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Abstract. Treatment planning for radiotherapy patients is a time-consuming and 
manual process. In this work, we investigate the use of deep neural networks to 
learn from previous clinical cases and directly predict the optimal dose distribution 
for a new patient. The proposed model combines two architectures, UNet and 

DenseNet, and used mean squared error as loss function. Ten input channels were 
used to include dosimetric and anatomical information. A set of 100 patients was 
used for training/validation and 29 for testing. Dice similarity coefficients ≥ 0.9 for 
the isodose-lines in the predicted versus the clinical dose showed the excellent 
accuracy of the model.  

1 Introduction 

Treatment planning for radiotherapy patients is a time-consuming and heuristic 

process, where the medical physicist manually adjusts the radiation dose objectives 

for the target volume and organs at risk, until the desired dose distribution is 

achieved. Depending on the complexity of the case, generating a good treatment plan 

might require a high level of human expertise and may take from few hours to days.  

This entails a plan quality variability that, together with the extended planning time, 

may lead to suboptimal plans and delayed treatment delivery, which can compromise 
the final treatment outcome.  

 In order to overcome these problems, we propose to use deep neural networks to 

learn from previous clinical cases with high quality plans and directly predict the 

optimal dose distribution associated to a new patient. The predicted dose can later be 

used as a voxel-wise objective to automatically generate the corresponding treatment 

plan. This removes all human intervention and brings a two-fold improvement: 1) 

reduced plan variability by ensuring high quality plans, and 2) decreased planning 

time.  

 An extra challenge in the application of deep neural networks to this domain is 

the high variability in the patient dose distribution, given that the radiation beam 

configuration (i.e. the number of beams used and their angles) is different from 
patient to patient. Recent studies have already reported promising results by using 

convolutional neural networks (CNN) to predict patient specific voxel-wise dose 

distributions from anatomical information (i.e., contours of the involved organs and/or 
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computed tomography (CT) images), either in a slice-by-slice manner (2D) [1-3] or 

directly as a 3D matrix [4]. However, these models rely on consistent beam 

configuration across the patient database used for training, which ensures an accurate 

dose prediction for cases with similar beam settings, but impedes the generalization of 

the model to more realistic clinical cases with variable beam configuration.  

 In this work, we investigate the use of a CNN with an architecture that combines 

U-net [5] and DenseNet [6], for the prediction of 3D dose distributions from a very 

heterogeneous database in terms of beam configuration. In addition, we quantify the 
added value of including both anatomical and dosimetric information as input to the 

CNN, in order to build a single model that is robust to variable beam configuration, 

achieving a more comprehensive automatic planning with a potentially easier clinical 

implementation. 

2 Methods 

2.1 Model architecture  

The proposed model is based on the popular U-net, published by Ronneberger et al. in 

2015 [5]. The U-net is a type of fully convolutional network that it is able to include 

both local and global features from the input images to generate a pixel-wise (two-

dimensional, 2D) prediction. To avoid prediction errors on the superior and inferior 

edges of the volumes, a three-dimensional (3D) variant of the classical 2D U-net was 

developed. In addition, the U-net was modified with the densely connected 
convolutional architecture used in DenseNet, proposed by Huang et al. in 2017 [6], to 

achieve more efficient feature propagation. The DenseNet densely connects its 

convolutional layers in a feed-forward fashion, using the feature-maps of all 

preceding layers as inputs for the current layer. This reduces the vanishing-gradient 

problem, enhances feature propagation and reuse, and decreases the number of 

trainable parameters. However, the dense connection between all layers significantly 

increases the memory usage. Thus, some connections between groups of layers were 

skipped, in order to maintain a reasonable RAM usage [7]. In particular, the 

convolutional layers in our model are densely connected within levels of the same 

resolution in the U-net, between each max pooling and up-sampling operation. We 

refer to each of these levels to as “hierarchy”, which motivated naming this network 
as Hierarchically Densely Connected U-net (HD U-net [4]). This HD U-net combines 

the efficient feature propagation and reuse of DenseNet, with the ability of U-net to 

infer the global and local image information, while keeping a reasonable memory 

usage. Mean squared error between the predicted and the clinical dose was used as the 

loss function for training our model. The detailed architecture of the HD U-net used in 

this study is presented in Figure 1, and the technical elements regarding the operations 

between layers has been previously described elsewhere [4], as well as a comparison 

between the HD U-net, Dense U-net, standard U-net for application to dose 

prediction.  

 Two different models were trained and compared. The first model (standard)  

comprised 9 input channels including only anatomical information, while the second 

model (robust) contained 10 input channels (Figure 1), including both dosimetric (1 
channel) and anatomical information (9 channels).  The dosimetric information was 
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provided in a 3D matrix containing the sum of the non-modulated beam’s eye view 

ray-tracing dose distribution, computed by a fluence-convolution broad beam (FCBB) 

dose algorithm [8] for all involved beams. Note that the difference between this 

elementary dosimetric information provided in the 10th input channel and the 

predicted final dose distribution (i.e., the dose delivered to the patient) is mainly the 

beam’s intensity modulation. Therefore, what the model needs to learn is the optimal 

modulation of the dose for a given patient, provided specific anatomical information.  

The anatomical information comprised 3D binary matrices, i.e. 1 inside the volume 
and 0 outside, for the planning target volume (PTV) and 8 relevant organs at risk 

(OARs) for lung treatment planning: body, heart, esophagus, spinal cord, right and 

left lungs, both lungs minus the target, and carina.  

 

 

 

Fig. 1: HD U-net architecture. Black numbers represent the volume shape and 

resolution at a specific hierarchy, and red numbers are the number of feature maps.  

2.2 Training and testing 

A set of 129 lung cancer patients treated with intensity modulated radiation therapy 

(IMRT), with very heterogeneous beam configuration (4 to 9 beams) and orientation, 

was used for training/validation (100 patients) and testing (29 patients). The number 
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of input samples to the model was the same as the aforementioned number of patients, 

since no data augmentation was used. Three-dimensional images of 5mm3 voxels 

(128x128xS, being S the number of slides in the patient´s inferior to superior 

direction) were used as input, although the patch size used for neural training was 96 

x 96 x 64 (Figure 1). The stability of the model was evaluated by using a 5-fold cross-

validation approach, where the model was randomly initialized, trained with 80 

patients, and validated with the remaining 20 patients, using a different 

training/validation combination for each fold. The accuracy of the two methods 
(standard and robust) was evaluated by computing dice similarity coefficients 

(2(X∩Y)/X+Y) between the isodose lines from the predicted (Dp
robust and Dp

standard) 

and clinical (Dc) dose distributions. The models were trained on an NVIDIA TESLA 

K80 GPU with 12 GB dedicated RAM. 

3 Results 

The robust model, including dosimetric information as input data, outperformed the 

standard model, which only included anatomical information. Dice similarity 

coefficients for the isodose lines (Figure 2) showed that the high dose region (form 

the 80% isodose line) was predicted with comparable accuracy by the two models 

(dice around 0.9), but a major improvement was found in the medium to low dose 

region (from 0% to 60-70% isodose line), where the robust model achieves a dice 
about 10% higher than the standard model. 

 As illustration of the 3D dose distribution predicted by the two models, the 

results for one of the test patients is presented in Figure 3, for an axial slice located at 

the center of the target, for Dc, Dp
robust and Dp

standard. The rest of the patients are not 

presented here due to limited space in the manuscript, but the behavior is similar for 

all of them: the standard model predictions show a very isotropic dose gradient that 

uniformly decrease from the target till the edge of the body, while the robust model is 

able to capture the dose features along the beam path thanks to the additional 

dosimetric information. 

 The two models, standard and robust, were trained during 150 epochs, which 

took about 15 hours in both cases, although the final model in both cases (standard 
and robust) was selected as the one corresponding to the epoch with lower validation 

loss. Additional training for a larger number of epochs was investigated but did not 

result in significant improvement. The average prediction time and its standard 

deviation was 11.42 ± 0.12 s per patient for the standard model, and 11.66 ± 0.14 s for 

the robust model. 
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Fig 2. Dice similarity coefficients of the isodose volumes from 0 to 100% of the 

prescription dose for Dp
robust (solid blue lines) and Dp

standard (solid red lines) versus Dc, 

together with their corresponding standard deviation (color wash), for the 5 models 

obtained after cross-validation, evaluated on the test set. 

 

 
 

Fig 3. Illustration of an axial slice at the center of the target volume (contoured in 

yellow) for one of the test patients: a) clinical dose (Dc), b) predicted dose from the 

robust model (Dp
robust), and c) predicted dose from the standard model (Dp

standard).  

 

4 Conclusion 

The proposed architecture was able to accurately predict patient specific 3D dose 

distributions for lung cancer patients. Two different models were investigated, the 

first one including only anatomical information as input, while the second containing 
an extra channel with dosimetric information. The two models presented similar 

accuracy for the high dose region (inside and around the target volume), but the 

second model outperformed the first one in the prediction of the medium to low dose 

region. This suggests the need of including dosimetric information as input to the 

network, in order to build a robust model that is robust to variable beam 

configuration. This represents an important step towards an easier and more robust 

implementation of automatic planning techniques, since it reduces the model 

dependence on consistent dosimetric characteristics through the training patient 

database. 
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