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Abstract. This paper introduces a software tool SYM-LS-SVM-SOLVER
written in Maple to derive the dual system and the dual model represen-
tation of LS-SVM based models, symbolically. SYM-LS-SVM-SOLVER
constructs the Lagrangian from the given objective function and list of
constraints. Afterwards it obtains the KKT (Karush-Kuhn-Tucker) opti-
mality conditions and finally formulates a linear system in terms of the
dual variables. The effectiveness of the developed solver is illustrated by
applying it to a variety of problems involving LS-SVM based models.

1 Introduction

Support Vector Machines (SVMs) is a powerful methodology for solving pattern
recognition and function estimation problems [1, 2]. In this method one maps
the data into a high dimensional feature space and then constructs an optimal
separating hyperplane in this space. It leads to solving quadratic programming
problems [3]. Least squares support vector machines (LS-SVMs) on the other
hand have been given by [4] for function estimation, classification, problems
in unsupervised learning and others [5]. In this case, the problem formulation
involves equality instead of inequality constraints.

LS-SVM core models are formulated in the primal in terms of high-dimensional
feature maps, equality constraints and an L2 loss function. In most cases, solv-
ing the primal problem directly is not possible due to the high dimensionality
of the variables involved in the optimization problem. Through the constrained
optimization framework, it is possible to obtain a dual system where the prob-
lem is recast in terms of kernel evaluations (the so-called kernel trick) and which
grows with the number of data points [4]. Building the dual is a systematic pro-
cess: first write the Lagrangian, then obtain the Karush-Kuhn-Tucker (KKT)
optimality conditions and finally wrap up and formulate a system in terms of
the dual variables that fulfills all KKT conditions. Fig. 1 shows an illustration
of building models based upon LS-SVM core models; as outlined in [5].

2 Development of Symbolic Solver

In order to be able to work with a symbolic solver for LS-SVM model, at first
the model should be transformed to the symbolic expressions i.e. in the matrix
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Fig. 1: Illustration of advanced LS-SVM models.

or vector notation. It should be noted that this stage is done by the user before
utilizing the symbolic solver. An example is provided to clarify this procedure.

Let us consider a given training set {xi, yi}N
i=1 with input data xi ∈ Rd and

output data yi ∈ {−1, 1}. The LS-SVM model for classification [5], can be
rewritten in a matrix form as follows

minimize
w,b,e

1

2
wT w +

γ

2
eT e

subject to Y

[
Φw + b1N

]
= 1N − e

(1)

where γ ∈ R+, b ∈ R, e ∈ RN , w ∈ Rh, Y = diag(y1, y2, . . . , yN ) ∈ RN×N ,
1N ∈ RN , Φ ∈ RN×h with

Φ =
[
φ(x1) · · ·φ(xN )

]T
,

φ(·) : Rd −→ Rh is the feature map and h is the dimension of the feature space.
The approach on which the LS-SVM solver is based can be summarized as

follows: (1) constructing the Lagrangian, (2) taking derivatives of the Lagrangian
with respect to the primal and dual variables and setting them equal to zero,
(3) elimination of primal variables (or part of it), (4) expressing the solution in
terms of the Lagrange multipliers, (5) obtaining the dual representation of the
model. The Maplet of the code is designed, (see Fig. 2), containing windows,
textbox regions and other visual interfaces, which gives the user point-and-click
access. It is an alternative to the worksheet. Users can perform the SYM-LS-
SVM-SOLVER Package without having to get involved in the Maple syntax.

3 SYM-LS-SVM-SOLVER Package

A specific module, denoted by SYM LS SVM SOLVER, is designed for the sym-
bolic solver for LS-SVMs. This module is composed of four main procedures
denoted by Pro Lag, Pro KKT, Pro Dual system and Pro Dual Model.

> print(SYM LS SVM SOLVER);

module()
export Pro Lag, Pro KKT, Pro Dual System, Pro Dual Model;
end module
More details of these procedures are discussed in the following subsections.
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Fig. 2: The GUI for SYM-LS-SVM-SOLVER

3.1 Procedure Pro-Lag

The aim of this procedure is to form the Lagrangian from a given primal problem.
The arguments of the Pro Lag procedure are thus the objective function, list of
constraints and Lagrange multipliers, respectively. It should be noticed that
in our code the vectors are considered as a special case of matrices. Also the
possibility that the users can define the type of the matrix is provided.

Example 1. Consider the LS-SVM model (1). One initially reads the pack-
age into memory using the ‘with’ command. A second task is to utilize the
‘assume’ command to specify the matrix variables. If the variable has addi-
tional properties such as being symmetric or positive definite, the additionally
function can be used which adds additional assumptions without removing pre-
vious assumptions.

> with(SYM LS SVM SOLVER);
> assume(w::Matrix,e::Matrix,Phi::Matrix,
> N1::Matrix,alpha::Matrix,Y::Matrix),additionally(Y::symmetric);
> L[1]:=Pro_Lag(0.5*w^T.w+0.5*gamma*(e^T.e),
> [Y.Phi.w+b*(Y.N1)=N1-e],[alpha]);

L1 = 0.5wT w + 0.5 γeT e − αT · Y · Φ · w − bαT · Y · N1 + αT · N1 − αT · e
Note that N1 is a vector of all ones and equals 1N .

Example 2. Consider the following problem,

minimize
w,b,e,Ŷ

1

2
wT w + γeT e + η(Ŷ − Y ∗)T (Ŷ − Y ∗)

subject to Y − Ŷ = e

Ŷ = Φw + b1N

(2)
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> assume(e::Matrix,w::Matrix,
> Y::Matrix,Yhat::Matrix,alpha[1]::Matrix,alpha[2]::Matrix,
> Phi::Matrix,N1::Matrix, Ystr::Matrix);
> L[2]:=Pro_Lag(0.5*(w^T.w)+gamma*(e^T.e)+eta*((Yhat-Ystr)^T.
> (Yhat-Ystr)),[Y-Yhat-e,Yhat-Phi[1].w-b*N1],[alpha[1],alpha[2]]);

L2 =
1
2
wT w + γ eT e + η (Yhat −Ystr)T · (Yhat −Ystr) + α1

T · Y−
α1

T ·Yhat − α1
T · e + α2

T ·Yhat − α2
T · Φ · w − bα2

T ·N1

Example 3. As another example, we consider the data visualization
model, see ([6]),

> with(SYM LS SVM SOLVER);
> assume(z::Matrix,N1::Matrix,P[D]::Matrix);
> dims:=2;
> for k from 1 to dims do
> assume(w[k]::Matrix,e[k]::Matrix,Phi[k]::Matrix,v[k]::Matrix,
> alpha[k]::Matrix,C[k]::Matrix,M[k]::Matrix,Omega[k]::Matrix,
> beta[1,k]::Matrix,e[1,k]::Matrix); end do;
> L[3]:=Pro_Lag(-0.5*gamma*z^T.z+0.5*(z-P[D].z)^T.(z-P[D].z)+
> (gamma/2)*(sum(w[j]^T.w[j],j=1..dims))+0.5*eta*(sum(e[j]^T.e[j],
> j=1..dims)),[seq(v[j]^T.z-Phi[j].w[j]-b[j]*N1=e[j],j=1..dims),
> seq(C[j]^T.z=q[j]+e[1,j],j=1..dims)],
> [seq(alpha[j],j=1..dims),seq(beta[1,j],j=1..dims)]);

L3 = −0.5 γ zT z + 0.5 (z − PD · z)T · (z − PD · z) + 0.5 γ
(
w1

T w1 + w2
T w2

)
+

0.5 η
(
e1

T e1 + e2
T e2

)
+ α1

T · v1
T · z − α1

T · Φ1 · w1 − b1α1
T ·N1−

α1
T · e1 + α2

T · v2
T · z − α2

T · Φ2 · w2 − b2α2
T ·N1 − α2

T · e2 + β1,1
T · C1

T

· z − β1,1
T · q1 − β1,1

T · e1,1 + β1,2
T · C2

T · z − β1,2
T · q2 − β1,2

T · e1,2

3.2 Procedure Pro-KKT

After obtaining the Lagrangian, the task is to take derivatives of this function
with respect to the primal variables and Lagrange multipliers. In our code,
Procedure Pro-KKT sets the derivatives of the Lagrangian to zero which leads
to the system of linear equations.

The built-in differentiator in Maple (i.e diff command) is not able to handle
the derivative with respect to a vector or matrix (of known dimension, but
unknown values). Therefore a special procedure so called Pro DIFF is designed
to do differential operations on generalized matrices symbolically, under the
framework of LS-SVMs. Pro DIFF has two parameters, the algebraic expression
that has to be differentiated and differentiation variable respectively.

Most cases encountered when solving LS-SVMs are as follows,

∂XT A

∂X
=

∂AT X

∂X
= A,

∂AT XB

∂X
= ABT ,

∂XT X

∂X
= 2X,

∂XT AX

∂X
= (A + AT )X

Where A, B, X are symbols for matrices. For more details we refer to [7].
Having the Lagrangian function available from the Pro Lag, we can call the
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function Pro KKT to generate the KKT optimality conditions. The parameters
of Pro KKT are thus the Lagrangian, list of differentiation variables and number
of w vectors (the dimension of the problem) respectively. In order to illustrate
the procedure we apply it to the example 2 and 3 of section 3.1, thus the KKT
optimality conditions are as follows,

For example 2,
> Pro_KKT(L[2],[w,e,alpha[1],alpha[2],Yhat,b],1);

∂L2

∂w
= 2 w − ΦT · α2 = 0,

∂L2

∂e
= 2 γ e− α1 = 0,

∂L2

∂α[1]
= Y −Yhat − e = 0,

∂L2

∂α[2]
= Yhat − Φ · w − bN1 = 0,

∂L2

∂Ŷ
= 2 η Yhat − 2 η Ystr − α1 + α2 = 0,

∂L2

∂b
= −N1T · α2 = 0.

For example 3,
> Pro_KKT(L[3],[seq(w[i],i=1..dims),seq(e[i],i=1..dims),
> seq(e[1,i],i=1..dims),seq(alpha[i],i=1..dims),
> seq(beta[1,i],i=1..dims),seq(b[i],i=1..dims),z],2);

∂L3

∂w1
= γ w1 − Φ1

T · α1 = 0,
∂L3

∂w2
= γ w2 − Φ2

T · α2 = 0,
∂L3

∂e1
= 1.0 η e1 − α1 = 0,

∂L3

∂e2
= 1.0 η e2 − α2 = 0,

∂L3

∂e1,1
= −β1,1 + 1.0 η e1,1 = 0

∂L3

∂e1,2
= −β1,2 + 1.0 η e1,2 = 0,

∂L3

∂α1
= v1

T · z − Φ1 · w1 − b1N1 − e1 = 0,
∂L3

∂α2
= v2

T · z − Φ2 · w2 − b2N1 − e2 = 0,

∂L3

∂β1,1
= C1

T · z − q1 − e1,1 = 0,
∂L3

∂β1,2
= C2

T · z − q2 − e1,2 = 0,
∂L3

∂b1
= −N1T · α1 = 0,

∂L3

∂z
= −1.0 γ z + 1.0 (I − PD)T · (I − PD) · z + v1 · α1 + v2 · α2 + C1 · β1,1+

C2 · β1,2 = 0,
∂L3

∂b2
= −N1T · α2 = 0.

3.3 Procedure Pro-Dual System

The procedure Pro-Dual System, as its name suggests, will produce the corre-
sponding dual system for the given primal problem. The remaining variables are
defined by the user. Pro-Dual System has four parameters, Lagrangian, differ-
entiation variables, remaining variables and number of w vectors, respectively.
In what follows, we illustrate this procedure by applying it to the example 2 of
section 3.1.

For example 2, we have
> Pro_Dualsystem(L[2],[w,e,alpha[1],alpha[2],Yhat,b],[alpha[2],b],1);

G1 ·
[

α2

b

]
=

[
2 Y γ + 2 η Ystr

0

]
,

‘where G1‘ =

[ −γ Ω · IN − IN − η Ω · IN 2 γ INN1 + 2 η INN1

N1T · IN 0

]
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where Ω=ΦΦT denotes the N ×N kernel matrix.

3.4 Procedure Pro Dual Model

The last procedure denoted by Pro Dual Model, constructs the dual model rep-
resentation. The input of this procedure is just the primal model provided by
the user. Implementing this procedure for the examples 2 and 3 of section 3.1
will result in the following model expressions.

For example 2,
> Pro_DualModel(Phi.w+b*N1);

1

2
ΦΦT · α2 + bN1

For example 3,
> Pro_DualModel([Phi[1].w[1]+b[1]*N1,Phi[2].w[2]+b[2]*N1]);

Φ1Φ1
T · (M1

−1 · v1
T · z −M1

−1 · b1N1)

γ
+b1N1 ,

Φ2Φ2
T · (M2

−1 · v2
T · z −M2

−1 · b2N1)

γ
+b2N1

where
M1 = Φ1Φ1

T +
I

η
, M2 = Φ2Φ2

T +
I

η
.

4 Conclusion and future work

A symbolic solver written in Maple is developed for LS-SVM models. The Maplet
of our code is also provided as an alternative to the worksheet. The application
of the solver is illustrated on three examples. Currently the LS-SVM models
that can be handled in our symbolic solver include equality constraints only.
Dealing with additional inequality constraints is a further challenge for future
work.
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