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Abstract. It seems obvious that the massively parallel computations inherent in 

artificial neural networks (ANNs) can only be realized by massively parallel 

hardware. However, the vast majority of the many ANN applications simulate their 

ANNs on sequential computers which, in turn, are not resource-efficient. The 

increasing availability of parallel standard hardware such as FPGAs, graphics 

processors, and multi-core processors offers new scopes and challenges in respect 

to resource-efficiency and real-time applications of ANNs. Within this paper we 

will discuss some key issues for parallel ANN implementation on these standard 

devices compared to special purpose ANN implementations.  

1 Introduction 

The implementation of artificial neural networks (ANNs) was mainly technology 

driven in the past. In the 1960s the transistor replaced the electronic tube and small 

discrete electronic components came up on the market. Researchers like Karl 

Steinbuch [1] in Germany or Bernard Widrow [2] in the United States used these 

devices in their construction of electronic ANN implementations with a low number 

of neurons. Computers for simulating ANNs were not widely available at that time; 

hence building ANNs out of electronic components was a first approach to study 

functional principles and dynamics of small artificial neuron groups. 

 Realizing ANNs with discrete electronic devices was tedious and error 

prone. Furthermore, it was expensive and space consuming to scale up the size of the 

ANN. Hence, with the increasing availability of computers and especially personal 

computers (PCs) software simulations of ANNs were the better choice. Software 

simulations offer a high flexibility but do not exploit the spatio-temporal parallelism 

that is inherent in biological neural networks. Hence, especially for larger ANNs with 

hundreds of neurons the simulation time was quite long in the early days of PCs. 

Furthermore, real-time processing in practical applications was not feasible at all. 

 In the late 1980s, the revolutionary progress of microelectronics had reached 

feature sizes of one micrometer (Figure 1) and became the driving force behind the 

constant development of new technical products that have markedly improved 

functionality and higher performance, yet at a lower cost. By this time, Moore´s law 

gathered momentum, the first independent fabless companies were launched, and the 

computer-aided design (CAD) automation industry was born. An affordable way to 

personalized integrated circuit implementations was established even for small design 
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teams from industry as well as from academia. These new and fascinating 

opportunities motivated intensive efforts to develop ANN chips and neurocomputers 

for parallel ANN implementation [3,4]. The European conference on 

“Microelectronics for Neural Networks” (MicroNeuro [5]) emerged as the only 

international forum specifically devoted to all aspects of implementing ANNs in 

hardware (1990 Dortmund, Germany; 1991 Munich, Germany; 1993 Edinburgh, 

Scotland; 1994 Torino, Italy; 1996 Lausanne, Switzerland; 1997 Dresden, Germany; 

1999 Granada, Spain). Even hardware products appeared on the market - from both 

small businesses and large companies. All these impressive approaches had a real 

problem trying to keep up with the effects of Moore’s law coming into full swing, as 

microprocessors, digital signal processors, and field-programmable gate-arrays 

(FPGAs) all grew faster and faster. The fabless design teams had only access to 

technologies one generation or two behind the semiconductor companies, who also 

could afford mass production pricing.  

 Since 2005, the performance increase of microprocessors slowed down and 

the trend to multi-core architectures started. Furthermore, GPUs (graphics processing 

units) became widely available and the complexity of state-of-the-art FPGAs allowed 

system-on-chip designs. These off-the-shelf devices offer new perspectives for 

massively parallel ANN implementation. In the following, we will discuss some key 

issues for realizing ANNs on these standard devices compared to special purpose 

implementations dedicated to a specific ANN model. 

 

 

Fig. 1: Decreasing feature sizes of integrated circuits over time, and the increasing 

number of devices in an unit area (shown in the hexagonal symbols) 

2 Field-Programmable Gate Arrays (FPGAs) 

FPGAs have a modular and regular architecture containing mainly programmable 

logic blocks, embedded memory, and a hierarchy of reconfigurable interconnects for 

wiring the logic blocks. Furthermore, they may contain digital signal processing 

blocks and embedded processor cores. After manufacturing they can be configured 

before and during runtime by the customer. Today, system-on-chip designs with a 

complexity of about a billion logic gates and several Mega-Bytes of internal SRAM 
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memory can be mapped on state-of-the-art FPGAs. Clock rates approach the GHz 

range boosting the chip-computational power in the order of GOPS (billion operations 

per second) at a power consumption of several watts. Hence, FPGAs offer an 

interesting alternative for parallel implementation of ANNs providing a high degree 

of flexibility and a minimal time to market. The time for the development of FPGA 

and application specific integrated circuit (ASIC) designs is comparable. A big 

advantage of FPGAs is that no time for fabrication is needed. A new design can be 

tested directly after synthesis for which efficient CAD tools are available. A 

disadvantage of FPGAs is the slower speed, bigger area, and higher power 

consumption compared to ASICs. Compared to software implementations FPGAs 

offer a higher and more specialized degree of parallelization. 

 The implementation of ANNs on a reconfigurable hardware makes it 

possible to realize powerful designs that are optimized for dedicated algorithms [6]. 

Another great advantage is the feature of reconfigurability that enables the change to a 

more efficient algorithm whenever possible. If, at the beginning of the training of an 

ANN, a low data precision is satisfying, we are able to implement a highly parallel 

implementation to get a rough order of the network. Using a lower precision allows us 

to set up an optimized architecture that can be faster, smaller or more energy efficient 

than a high precision architecture. For a fine-tuning of the ANN, the FPGA can be 

reconfigured to implement high-precision elements. Additionally, we are able to adapt 

the implemented algorithms to the network size that is required for a certain problem. 

Thus we can always use the most suitable algorithms.  

 Furthermore, dynamic (or runtime) reconfiguration enables to change the 

implementation on the FPGA during runtime. Dynamic reconfiguration is used to 

execute different algorithms on the same resources. Thus, limited hardware resources 

can be used to implement a wide range of different algorithms. In the field of ANN 

hardware, reconfiguration can be used, e.g., to implement algorithms with variable 

precision or to implement heterogeneous architectures with different ANN types. In 

ANN simulation we are often interested in providing as much computing power as 

possible to the simulation of the algorithm. But pre- and post-processing of the input 

and output data often also requires quite a lot of calculations. In this case dynamic 

reconfiguration offers the opportunity to implement special pre-processing algorithms 

in the beginning, switch to the ANN simulation and in the end reconfigure the system 

for post-processing. Thus, we do not require the system resources that would be 

necessary to calculate all algorithms in parallel [7]. 

3 Graphics processing units (GPUs) 

A GPU is a specialized integrated circuit designed to rapidly process floating point-

intensive calculations, related to graphics and rendering at interactive frame rates. The 

rapid evolution of GPU architectures from a configurable graphics processor to a 

programmable massively parallel co-processor make them an attractive computing 

platform for graphics as well as other high performance computing having substantial 

inherent parallelism such as ANNs. The demand for faster and higher definition 

graphics continues to drive the development of increasingly parallel GPUs with more 

than 1000 processing cores and larger embedded memory. At the same time, the 

architecture of GPUs will evolve to further increase the range of other applications. 
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GPUs are well suited for single instruction and multiple data (SIMD) parallel 

processing. In order to assist the programmers specialized programming systems for 

GPUs evolved (e.g., CUDA [8]) enabling the development of highly scalable parallel 

programs that can run across tens of thousands of concurrent threads and hundreds of 

processor cores. However, even with these programming systems the design of 

efficient parallel algorithms on GPUs for other applications than graphics is not 

straight-forward. Significant re-structuring of the algorithms is required in order to 

achieve high performance on GPUs. Furthermore, it is difficult to feed the GPUs fast 

enough with data to keep them busy. Nevertheless, the increasing number of papers 

on this topic shows that GPUs are an interesting implementation platform for 

simulating large ANNs [9]. 

4 Many-core processors 

A multi-core processor is a single computing component with two or more 

conventional uniprocessors (called cores). A many-core processor is a multi-core 

processor with a considerably higher number of cores (e.g. more than 100). The 

promise of parallelism has fascinated researchers for at least three decades. In the 

past, parallel computing efforts have shown promise and gathered investment, but in 

the end, uniprocessor computing always prevailed. Nevertheless, general-purpose 

computing is taking an irreversible step toward parallel architectures because single-

threaded uniprocessor performance is no longer scaling at historic rates. Hence, 

parallelism is required to increase the performance of demanding applications. Since 

real world applications are naturally parallel and hardware is naturally parallel, the 

missing links are programming models and system software supporting these 

evolving massively parallel computing architectures. Furthermore, there is no clear 

consensus about the right balance of computing power, memory capacity, and internal 

as well external communication bandwidth of integrated many-core architectures. 

 ANNs are inherently parallel and hence, it is obvious that many-core 

processors are an attractive implementation platform for them. Various techniques for 

simulating large ANNs on parallel supercomputers or computer networks are known 

which can be reused for mapping ANNs to many-core architectures. Furthermore, 

many-core processors can be embedded in mobile devices such as robots or smart 

phones opening up new application vistas for ANNs. Consequently, the number of 

ANN many-core implementation is increasing [10]. 

5 Conclusion 

Different approaches are known for supporting ANNs on parallel computing 

architectures: general-purpose parallel architectures (e.g. many-cores, GPUs) for 

emulating a wide range of ANN models, reconfigurable implementations on FPGAs, 

and ASICs dedicated to a specific ANN model. While general-purpose architectures 

offer an unrivalled flexibility and a high degree of observability to the inner states and 

dynamics of neural algorithms, special-purpose (neuromorphic) designs offer 

resource-efficiency in respect to speed, compactness and power consumption. FPGA 

implementations offer a compromise between both extremes (Figure 2). 
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State-of-the-art CMOS technologies are able to integrate billions of nanoelectronic 

devices on a single chip with an area of a few cm². A strong growth of FPGA 

complexity and in the number of cores per GPU and many-core processor is expected 

in the future. Even more computational power may be obtained by emerging 

technologies like quantum computing, molecular electronics, or novel nano-scale 

devices (memristor, spintronics, nanotubes (CMOL)), but these technologies will not 

be available on broad basis in the next decade. With structure sizes smaller than 0.1 

micron, nanoelectronics start falling below the level of biological structures forming 

the brain. However, the brain efficiently uses all three dimensions, whereas 

nanoelectronics mainly use only the two physical dimensions of the silicon die 

surface. Nevertheless, on an area of one square millimeter - roughly the square 

dimension of a Purkinje cell (a type of neuron) in the cerebellar cortex, shown in 

Figure 3 - we can integrate a digital artificial neuron with about 70,000 16-bit weights 

(synapses) and a 32-bit microprocessor as a neural processing unit (Figure 3). 

 

 

Fig. 2: Qualitative performance and flexibility grading of hardware platforms 

The challenge lies in mastering the resulting design complexity and achieving 

economic viability for integrated systems with more than a billion devices per square 

centimeter. This requires system concepts that both exhaust the possibilities of future 

technologies and reduce the design and test complexity. Due to their highly regular 

and modular structure, inherent fault tolerance, and learning ability, ANNs offer an 

attractive alternative for ultra-large-scale-integration. 

 Despite the impressive development of nanoelectronics during the last 

decades, there is still no clear consensus on how to exploit this technological potential 

for massively parallel ANN implementations. It is currently quite difficult to 

determine the best way to perform ANN calculations for any given application. This 

is one reason for the huge variety of approaches to ANN hardware implementation 

known in literature. The problem of benchmarking and an adequate metric for 

performance evaluation is still open, too. So the discussion is open about the best way 

to achieve very large neural systems and, in the long term, how to produce so-called 

artificial brains. We are still a long way from fully comprehending the functional 

mechanisms of the brain; and the construction of an artificial brain will remain for a 

very long time, if not forever, a fantasy. Nevertheless, we do have something to learn 

from nature about resource-efficient technical systems. This is why a hardware 
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realization of neural networks does not aim for an exact reproduction of nervous 

systems, but simply for an efficient use of available technologies for solving practical 

problems. The papers selected for the ESANN special session on “Parallel hardware 

architectures for acceleration of neural network computation” present interesting new 

results on different aspects of parallel ANN hardware implementation and the benefits 

for practical applications. 

 

 

Fig. 3: Area comparison of a digital neuron in 100nm standard CMOS technology 

and a biological neuron (Purkinje cell). 
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