will not reflect the advantages of the data regularization pro-
vided by VB-GTM-TT. For this reason, a novel IV measure is proposed here,
namely the weighted-prototype IV (wpIV'), which is defined as

wplVy, = [|Q™ — QU™ || (2)
where || - || is the Euclidean distance and Q'¢%" = 22{:1(2’1@,71)}%- Here, the

variational parameter (z,) plays the same role as ry , plays for the standard
GTM-TT, and vector yg; £ = 1... K is the data prototype of state k in data
space. Eq. 2 is nothing but the weighted distance between the data prototypes
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representing two consecutive instants in the MTS, where each prototype can take
at least partial responsibility for the representation of each instant of the MTS.
The same distance measured between the observed data of the two consecutive
instants would be of little use as any relevant information would be masked
by noise. By measuring the distance using the model generated prototypes we
ensure that, provided the model manages to faithfully recover the underlying
structure of the MTS (and VB-GTM-TT does this by avoiding overfitting while
the standard GTM-TT cannot), the true change-points will be clearly detected.
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Fig. 2: wplV for the artificial data at three noise levels: 0.01 (top row), 0.05
(middle) and 0.1 (bottom). Data represented on the left column; the center
column shows results for GTM-TT and the rightmost one, for VB-GTM-TT.

4 Experiments and discussion

The first set of experiments is meant to show the adequacy and usefulness of the
wplV defined in section 3.1. For that, we model a simple artificial set of MTS
using both the standard GTM-TT and the VB-GTM-TT defined in section 3.
This basic dataset consists of 3 time series built as a piecewise combination of
step-like functions concatenating four periods of constant signal through three
sudden transition change-points. The signal is contaminated with increasing
levels of uninformative Gaussian noise (Three levels with standard deviations:
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0.01, 0.05 and 0.1; see Fig. 2, left column).

The wplV for both models and for the three noise levels is depicted in Fig.
2 (center and right columns). At the lowest noise level (top row), the wpIV
corresponding to both models captures both the transitions and the periods of
noise-related variability. At higher levels of noise, though, only the VB-GTM-TT
(rightmost column) is able to keep faithfully modelling both of them. The wpIV
for the standard GTM-TT (center column), instead, clearly reveals that the
model is overfitting the data, rendering the index useless for MTS segmentation
through change-point detection.

wpiv,,

wpiv,

Fig. 3: Left) The 15 EMG time series for two control subjects. Dashed lines
delimit the CSP durations of 164ms (top) and 279ms (bottom), estimated using
the wpIV. Middle) wpIV for these subjects. Right) Visualization of the MTS
in the VB-GTM-TT map. Squares represent model states and their size is an
indication of the number of time points (as a ratio) assigned to each state. Such
assignment takes the form of a mode-projection according to the expression
hmode = argmax(zy ). States filled in black correspond to the CSP.
k

We are now in the position to turn our attention to the EMG data described
in section 2 and the estimation of the CSP duration. We first provide illustrative
results for two control subjects. Fig. 3 (left) shows the complete EMG of these
subjects. The corresponding estimation of the wpIV and the MTS data visu-
alization for VB-GTM-TT are shown in Fig. 3 (center and right, respectively).
The wplV provides a completely clean-cut delimitation of the CSP that allows
the unambiguous estimation of its duration. The visualization in the right-hand
side plot shows that the CSP is described almost in full by separate states.

The results for a stroke rehabilitation patient, displayed in Fig. 4, are con-
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sistent with those obtained for the controls. Even in the presence of some rather
noisy series, the CSP is neatly captured by the wpIV. As expected, rehabili-
tation shortens the CSP duration. This result encourages further research in a
wider database of rehabilitation patients.
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Fig. 4: Stroke rehabilitation patient. Top) Before rehabilitation; bottom) after
rehabilitation. Representation as in the previous figure.
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