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Abstract. Data stream mining is a hot topic in the machine learning
community that tackles the problem of learning and updating predictive
models as new data becomes available over time. Even though several
new methods are proposed every year, most focus on the classification task
and overlook the regression task. In this paper, we propose an adaptation
to the Adaptive Random Forest so that it can handle regression tasks,
namely ARF-Reg. ARF-Reg is empirically evaluated and compared to the
state-of-the-art data stream regression algorithms, thus highlighting its
applicability in different data stream scenarios.

1 Introduction

Data stream mining is an important topic in the machine learning community.
It tackles the problem of learning and updating learning models as new data
becomes available over time. Even though several new methods are proposed
every year, most focus on the classification task and overlook the regression task.
Important examples of regression include, for instance, temperature and precip-
itation forecasts, stock market and household price predictions. Furthermore,
the data distribution of the examples aforementioned may be ephemeral in the
sense that it can change over time. For instance, the temperature and precipi-
tation rates of a region may change due to unexpected environmental accidents,
or the prices of stocks may vertiginously decrease if a company is found to be
amidst corruption schemes, and so forth.

In this paper, we adapt the Adaptive Random Forest (ARF) learner pre-
sented in [1] to the regression task, hereafter referred to as ARF-Reg. ARF-Reg
was implemented in the Massive Online Analysis (MOA) framework and it will
be made publicly available for further studies on the area. The remainder of
this paper is divided as follows. Section 2 describes the data stream regression
task and its challenges. Section 3 overviews related works. Section 4 describes
the proposed method, which is later evaluated in Section 5. Finally, Section 6
concludes this paper and reports envisioned future works.

2 Problem Definition

Despite the impressive amount of effort put on data stream mining, most of
the works focus on classification and overlooked both regression and clustering
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tasks. In this paper, we focus on the regression task, which aims at predicting a
continuous value. Examples of regression include, for instance, temperature and
precipitation forecasts, stock market value and household price predictions.

Formally, we assume S to be a data stream providing instances (~xt, yt),
where ~xt is feature vector, yt ∈ R is the target meta-attribute, and t is the
arrival timestamp. In regression, the goal is to iteratively learn a predictive
model h : ~x → y as new data becomes available. In this work, we assume a
test-then-train scheme and such that yt becomes available right after ~xt arrives.
Even though this assumption might not hold in a variety of scenarios, it is by
far the most used in the area.

Finally, one of the most important challenges in data streams is tackling
concept drifts [2]. A drift occur when the data distribution changes, i.e., the
mapping between features in ~x and the target values y change over time. An
important trait of concept drift relates to the rate at which it happens. The
rate at which drifts happen can be abrupt, incremental, gradual or reoccurring.
Notice that noise or outliers ought not be confused with drift. The difference
between noise/outliers and drifts is persistence.

3 Related Works

Similarly to batch learning, the number of techniques developed for classification
greatly outnumber those tailored for regression. In this section we report im-
portant contributions to the field and that are used in the empirical evaluation
of the proposed method.

Regression trees are similar to decision trees as they iteratively perform splits
over attributes with the goal of maximizing some goodness-of-fit criterion. Fast
and Incremental Model Trees (FIMT-DD), initially presented in [3] are
the main example of regression trees for data streams. Similarly to standard Ho-
effding Trees [4], FIMT-DD starts with an empty tree that keeps statistics from
arriving data until a grace period is reached. At this point, features are ranked
according to their variance, and if the two best-ranked differ by at least the
Hoeffding Bound [5], the tree branches and the process is repeated. FIMT-DD
also encompasses a change detection scheme that periodically flags and adapts
subbranches of the tree where significant variance increases are observed. Simi-
larly, ORTO also grows trees incrementally with the arrival of instances, yet, it
also introduces ‘option’ nodes, which allow an instance to follow all the branches
available in a tree node [3].

Regression rules are another relevant representatives of data stream regres-
sion. By far, the most used algorithm is Adaptive Model Rules (AMRules)
[6]. AMRules learns both ordered and unordered rule set from data streams. To
detect and adapt to concept drifts, each rule is associated with a Page-Hinkley
drift detector [7], which prunes the rule set given changes in the incoming data.

It is also common to combine several learning models by ‘ensembling’ them.
One important example for regression is the Scale-free Network Regression
(SFNR). SFNR is a light-weighted network-based regression ensemble for data
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streams [8]. It arranges its learners in a probabilistic scale-free network such
that the most accurate models tend to become more prominent (‘hubs’), and
thus, have higher weights during the prediction step. SFNR also uses drift
detectors to eliminate inaccurate estimators according to drifts in data. Finally,
it is important to mention that a previous approach for regression using Random
Forests has been introduced in [9], yet, it does not include any methods to handle
concept drifts.

4 Adaptive Random Forest for Regression

To describe our proposed method, ARF-Reg, we use the taxonomy presented in
[10]. Precisely, we describe ARF-Reg in terms of its voting strategy, diversity
induction, base learner characteristics and update dynamics.

• voting averages the individual predictions to obtain the final prediction;

• diversity is induced into the forest by training the trees on different sub-
sets of data and by limiting the split decisions to an m randomly selected
subset of features from the original input features. This follows the same
methodology applied in [1], which was inspired by [11];

• the base learner is a regression tree, namely a FIMT-DD [12]. FIMT-DD
is an incremental learner featuring an efficient attribute split and selection
method;

• the update dynamics in ARF-Reg relies on both internal and external
drift detectors for each tree and by growing trees in the background when
a warning is detected.

The original ARF classifier achieved best results when its drift and warn-
ing methods were set to use the ADaptive WINdow (ADWIN) [13] algorithm.
Therefore, in this work, we experiment while using the external drift detection
method using ADWIN and its ‘moderate’ configuration as described in [1]. In
ARF-Reg, besides using this external drift detection method we also experiment
using the original Page-Hinkley test [7] internally to each FIMT-DD to detects
and adapt to them.

In [9] authors present an Online Random Forest version that also uses FIMT-
DD as its base learner, despite the aforementioned approach to deal with concept
drifts another difference is how we perform resampling in ARF-Reg. Following
the same strategy presented in [1], we simulate leveraging bagging (λ = 6)
instead of the standard online bagging (λ = 1). The practical implications of
this decision is that trees are trained with more data, which makes them more
likely to split faster, thus adapting faster to drifts and rapidly building deeper
trees.
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5 Experiments

In these experiments, we analyze how ARF-Reg performs in terms of Root Mean
Square Error (RMSE) in different scenarios including both stationary and non-
stationary data. To benchmark the results we compare ARF-Reg against several
state-of-the-art regression algorithms, including its base learner FIMT-DD. The
experiments follow a test-then-train approach, such that each instance is first
used for testing and immediately used for training. The configuration of the
algorithms follows their original publications. We present experiments with 4
variations of ARF-Reg, all of them with 10 learners, namely:

• ARF-Reg: the default parametrization using ADWIN for both external
drift and warning detection. The number of features in the subspace is
also set to m =

√
M + 1, where M is the total number of features.

• ARF-Reg-inv: Similar to ARF-Reg, but uses m = M −
√
M , thus trying

more features per split.

• ARF-Reg-int: Similar to ARF-Reg, but it disables the external drift detec-
tion and warning methods. The adaptation to drifts relies on the internal
PHT provided by FIMT-DD. This version closely resembles the ensemble
method presented in [9].

• ARF-Reg-int-inv: It is a combination of ARF-Reg-int and ARF-Reg-inv.

Table 1 presents the datasets used during the experiments, which are further
discussed below. We used four synthetically generated datasets to represent
streams that exhibit incremental, abrupt, gradual and no drifts at all. The first
is derived from the Hyperplane generator often used in classification tasks, but
that can be adapted to regression problems as well. The HyperplaneReg [14]
(i.e. Hyperplane for Regression) generator creates a hyperplane, which is a flat,
(M − 1) dimensional subset of a M space that divides it into two disjoint parts.
Instances values are generated following a uniform distribution, and three differ-
ent functions that map instances to their outcomes are used: (i) the Euclidian
distance between the instance in the feature space and the hyperplane, (ii) the
square of this distance, or (iii) the cube of the same distance. Incremental drifts
are simulated by slowly changing the hyperplane location. Setting a new hyper-
plane by varying the random seed one can simulate an abrupt or gradual drift.
The final synthetic data is the FRIED [15] dataset. FRIED is a classical artifi-
cial regression dataset where each instance is represented by 10 features whose
values are independently and uniformly distributed over [0,1]. The outcome
value y is given by an equation that takes as input only 5 of the 10 features.

We use three real-world datasets in our experimentation framework. The first
two (HOUSE16N and Ailerons) are not representations of streaming data, but
these can be interpreted as stationary streams in our analysis. The goal of the
HOUSE16H. dataset is to estimate the median house price in a given region
according to 16 features representing demographic and house market data. The
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Table 1: Datasets overview. i, a and g stands for incremental, abrupt and
gradual drifts, respectively.

Experiment # Instances # Features # drifts
HYPER(i) 100,000 10 -
HYPER(a) 100,000 10 2
HYPER(g) 100,000 10 2

FRIED 40,768 10 -
AILERONS 13750 40 -

BIKE 17,389 12 -
HOUSE16H 22,784 16 -

Table 2: RMSE obtained during the experiments.
Experiment FIMT-DD ORTO AMRules SFNR ARF-Reg ARF-Reg-inv ARF-Reg-int ARF-Reg-int-inv
HYPER(i) 0.3499 0.8042 0.0333 0.3403 0.5050 0.3915 0.5050 0.3915
HYPER(a) 0.2496 0.3214 0.0790 0.2109 0.2128 0.2001 0.2164 0.2036
HYPER(g) 0.2552 0.3262 0.1060 0.2246 0.2234 0.2117 0.2260 0.2142

FRIED 2.9516 3.4416 2.4802 2.7659 3.1874 2.8676 3.1874 2.8676
AILERONS 0.0003 0.0005 0.0020 0.0003 0.0003 0.0003 0.0003 0.0003

BIKE 114.5981 101.3098 135.0353 108.3146 106.7113 86.5060 100.0952 84.1412
HOUSE16H 43236.1339 71470.0178 46033.5364 42739.1849 41612.9812 39956.4878 41629.3639 40124.0958
Avg. Rank 6.00 7.20 3.60 4.40 4.70 2.30 5.10 2.70

AILERONS dataset contains information about an F16 aircraft, and the goal
is to predict the control action to be applied to the ailerons of the aircraft. The
BIKE [16] dataset includes 2 years (2011 and 2012) worth of a bike-sharing
service from Washington D.C., USA. The goal is to predict how many bikes in
total will be rented in the next hour using weather and temporal data (e.g., time
of the day, the day of the week and so forth). Some features from the original
data were removed to avoid data leakage (e.g., registered and casual), as their
sum converges to the target variable (i.e., cnt).

5.1 Discussion

Comparing the results obtained across all the experiments, a combination of
Friedman and Nemenyi [17] statistical tests show that ARF-Reg-inv is the best
performing one. Nevertheless, no significant differences were observed across all
learners, except ORTO, which was significantly worse the the others. In this
comparison, ARF-Reg obtained compelling error rates, mainly on real-world
scenarios, thus showing its efficacy. The results from ARF-Reg-inv and ARF-
Reg-int-inv in comparison to ARF-Reg can be explained by the small amount
of features per dataset. In these cases, using more features per splits tends to
achieve better results. When we compare the ARF-Reg variations to AMRules,
we can observe that AMRules perform very well on synthetic datasets. How-
ever, it could not achieve reasonable results in the real-world datasets. Finally,
comparing ARF-Reg variations against its base learner (FIMT-DD), we can see
that improvements are consistent, with the exception of HYPER(i).
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6 Conclusion

In this paper, we introduced an adaptation of the Adaptive Random Forest
method for data stream regression, called ARF-Reg. The proposed method was
empirically assessed and compared to existing works of the area. In future
works, we intend to investigate other combinations techniques, analyze other
drift detection techniques and thoroughly evaluate the computational resources.
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on ensemble learning for data stream classification. ACM Comput. Surv., 50(2):23:1–
23:36, 2017.

[11] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
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