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Abstract. This paper presents a methodology based on machine learn-
ing techniques to assess the performance of a system measuring the tra-
jectories of the lower limbs extremities for the follow-up of patients with
multiple sclerosis. We show how we have established, with the help of
machine learning, four important properties about this system: (1) an
automated analysis of gait characteristics provides an improved analysis
with respect to that of a human expert, (2) after learning, the gait charac-
teristics provided by this system are valuable compared to measures taken
by stopwatches, as used in the standardized tests, (3) the motion of the
lower limbs extremities contains a lot of useful information about the gait,
even if it is only a small part of the body motion, (4) a measurement
system combined with a machine learning tool is sensitive to intra-subject
modifications of the walking pattern.

1 Introduction

Although medical imaging is suited for the detection of severe neurological disor-
ders, it is not always possible to diagnose a disease in its early stage. Therefore,
as for patients with multiple sclerosis (MS) that often suffer from ambulation
impairments, the clinical evaluation of the ambulation impairments is an appro-
priate method for the early detection of diseases. It is also useful for the follow-up
of the patients. It helps to know, for example, if the proposed drugs and rehabil-
itation methods have a positive effect. However, the clinical evaluation is often
limited in comparison to methods that rely on measuring technologies.

In the case of MS, clinicians use standardized tests mostly focusing on a
distance or a velocity measurement. For example, the timed-25 foot walk test
(T25FW) aims at measuring, with a stopwatch, the walking speed achievable
by the patient on a 25 ft straight path. But such tests have their limitations.
For example, it has been established that if the speed evolution between two
consecutive visits is less than 17% [1] or 20% [2], no relevant conclusion could
be drawn on the evolution of MS.

Nevertheless, it has been proven, a long time ago by Gilles de la Tourette [3],
that motion of the lower limbs extremities (named “feet” in the following) is a
reliable source of information. More recently, Shao et al. [4], Teixidó et al. [5] and
Piérard et al. [6] have proposed to rely on range laser scanners to measure the
feet trajectories and to derive meaningful gait descriptors (GDs). Based on this
idea, we have introduced in [7] a new gait measuring system, named GAIMS ,
designed to meet the constraints of the clinical routine.

Because of the complexity of gait analysis, it proved intractable to automate
the diagnosis process made by a clinician. In addition, it was necessary to build
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some evidence for the interest of a measuring systems such as GAIMS . The
remainder of this paper discusses these issues, and hereafter we explain how
machine learning was used to address the following four questions or issues:

[Q1] Can a gait analysis approach based on the objective measurements, pro-
vided by a system such as GAIMS , outperform the qualitative and sub-
jective evaluation of a human expert?

[Q2] In [8], Phan-Ba et al. have established that at least two uncorrelated com-
ponents are responsible for the inter-subject diversity of gait, for patients
with MS. One component is the walking speed and the other one relates
to the ataxia and gait asymmetry. But it was unknown which of them is
the most powerful component for detecting the intra-subject gait changes
over time. All in all, the question is whether GAIMS can outperform a
simple stopwatch to detect gait abnormalities and their evolution.

[Q3] A system such as GAIMS only provides GDs related to the feet trajectories
in a plane. At first sight, a lot of information seems to be missing: the
knee angle, the foot orientation, the accelerations and forces, the minimum
foot clearance (i.e. the minimum vertical distance between the foot and
the floor during the swing phase), etc. However, those gait characteristics
and the ones measured by GAIMS are not independent. Therefore, it is
difficult to evaluate if GAIMS is capable of capturing enough information
for the gait analysis of people with MS.

[Q4] In [9], Azrour et al. present some interesting findings related to the detec-
tion of MS, with an ExtRaTrees [10] classifier and the attributes derived
from GAIMS . Such a study focuses on an inter-subject analysis since it
does not address the gait evolution. But one of the key issues remains the
capability to detect small intra-subject changes in the walking pattern of
patients with gait disabilities.

In the following section, we present the experiments used to gather the data
needed to address these four issues. Then, Section 3 discusses how the data was
analyzed. Finally, in Section 4, we discuss our results and conclude the paper.

2 Experiments and data collection

As the disease evolves slowly with the progressive form of MS, it was impractical
to involve patients in our study. We noted that cerebellar ataxia is known to be a
major component of the gait impairments in MS, and that ataxia can be induced
by alcohol. Therefore, we decided to rely on healthy persons with alcohol induced
ataxia. Our experiment protocol has been approved by the ethics committee of
the faculty of medicine of the university of Liège. Any reason (medical, physical,
neurological, ethanol addiction, . . . ) that, in the opinion of the investigator,
makes a subject unsuitable for enrollment has precluded his participation.

24 healthy volunteers, aged between 22 and 57 years, were asked to perform
23 tests, some before and others after alcohol intake, as shown in Table 1. In
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test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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g • • • • • • • • • • •

di
st
an

ce 25 ft • • • • • • • • • • • •
20m • • • • • •
100m • • • •
500m •

m
od

e comfortable • • • • • • • •
fast • • • • • • • • •

tandem • • • ←→ • • •

Table 1: The 23 tests performed by the healthy volunteers. The data collected
during the twelfth test are discarded in this study since no corresponding test
has been performed after alcohol intake.

these tests, the volunteers were asked to walk in a given mode along a path drawn
on the floor. Three paths were considered: a 25 ft straight path, one turn of a∞-
shaped path of 20m, and five turns of it. Three walking modes have been tested:
comfortable (i.e. normal pace), as fast as possible, and heel-to-toe (i.e. tandem
gait). The shortest tests are repeated twice to assess test-retest phenomena.

Between the twelfth and thirteenth tests, the participants were asked to
consume ethanol (red wine, rum, or vodka). The blood alcohol concentration
(BAC) was measured with a breathalyzer (Alert J5) thirty minutes after the end
of acute ethanol ingestion (thirty minutes is the time required to reach the peak
BAC). The volunteers were instructed to avoid eating and consuming “exciting”
drinks (coca-cola, coffee, redbull, ...) 6 hours before the acquisition, and to
avoid consuming alcohol 48 hours before. Note that we tried to reach the same
peak BAC for all participants, and therefore the dose of alcohol administered
has been determined with a normogram related to the gender and the weight.
In practice, however, significant differences were observed between participants:
the mean measured BAC is 67mg/l with standard deviation of 22mg/l. At
these concentrations, the most important modifications are behavioral, and the
gait disorder specialists present during the acquisitions had difficulties to see
any difference on feet movements induced by ethanol. Nevertheless, we show in
the following that a difference exists, even if it is small (which was targeted). It
should be noticed that several hypotheses could explain the difference (alcohol,
motor fatigue, getting bored, etc), but its origin does not matter for us.

All tests were recorded with GAIMS , and the feet trajectories were computed
with the processing pipeline presented in [11]. Based on these trajectories, 26
GDs were computed for each test. They are related to the speed, the inter-feet
distance, the deviation from the followed path, the cadence, the stride length,
the gait asymmetry, the temporal variability, and the proportion of double limb
support time, to cite only a few.

3 Data analysis

In a preliminary step, we performed paired Student’s t-tests in order to verify
that a gait modification exists. It appears that many GDs significantly change
after alcohol intake, but mostly for the 100m path in the preferred pace. We
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found a decrease in the distance traveled (p = 0.0044), and the double limb
support time (p = 0.0155), as well as an increase in the speed (p = 0.0015), the
step length (p = 0.00035), the mean distance between feet (p = 0.0002), and the
RMS value of the deviation from the followed path (p = 0.00007). However, these
statistical results do not imply the possibility to detect the gait modification for
each person. That is the purpose of the next type of analysis.

Let us consider a pair of tests (Ta, Tb), one being performed before alcohol
intake, and the other one after alcohol intake. Two tests are paired if they
correspond to the same person, to the same path, to the same walking mode, and
if we do not mix test and retest. For each pair of tests, we try to recognize which
test (first/second in the pair) was recorded after alcohol intake, based only on
the GDs extracted by GAIMS . This comparison is expected to be easier than the
prediction of a class (sober/alcohol) for each test. Indeed, the gait characteristics
highly depend on the morphological characteristics, but we compare a person
with himself in our approach. We adopt a binary classification in which the
predicted class indicates whether the test led before alcohol intake is Ta or Tb.
The set of attributes used to describe the pair of tests is given by

ω (Ta) , π (Ta) ,
{
fi (Ta) + fi (Tb)

2 , fi (Tb)− fi (Ta) , fi (Tb)− fi (Ta)
fi (Ta) + fi (Tb)

}26

i=1

where fi (T ) denotes the i-th GD of a test T , and ω (T ) and π (T ) are symbolic
attributes denoting the walking mode and the followed path respectively.

For the classification, we use a forest of randomized decision trees, named
ExtRaTrees [10]. It does not require to optimize any parameter, nor to define a
distance function, nor to select a kernel. It is insensitive to irrelevant attributes
and can handle any relationship between them. But, as the ExtRaTrees are not
expected to perform well with very small learning sets, we have considered the
11 types of tests all together, even if the GDs are not directly comparable for
different tests. This multiplies by 11 the amount of learning samples. Moreover,
our models gather 1000 trees to decrease the variance and to obtain reproducible
results. The results reported hereafter have been obtained by a leave-one-person-
out strategy: for each volunteer, his pairs of tests are classified using a model
learned from the labeled pairs of tests of all other volunteers. To avoid the
introduction of a bias, all the pairs are considered twice in the learning and test
sets, once with the test recorded after alcohol intake in the first position and
once in the last position. 24 models are thus learned from (24− 1)×11×2 = 506
samples and tested on 1× 11× 2 = 22 samples.

4 Results, discussion and conclusion

Based on all our 26 GDs, we obtain a correct decision rate of 70.9 % (see Fig-
ure 1a) on the pairs of tests. Considering multiple tests is advantageous since a
majority vote permits to reach a correct decision rate of 91.7 % on the persons
(for 22 volunteers out of 24, the majority of the tests are correctly recognized).
This score demonstrates that our system is able to measure some interesting
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(a) With all GDs, a machine learning based
method is able to recognize the test recorded
after alcohol intake most of the time: the
overall correct decision rate is 70.9 % on the
pairs of tests and 91.7 % on the persons after
a majority vote.
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(b) Using only the speed, a machine learning
based method is unable to recognize the test
recorded after alcohol intake: the overall cor-
rect decision rate is 49.2 %, which is symp-
tomatic of a random guess. As expected,
speed and ataxia are unrelated [8].

Figure 1: GAIMS produces an information superior to that of a stopwatch. This
figure shows the correct decision rate w.r.t. the set of GDs considered: GAIMS
on the left hand side, and a stopwatch on the right hand side. The vertical bars
indicate the correct decision rate for the pairs of tests of each volunteer. The
black horizontal line indicates the overall correct decision rate on the pairs of
tests, which has to be compared with the correct decision rate that would be
obtained with a random guess (i.e. 50 %, the red line).

information about the gait. The fact that it is often possible to recognize which
test was recorded after alcohol intake indicates that it is possible to detect small
intra-subject changes in the walking pattern of patients with gait disabilities
such as those induced by MS [answers to Q3 and Q4].

The score we have obtained was unexpected since the gait specialists present
during the acquisition had difficulties to see any difference (only based on the
feet movements) induced by alcohol intake. Furthermore, we have shown 228
randomly ordered pairs of video sequences (recorded during the acquisitions) to
14 other gait disorder specialists. They were able to correctly recognize the video
sequence corresponding to the test performed after alcohol intake 142 times.
Their correct decision rate (62.28 %, with a high inter-expert variability) is thus
clearly lower than the one of the automatic classification system based on the
GDs measured by GAIMS (70.9 %). Therefore, it turns out that an objective gait
measurement system, such as GAIMS , is a valuable tool for helping neurologists
to observe the walking difficulties encountered by their patients [answer to Q1].

Finally, we want to establish if a gait analysis system combined to machine
learning can outperform conclusions made with a stopwatch. Therefore, we have
repeated the previous analysis, discarding the GDs that cannot be determined
with a stopwatch. We obtained a correct decision rate of 49.2 % (see Figure 1b)
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on the pairs of tests. The system is thus unable to find any relationship between
the remaining attributes and the gait modification. We therefore conclude that
GAIMS is appropriate for detecting cerebellar ataxia [answer to Q2].

Even if our results are encouraging, it should be noted that the small size of
our database is a limitation for the learned models. Our results could certainly
be improved with supplementary volunteers. Moreover, we did not try to tune
the set of attributes, and we did not try various kinds of classifiers yet.

In future works, we will enhance the data set, but we have already established
that machine learning tools are appropriate for the interpretation of gait data.
This would otherwise be out of reach for the clinical diagnosis.
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