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Abstract. Support Vector Regression (SVR) has been widely applied in
time series forecasting. Considering long term predictions, iterative predic-
tions perform many one-step-ahead predictions until the desired horizon
is achieved. This process accumulates the error from previous predictions
and may affect the quality of forecasts. In order to improve long term
iterative predictions a hybrid multiple Autoregressive Integrated Moving
Average(ARIMA)-SVR model is applied to perform predictions consider-
ing linear and non-linear components from the time series. The results
show that the proposed method produces more accurate predictions in the
long term context.

1 Introduction

A time series is a discrete-time stochastic process composed by a finite set of
items correlated in time. Time series forecasting has many applications in areas
such as planning, management, production, maintenance and control of indus-
trial processes. The forecasting process is based on some knowledge of the past,
which can be performed by several statistical methods [1] and by nonlinear meth-
ods such as Support Vector Regression (SVR) [2] and Artificial Neural Networks
(ANNs) [3].

Some time series may present seasonal or\and trend patterns, which must be
modeled by a method in order to produce better forecasts. Statistical methods
such as ARIMA are able to map linear aspects such as trend, however nonlinear
patterns are not easily captured. Different models can complement each other
in capturing linear or nonlinear patterns of data sets in time series. Bates and
Granger [4] explored several combinations of architectures for time series pre-
diction, Pai and Lin used a hybrid ARIMA-SVR model to predict stock prices
[5], Zhu and Wei used a hybrid ARIMA-Least Squares Support Vector Regres-
sion(LSSVR) to predict carbon price.

However, when performing iterative multi-step-ahead predictions, the accu-
mulation of error may still be present at each forecast iteration. In order to
address this problem, Zhang et al. used a multiple SVR [6] strategy where the
SVR models are trained independently in different prediction horizons. This
method reduces the number of iterations and may reduce the propagated error
by performing many direct predictions.
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cies) for their financial support
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In this paper we propose a Multiple ARIMA-SVR model in order to map
linear and nonlinear patterns in time series and to improve the accuracy in
iterative long term forecasts. The remainder of this paper is organized as follows:
Section 2 presents a brief review of time series forecasting strategies, Section
3 shows the proposed method. Section 4 presents the experiments and the
conclusions and future works are presented in section 5.

2 Time series forecasting

In this section, the iterated, direct and multiple approaches for time series fore-
casting are reviewed. For all three approaches consider a time series {zt}Nt=1,
where N is the length of the time series.

In the one-step-ahead prediction the model depends on the d past values
and has the form z′(t + 1) = f(z(t), z(t − 1), ..., z(t − (d − 1))), where d is the
embedding dimension or time window.

The prediction of p-steps-ahead in the iterative approach takes the form
z′(t + h) = f(z′(t + h − 1), z′(t + h − 2), ..., z′(t + h − d)) [7], where the past d
predictions are taken into consideration in order to perform the pth prediction.
In the iterative approach, the model is trained to perform one-step-ahead pre-
dictions at time t+1 iteratively h times using past predictions as inputs for the
next prediction. This process do not need information at the desired horizon h
however it accumulates the error from all the past predictions. Only one model
is required to perform predictions.

The prediction of p-steps-ahead in the direct approach has the form z′(t +
h) = f(z(t), z(t− 1), ..., z(t− (d− 1))) [8]. In other words, the model is trained
directly at the horizon h, and the predictions are performed directly into that
horizon. In this approach we need information at horizon h in order to train
the model and the error is not accumulated. To perform predictions in different
values of h, other models have to be trained at this horizon.

The multiple approach takes into consideration the iterative and direct meth-
ods [6]. Multiple models are trained independently at different horizons, and per-
form iterative predictions until the desired horizon is achieved. Given a horizon
h, k models (with k < h) will be trained independently to perform predictions
at the horizons {t + 1, t + 2, ..., t + k}. This method does not need to train h
models as needed in the direct approach and produces less accumulation of error
than the iterative method.

3 Proposed Method

The proposed method incorporates the linear and nonlinear mappings of the time
series through a composition of a ARIMA model and multiple SVR models.

The ARIMA model was first introduced by Box and Jenkins [9] and has been
widely applied in time series forecasting. The predictions in the ARIMA model
are a linear combination of past values and past residual errors, and has the
form presented on eq. 1.

208

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



θp(B)(1−B)
s
zt = ϕq(B)ϵt (1)

where zt is the actual value and ϵt is the residual error at time t, B is a backward
shift operator (Bzt = zt−1 and ∆zt = zt − zt−1 = (1 − B)zt), ϕi and θj are
the coefficients, p and q are degrees for the autoregressive and moving average
polynomial functions. The integration part is due to the differencing performed
to the time series in order to obtain a stationary series. The number of differences
is determined by the parameter s.

The SVR method was proposed by Vapnik [10] and it is based on the struc-
tured risk minimization (SRM) principle, aiming at minimizing an upper bound

of the generalization error. Let {zi, yi}li=1 be a training set where z ∈ ℜd, yi ∈ ℜ
is the prediction output of zi, d is the embbeding dimension of the time series
and l is the number of training samples. The objective of SVR is to find the best
function from a set of possible functions {f |f(z) = wT z + b, w ∈ ℜd, b ∈ ℜ},
where w is the weight vector and b is a bias or threshold.

In order to find the best function f , it is necessary to minimize the regularized
risk 1

2∥w∥
2
+ C

∑l
i=1 L(yi, f(zi)), where C > 0 is a regularization factor, ∥.∥ is

a 2-norm and L(., .) is a loss function. In order to induce sparsity in SVR the
ϵ-insensitive loss function presented on eq. 2, which creates an ϵ-tube allowing
some predictions to fall within the boundaries of this ϵ-tube.

L(y, f(z)) =

{
0, |f(z)− y| < ϵ

|f(z)− y| − ϵ, otherwise
(2)

The nonlinearity of SVRs is achieved by mapping the input space into a
higher dimensionality space. This mapping is possible through the use of kernels,
and the regression function takes the form f(z) =

∑l
i=1 (αi − α∗

i )k(zi, z) + b,
where α and α∗ are lagrange multipliers and k(zi, z) is a kernel function.

In this study, the gaussian kernel is adopted (k(zi, zj) = exp(
−∥zi−zj∥2

2γ2 )),
where γ is a parameter of the gaussian kernel.

The proposed model uses the ARIMA method as a prepossessing step in
order to map linear patterns in the time series.
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Fig. 1: Hybrid Arima Multiple SVR Method

Fig. 1 shows the framework of the ARIMAMultiple SVRmethod (ASVR-M).
The r variable denotes the number of iterations of the method. The forecasting
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procedure of this method performs less iterations than the iterative method,
which runs as many iterations as the horizon size.

The residuals produced by the ARIMA et = zt − z′t, are used as an input
for the Multiple SVR methods. In this step, k SVR models are trained in-
dependently, in order to perform iterative predictions. The final forecast can
be achieved by adding the forecasts of the ARIMA and multiple SVR models
o′t = z′t + e′t.

4 Experiments

The experiments were performed in four benchmark datasets including Sunspot,
Airline Passengers, IBM stock prices and Death. Our proposed approach is com-
pared with other methods such as Iterative SVR (SVR-I), Direct SVR (SVR-D),
Multiple SVR (SVR-M), ARIMA Iterative SVR (ASVR-I) and ARIMA Direct
SVR (ASVR-D), implemented using the LIBSVM package [11] in a MATLAB
8.2 environment. The datasets were partitioned, using 80% for training and
20% for testing. First the p, q and s parameters of the ARIMA(p,s,q) model
are defined with grid search 5-fold cross-validation in the training data with
parameters ranging from {1, 2}, {0, 1, 2} and {0, 1, 2} respectively and the best
ARIMA(p,s,q) model is selected based on the Aikake’s Information Criterion
(AIC) [12].

In all SVR models the parameter selection was performed by doing a 10-fold
cross-validation grid search in the residuals produced by the selected ARIMA
model with C, ϵ and γ within the range {10−1, 100, 101, 102}, {10−4, 10−3, 10−2}
and {2−5, 2−4, ..., 22} respectively on the training set according to [6].

The annual Wolf’s sunspot numbers dataset has 289 points and presents
seasonal patterns. The monthly airline passengers dataset has 144 points and
presents trend and seasonal patterns. The death dataset represents the number
of deaths and serious injuries in UK road accidents each month and has 192
points. The daily IBM stock closing prices has 369 points and presents trend
patterns. Fig 2 presents the autocorrelograms for all datasets, where the lags
are set to unity. The sunspot, passengers, IBM and death datasets are available
from [13].

The experiments for the sunspot, airlines passenger, death and IBM were
performed considering an embedding dimension d = 6, prediction horizon h = 10
and number of SVR models in the multiple approaches k = d based on [6]. All
datasets had their values scaled to [0...1]. The experiments were executed for 10
iterations.

The performance measure used in this work as the mean squared error (MSE)
described on eq. 3.

MSE =

∑N
i=1 (zi − z′i)2

N
(3)

Table 1 contemplates the mean and standard deviations for the MSEs in all
datasets. The results show that in most cases the hybrid ARIMA-SVR procedure
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Fig. 2: Autocorrelograms of Datasets

Method Sunspot Passenger Death IBM
SVR-I 0.064(0.003) 0.136(0.028) 0.191(0.031) 0.004(0.000)
SVR-D 0.052(0.005) 0.020(0.004) 0.023(0.001) 0.018(0.004)
SVR-M 0.061(0.003) 0.153(0.030) 0.064(0.006) 0.010(0.003)
ASVR-I 0.030(0.004) 0.021(0.026) 0.125(0.003) 0.004(0.000)
ASVR-D 0.032(0.002) 0.003(0.000) 0.025(0.003) 0.007(0.000)
ASVR-M 0.045(0.005) 0.026(0.003) 0.060(0.006) 0.003(0.000)

Table 1: Mean square errors and Standard deviations for all datasets

improved the values achieved by the SVR strategies for long-term time series
forecasting. An empirical analysis of the results achieved demonstrates that
in the sunspot dataset the ASVR-I achieved the best results, followed by the
ASVR-D. In the Passenger dataset, the ASVR-D outperformed the other hybrid
approaches, however the ASVR-I presented a high variance in the results, while
the results obtained by the ASVR-M were more stable. In the IBM dataset
the ASVR-M achieve the best results, followed by the ASVR-I method. In the
Death dataset the ASVR-D and SVR-D achieved the lowest errors, followed by
the ASVR-M method.

A Wilcoxon signed-rank test was applied to perform a robust analysis with
95% of confidence. In the Sunspot dataset, the ASVR-I and ASVR-D achieved
similar results and performed best. In the Passenger dataset the ASVR-D out-
performed all techniques and the ASVR-I and ASVR-M performed similarly. In
the Death dataset the ASVR-D and SVR-D achieved similar performance. In
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the IBM dataset the ASVR-M and SVR-I achieved similar results.

5 Conclusion

This paper realized a comparison between strategies (iterative, direct, multiple)
to perform long-term time series forecasting using Support Vector Regression
(SVR) models and proposed a hybrid model based on a Autoregressive Integrated
Moving Average (ARIMA) model and on multiple SVRs.

The direct approaches (SVR-D, ASVR-D) achieved the best results in most
datasets, which is expected since there is no iterative error accumulation. How-
ever the multiple approaches (SVR-M and ASVR-M) tends to reduce the accu-
mulation error by running fewer iterations.

Under these settings the hybridization increased the performance of most
methods, however the iterative method was the one with more increase of per-
formance, in most cases achieving similar results to the ASVR-M.

For future works, we intend to analyze the performance of a hybridization
between ARIMA and an ensemble of SVRs to perform prediction using the
iterative, direct and multiple strategies.
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