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Abstract. Existing algorithms for the detection of stellar structures in
the Milky Way are most efficient when full phase-space and color informa-
tion is available. This is rarely the case. Since recently, the Gaia satellite
surveys the whole sky and is providing highly accurate positions for more
than one billion sources. In this contribution we propose two independent
strategies to find globular clusters in this database, based on magnitude
distributions only. One approach is a nearest neighbor retrieval and the
other an anomaly detection. Both techniques are able to find known globu-
lar clusters within our observation frame consistently, as well as additional
candidates for further investigation.

1 Introduction
A major interest in astronomy is finding interesting stellar structures in the

sky, that are present in large modern astronomical databases, but are hidden by
structures in front, like for example dust. A globular cluster (GC) is a spherically
shaped collection of stars bound by gravity with high stellar densities toward
its center (see e.g. Fig. 1 upper left corner). It is assumed that its stars are
formed almost at the same time, and therefore being of similar age and chemical
compositions, making them effective tracers of Galaxy formation and evolution.
The Λ cold dark matter model suggests that big systems like galaxies are built
by merging smaller systems. GC and dwarf galaxies are considered the building
blocks for such merging events. Moreover, the dynamical interactions of GCs
with the galactic potential inferred from effects on stellar density and velocity
profiles, can be used to study the mass distribution of the Galaxies[1].

A few algorithms like ROCKSTAR[2] and OPTICS[3] identify substructures,
such as GCs, from full phase-space information. However, if only the position
and magnitudes of the stars on the sky and color information is available often
matched filter methods are applied[4]. In this paper we focus on the detection of
GCs using the DR1 catalog collected by the Gaia satellite. Gaia was launched at
the end of 2013 to survey the whole sky and determine highly accurate positions,
parallaxes, and proper motions for more than one billion sources brighter than
magnitude 20.7 in the white-light photometric band G[5]. However, neither the
full phase-space information nor the color information of the stars is available in
the Gaia DR1 catalog, and therefore above mentioned methods cannot be used.
In this contribution we investigate the detection of GCs in the Gaia survey in the
region or 120◦ < α < 246◦ right ascension (RA) and −2◦ < δ < 60◦ declination
(Dec), respectively. We follow two strategies: a retrieval technique using known
galaxy clusters to detect similar structures and a novelty detection technique.
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Fig. 1: Left: Magnitude distribution of a window of 0.5 degree centering at
globular cluster NGC5024. Right: Magnitude distribution of a random window.

2 Data and Preprocessing
To find globular clusters we investigate the magnitude distribution of the

stars contained in rectangular windows of a certain size. As proposed in [4]
we consider windows of 0.5 degree length in both right ascension (RA) and
declination (Dec). The left panel in Fig. 1 shows the magnitude distribution
as estimated via Kernel Density Estimation (KDE) based on the magnitudes
extracted from a window centering at position (198.23 RA,18.17 Dec) of globular
cluster NGC5024 in Gaia. In contrast to random windows (Fig. 1 right panel)
the distribution of a window containing a globular cluster will exhibit a bump in
the luminosity function. For NGC5024 we see a clear bump at a characteristic
magnitude 17, which comes from the globular cluster and a sharp increase as soon
as fainter stars are included. The latter indicates magnitude limit of 20.7 on the
magnitude of the visible stars in the Gaia survey. This bump consists of stars
on the horizontal branch, which happen to all have roughly the same absolute
magnitude of about V = 0.5. Depending on the distance of the cluster, the
bump will shift in magnitude, which can be described by the distance modulus
formula:

m−M = 5 log10 d− 5 , (1)

where m, M and d are apparent magnitude, absolute magnitude and the distance
(in pc), respectively. Here the apparent magnitude indicate how bright a star
appears to an observer, and the absolute magnitude is its intrinsic brightness.

To approximate the magnitude distribution of each window, we use KDE for
magnitude values (x1, . . . , xn):

fh(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
(2)

with bandwidth h and the Epanechnikov function as kernel K.

3 Methods
To compare magnitude densities extracted from a window we regard each

magnitude distribution as temporal sequence and deploy Dynamic Time Warping
(DTW) [6] to measure their similarity.
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Fig. 2: DTW dissimilarity [7].

DTW aligns two sequences non-linearly
along the temporal axis (see Fig. 2) leading to
a distance like measure which, however, does
not fulfill all metric properties. This measure
has the potential to detect similar structures
in the densities, such as for bumps, despite
their exact location on the magnitude axis.

3.1 Nearest Neighbor Retrieval
One method to find similar objects of in-

terest in a data base is Nearest Neighbor Search (NNS). Given a query a nearest
neighbor retrieval system returns a desired number of most similar objects from
the data base according to the distance measure used. Following this strategy
we aim to find interesting GCs in the Gaia survey by retrieving similar densities
to those extracted from the known globular clusters using DTW as similarity
measure. We compare the extracted distribution with a k nearest neighbors of
known structures, by counting the number of common GCs for each window.
The higher the obtained count the more likely it is that there is something inter-
esting in it. This technique can be easily extended to deal with even larger data
sets by using approximate nearest neighbor search approaches, as for example
locality-sensitive hashing[8], best bin first[9] and balanced box-decomposition
tree based search[10].

3.2 Novelty Detection
Since the sky is mostly empty we can regard the search for interesting struc-

tures as novelty or outlier detection. We use an approach which was inspired by
the Support Vector Classifier called Support Vector Data Description (SVDD)
[11]. Assume given data xi ∈ Rn and a fixed chosen kernel K : Rn × Rn → R
which is associated to the feature map Φ: K(x,y) = Φ(x)tΦ(y). The goal of
SVDD is to find a generalized linear mapping x 7→ sgn(f(x)) = sgn(wtΦ(x)−ρ),
which defines a separation of the given data to outliers by means of its sign.
Where the separation boundary corresponds to a linear separation in the fea-
ture space induced by Φ. The problem to find suitable parameters w and ρ for a
given data set of typical points xi can be formalized as an optimization problem
which aims at a separation of the given data from the origin with maximum
margin. This leads to the following primal optimization problem SVDD (pri-
mal): minw,ρ,ξi

1
2 · |w|

2 − ρ+ C
2 ·
∑
i ξ

2
i , such that wtΦ(xi) ≥ ρ− ξi ∀i, where

C > 0 is a fixed constant, and the parameters ξi refer to the slack variables to
allow for some error tolerance. Using the Karush-Kuhn-Tucker conditions, the
Lagrange dual problem becomes

SVDD(dual)
maxαi

− 1
2 ·
∑
ij K(xi,xj)αiαj + 1

C ·
∑
i α

2
i

such that αi ≥ 0 ∀i∑
i αi = 1

This dual problem can be directly optimized relying on linearly constraint convex
quadratic optimization. The solution w and ρ of the primal problem can then
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be recovered from the dual variables αi. These are non-vanishing for support
vectors only and hence result in a sparse description.

The tightness of the data description can be controlled by setting an error
tolerance or using outlier examples one desires to detect. However, for this
approach we require a positive definite kernel also known as Mercer kernel [12],
which we cannot guarantee if the DTW dissimilarity is used due to missing
metric properties. Therefore, we approximate a positive definite kernel (psd)
based on the DTW similarity following the strategy discussed in [6] using the
square approach. Square changes the eigenspectrum of a given similarity matrix
such that all eigenvalues are non-negativ and a psd kernel is obtained. Therefore
we follow two steps to convert the DTW pairwise dissimilarity matrix D between
magnitude distributions into an appropriate kernel as input to the SVDD: 1)
compute similarity matrix S from D via double centering and 2) convert S to a
psd kernel by K = S · S>.

4 Experiments
To assess the different strategies for the detection of globular clusters we

investigate the part of the Gaia survey ranging from 120◦ < RA < 246◦ and
−2◦ < Dec < 60◦ respectively. We extract windows of 0.5 degree bin width
from this part of the sky and approximate the magnitude distributions using
KDE with bandwidth h = 0.15. There are seven known globular clusters at
position (α, δ) for our investigation [13]: 1) NGC4147 (182.53, 18.54), 2) NGC
5024 (198.23, 18.17), 3) NGC5053 (199.11, 17.7), 4) NGC 5272 (205.55, 28.38), 5)
NGC5466 (211.36, 28.53), 6) NGC5904 (229.02, -0.11) and 7) Palomar5 (229.64,
2.08). Since we have a limited magnitude of 20.7 of stars in the Gaia DR1 survey,
we do not include the more distant known GCs.
Nearest Neighbor Retrieval: For the nearest neighbor retrieval we do not only
use the windows centered at the 7 known GCs as example structures as men-
tioned before, but we also include sliding windows around it which are shifted
horizontally and/or vertically by 0.25 degree. The globular cluster will still at
least partly be contained in those. All these examples are then compared with
DTW to windows of equal size extracted by sliding with 0.25 degree through the
part of the sky under observation. Using the counting strategy discussed above
the promising candidates are identified.
Novelty Detection: For the outlier detection we build 9 psd kernels for cross val-
idation based on the DTW dissimilarities as mentioned before. As a proof of
concept we build kernels of 10000 samples each containing: a) a training subset
of 8000 random windows taken from the investigated part of Gaia and b) a test-
ing subset containing the windows extracted around the known GCs, potential
candidates from the retrieval and ca. 2000 random windows. Therefore, we train
9 SVDD models on different random subsets. To evaluate our method, we use
the testing set (b) and report the detection rate of known GCs as well as overlap
with the retrieval method. In our experiments we investigate the threshold ρ
for the decision boundary and therefore the tightness of the bound by an error
tolerance E.

5 Results
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Table 1: Mean hit number (std)
for different hyper-parameter in
retrieval and outlier detection.
HP Candidates GCs found

k 20 23.43 (12.14) 6.71 (0.49)

k 50 35.57 (11.86) 6.71 (0.49)

k 100 77.57 ( 5.56) 7.00 (0.00)

E 1% 22.67 ( 7.37) 5.00 (0.00)

E 5% 107.89 ( 31.21) 5.00 (0.00)

E 10% 139.22 ( 47.96) 5.11 (0.33)

E 20% 222.33 ( 68.01) 5.33 (0.50)

E 30% 256.44 ( 41.22) 5.11 (0.33)

E 40% 377.33 (118.97) 5.44 (0.53)

E 50% 374.44 (107.56) 6.00 (0.00)

The summary of the results is given
in Table 1. Both methods retrieve an
increasing number of potential candidates
with increasing their corresponding hyper-
parameter. The retrieval technique is more
specific with fewer number of potential can-
didates in comparison to the outlier detec-
tion. This was expected since it uses exam-
ples of the structure we are looking for. How-
ever, Palomar5 or NGC5904 are more diffi-
cult. They can be detected, if we increase
the hyper-parameters. The average vote for
k = 20 and corresponding candidates are
shown in Fig. 3. Windows with more than
one forth of the maximum vote are clustered
based on Ra and Dec and hits closer than
0.75◦ denote the same candidate. In the outlier detection we transform the de-

Fig. 3: Average vote for leave-one-out cross-validation using 20 NN retrieval.
The circles mark interesting regions with the color indicating the similarity to
known GCs. Numbers and text flag positions of known GCs. On the right we
also include the response of spatial Gaussian filters at magnitude 19.1 and 17.1
respectively. The former shows clearly the globular stellar structure.

viation from the error tolerance threshold for every hit and model to achieve
a score. Every score which is smaller than 80% of the minimum score is clus-
tered as in the retrieval and considered as candidate. The outlier models were
trained solely on random windows and not provided any example of the known
structures but still detect between 5 and 6 of the 7 known GCs used for testing.
Furthermore the outliers overlap with candidates detected using the retrieval
method. To determine the exact position of a GC and to reduce false positives
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one can use circular Gaussian filters [14] to judge the candidates. The right side
of Fig. 3 shows Gaussian filter responses to the window containing Leo I at dif-
ferent magnitude. There is a high response in the center (i.e. a circular shaped
group of stars) at magnitude around 19.1, but a weak response (i.e. uniformly
distributed stars) at magnitude around 17.1.

6 Conclusion and Outlook
In this contribution we propose two independent strategies to find globular

clusters in the Gaia survey. Potentially interesting structures are found by a
nearest neighbor retrieval method comparing examples extracted from 7 known
GCs and the support vector data description, a kernel-based anomaly detection
technique. Both techniques find most of the 7 known GCs used for testing and
also depict overlapping agreement on potential other candidates. The exact
position of GCs as well as false positives can be determined by Gaussian Filters
on the candidate windows. Future work include the detailed investigation of the
promising candidates and efficient out-of-sample extension.
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