Efficient supersingularity testing over \mathbb{F}_p and CSIDH KEY VALIDATION

Gustavo Banegas ¹, Valerie Gilchrist ^{2,1}, Benjamin Smith ¹

¹Inria and Laboratoire d'Informatique de l'Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France

²University of Waterloo, Canada

September 22, 2022

Supersingular elliptic curves and CSIDH key validation

CSIDH is an isogeny-based cryptosystem that meets post-quantum security requirements. It's a non-interactive key exchange scheme so key-validation is essential.

Supersingular elliptic curves and CSIDH key validation

CSIDH is an isogeny-based cryptosystem that meets post-quantum security requirements. It's a non-interactive key exchange scheme so key-validation is essential.

What is the CSIDH public key?

$$A\in \mathbb{F}_p$$
 such that $\mathcal{E}_A: y^2=x(x^2+Ax+1)$ s.t. \mathcal{E}_A is supersingular

i.e. $\mathcal{E}_{\mathcal{A}}(\mathbb{F}_p)$ has p+1 points

Supersingular elliptic curves and CSIDH key validation

CSIDH is an isogeny-based cryptosystem that meets post-quantum security requirements. It's a non-interactive key exchange scheme so key-validation is essential.

What is the CSIDH public key?

$$A \in \mathbb{F}_p$$
 such that $\mathcal{E}_A : y^2 = x(x^2 + Ax + 1)$ s.t. \mathcal{E}_A is supersingular

i.e. $\mathcal{E}_{\mathcal{A}}(\mathbb{F}_p)$ has p+1 points

Problem: how should we check if \mathcal{E}_A is supersingular?

- It seeks to find a point of order p + 1;

- It seeks to find a point of order p + 1;
- Hasse's theorem \implies sufficient to find a point of order $N \ge 4\sqrt{p}$ s.t. $N \mid p+1$

- It seeks to find a point of order p + 1;
- Hasse's theorem \implies sufficient to find a point of order $N \ge 4\sqrt{p}$ s.t. $N \mid p+1$
- The factorization of p + 1 must be known (as in the CSIDH setting) In CSIDH,

$$p+1=4\prod_{i=1}^n\ell_i$$

- It seeks to find a point of order p + 1;
- Hasse's theorem \implies sufficient to find a point of order $N \ge 4\sqrt{p}$ s.t. $N \mid p+1$
- The factorization of p + 1 must be known (as in the CSIDH setting) In CSIDH,

$$p+1=4\prod_{i=1}^n\ell_i$$

Algorithm: Sample point P from $\mathcal{E}_A(\mathbb{F}_p)$, compute $Q_i = [(p+1)/\ell_i]P$ for several prime divisors ℓ_i of p+1

- It seeks to find a point of order p + 1;
- Hasse's theorem \implies sufficient to find a point of order $N \ge 4\sqrt{p}$ s.t. $N \mid p+1$
- The factorization of p + 1 must be known (as in the CSIDH setting) In CSIDH,

$$p+1=4\prod_{i=1}^n\ell_i$$

Algorithm: Sample point P from $\mathcal{E}_A(\mathbb{F}_p)$, compute $Q_i = [(p+1)/\ell_i]P$ for several prime divisors ℓ_i of p+1

- if $Q_i \neq 0$ and $[\ell_i]Q_i = 0$ then ℓ_i is a divisor of N;

- It seeks to find a point of order p + 1;
- Hasse's theorem \implies sufficient to find a point of order $N \ge 4\sqrt{p}$ s.t. $N \mid p+1$
- The factorization of p + 1 must be known (as in the CSIDH setting) In CSIDH,

$$p+1=4\prod_{i=1}^n\ell_i$$

Algorithm: Sample point P from $\mathcal{E}_A(\mathbb{F}_p)$, compute $Q_i = [(p+1)/\ell_i]P$ for several prime divisors ℓ_i of p+1

- if $Q_i \neq 0$ and $[\ell_i]Q_i = 0$ then ℓ_i is a divisor of N;
- if $[\ell_i]Q_i \neq 0$, then the curve is not supersingular

- It seeks to find a point of order p + 1;
- Hasse's theorem \implies sufficient to find a point of order $N \ge 4\sqrt{p}$ s.t. $N \mid p+1$
- The factorization of p + 1 must be known (as in the CSIDH setting) In CSIDH,

$$p+1=4\prod_{i=1}^n\ell_i$$

Algorithm: Sample point P from $\mathcal{E}_A(\mathbb{F}_p)$, compute $Q_i = [(p+1)/\ell_i]P$ for several prime divisors ℓ_i of p+1

- if $Q_i \neq 0$ and $[\ell_i]Q_i = 0$ then ℓ_i is a divisor of N;
- if $[\ell_i]Q_i \neq 0$, then the curve is not supersingular
- repeat for enough ℓ_i such that their product exceeds $4\sqrt{p}$;

- It seeks to find a point of order p + 1;
- Hasse's theorem \implies sufficient to find a point of order $N \ge 4\sqrt{p}$ s.t. $N \mid p+1$
- The factorization of p + 1 must be known (as in the CSIDH setting) In CSIDH,

$$p+1=4\prod_{i=1}^n\ell_i$$

Algorithm: Sample point P from $\mathcal{E}_A(\mathbb{F}_p)$, compute $Q_i = [(p+1)/\ell_i]P$ for several prime divisors ℓ_i of p+1

- if $Q_i \neq 0$ and $[\ell_i]Q_i = 0$ then ℓ_i is a divisor of N;
- if $[\ell_i]Q_i \neq 0$, then the curve is not supersingular
- repeat for enough ℓ_i such that their product exceeds $4\sqrt{p}$;

For CSIDH-512, where n = 74, this results in ≈ 33 scalar multiplications.

Product tree version (currently in-use in CSIDH/CTIDH)

- The same small primes are being used in the computation of the Q_i so compute using a product tree;

Product tree version (currently in-use in CSIDH/CTIDH)

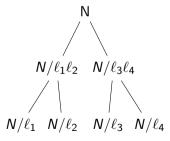
- The same small primes are being used in the computation of the Q_i so compute using a product tree;
- It searches tree depth first;

Product tree version (currently in-use in CSIDH/CTIDH)

- The same small primes are being used in the computation of the Q_i so compute using a product tree;
- It searches tree depth first;
- It has a faster run-time but it uses more memory.

Product tree version (currently in-use in CSIDH/CTIDH)

- The same small primes are being used in the computation of the Q_i so compute using a product tree;
- It searches tree depth first;
- It has a faster run-time but it uses more memory.



An *isogeny* is a non-constant, rational map between two elliptic curves.

An *isogeny* is a non-constant, rational map between two elliptic curves.

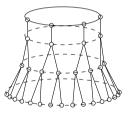
An *l-isogeny graph*:

- vertices = ℓ -isogenous curves (up to isomorphism)
- edges = ℓ -isogenies (up to isomorphism)

2-isogeny graphs over \mathbb{F}_p form a forest of same-sized trees, where the roots are connected by a cycle. We call them *volcanoes*.

The cycle of roots is the *crater*.

The leaves of the trees form the floor.



2-isogeny graphs over \mathbb{F}_p form a forest of same-sized trees, where the roots are connected by a cycle. We call them *volcanoes*.

The cycle of roots is the *crater*.

The leaves of the trees form the floor.

Supersingular 2-isogeny graphs over \mathbb{F}_{p^2} will form a 3-regular, connected graph.

Ordinary (not supersingular) graphs over \mathbb{F}_{p^2} form a larger volcano.



Sutherland's test (2011) aims to determine whether a given curve is supersingular or ordinary by identifying its 2-isogeny graph over \mathbb{F}_{p^2} as either a volcano or a 3-regular graph.

Sutherland's test (2011) aims to determine whether a given curve is supersingular or ordinary by identifying its 2-isogeny graph over \mathbb{F}_{p^2} as either a volcano or a 3-regular graph.

It does so by

- beginning three (non-backtracking) paths in the \mathbb{F}_{p^2} 2-isogeny graph of the curve;

Sutherland's test (2011) aims to determine whether a given curve is supersingular or ordinary by identifying its 2-isogeny graph over \mathbb{F}_{p^2} as either a volcano or a 3-regular graph.

It does so by

- beginning three (non-backtracking) paths in the \mathbb{F}_{p^2} 2-isogeny graph of the curve;
- stepping through each path log₂ p + 1 times (the max. height of the ordinary volcano);

Sutherland's test (2011) aims to determine whether a given curve is supersingular or ordinary by identifying its 2-isogeny graph over \mathbb{F}_{p^2} as either a volcano or a 3-regular graph.

It does so by

- beginning three (non-backtracking) paths in the \mathbb{F}_{p^2} 2-isogeny graph of the curve;
- stepping through each path log₂ p + 1 times (the max. height of the ordinary volcano);
- if none of the paths hit the floor, then the graph is not a volcano.

We will traverse the graph using *modular polynomials*. The (classical) modular polynomial of level 2 is

$$\begin{split} \Phi_2(j_1,j_2) &= j_1^3 + j_2^3 - j_1^2 j_2^2 + 1488 (j_1^2 j_2 + j_1 j_2^2) - 162000 (j_1^2 + j_2^2) \\ &+ 40773375 j_1 j_2 + 8748000000 (j_1 + j_2) - 157464000000000 \,. \end{split}$$

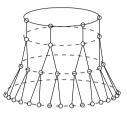
We will traverse the graph using *modular polynomials*. The (classical) modular polynomial of level 2 is

$$\begin{split} \Phi_2(j_1,j_2) &= j_1^3 + j_2^3 - j_1^2 j_2^2 + 1488 (j_1^2 j_2 + j_1 j_2^2) - 162000 (j_1^2 + j_2^2) \\ &+ 40773375 j_1 j_2 + 8748000000 (j_1 + j_2) - 157464000000000. \end{split}$$

It has the property that

there exists a 2-isogeny
$$\mathcal{E}_1 \to \mathcal{E}_2 \iff \Phi_2(j(\mathcal{E}_1), j(\mathcal{E}_2)) = 0$$
.

Compute and factor the cubic $\Phi_2(X, j(\mathcal{E}_0)) = 0$.



Compute and factor the cubic $\Phi_2(X, j(\mathcal{E}_0)) = 0$.

Compute and factor the quadratic $\Phi_2(X, j(\mathcal{E}_i))/(X - j(\mathcal{E}_{i-1})) = 0$.

- if it is irreducible, we have hit a leaf, so we are ordinary

Compute and factor the cubic $\Phi_2(X, j(\mathcal{E}_0)) = 0$.

Compute and factor the quadratic $\Phi_2(X, j(\mathcal{E}_i))/(X - j(\mathcal{E}_{i-1})) = 0$.

- if it is irreducible, we have hit a leaf, so we are ordinary

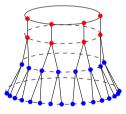
Repeat $\log_2 p + 1$ times.

- after this many steps, we have walked the maximal height of the volcano, so we must be supersingular

Modified Sutherland

Sutherland's modification in the \mathbb{F}_p case:

- Assuming we are supersingular, the \mathbb{F}_p volcano will be very short—only two levels tall;
- Within two steps, one neighbour will be defined over \mathbb{F}_{p^2} . We take this path down;
- Gives an approximate $3 \times$ speedup.



Modified Sutherland

Our modifications:

- Improved bound on the maximum length of the descending path (if ordinary) of the volcano

$$\log_2 p + 1 \mapsto rac{1}{2} \log_2 p + 1;$$

Our modifications:

- Improved bound on the maximum length of the descending path (if ordinary) of the volcano

$$\log_2 p + 1 \mapsto rac{1}{2} \log_2 p + 1;$$

- We replaced the modular polynomial computations by computing explicit 2-isogenies as follows:

$$\varphi: \mathcal{E} \longrightarrow \mathcal{E}/\langle (\alpha, \mathbf{0}) \rangle \cong \mathcal{E}': y^2 = x(x^2 + a'_2 x + a'_4).$$

For $m \geq 0$, the *m*-th division polynomial $\psi_{\mathcal{E},m}$ of an elliptic curve \mathcal{E} satisfies

$$\psi_{\mathcal{E},m}(x(P),y(P))=0\iff P\in\mathcal{E}[m]\setminus\{0\}.$$

For $m \geq 0$, the *m*-th division polynomial $\psi_{\mathcal{E},m}$ of an elliptic curve \mathcal{E} satisfies

$$\psi_{\mathcal{E},m}(x(P),y(P))=0\iff P\in\mathcal{E}[m]\setminus\{0\}.$$

We also have that

$$\psi_{\mathcal{E},p}(x)^2 = 1 \iff \mathcal{E}$$
 is supersingular.

(Note: a curve is supersingular \iff it has no *p*-torsion over any field extension)

For $m \geq 0$, the *m*-th division polynomial $\psi_{\mathcal{E},m}$ of an elliptic curve \mathcal{E} satisfies

$$\psi_{\mathcal{E},m}(x(P),y(P))=0\iff P\in\mathcal{E}[m]\setminus\{0\}.$$

We also have that

$$\psi_{\mathcal{E},p}(x)^2 = 1 \iff \mathcal{E}$$
 is supersingular.

(Note: a curve is supersingular \iff it has no *p*-torsion over any field extension) Doliskani's test (2018) applies basic Polynomial Identity Testing to check this criterion.

For $m \geq 0$, the *m*-th division polynomial $\psi_{\mathcal{E},m}$ of an elliptic curve \mathcal{E} satisfies

$$\psi_{\mathcal{E},m}(x(P),y(P))=0\iff P\in\mathcal{E}[m]\setminus\{0\}.$$

We also have that

$$\psi_{\mathcal{E},p}(x)^2 = 1 \iff \mathcal{E}$$
 is supersingular.

(Note: a curve is supersingular \iff it has no *p*-torsion over any field extension) Doliskani's test (2018) applies basic Polynomial Identity Testing to check this criterion. For a random $u \in \mathbb{F}_{n^2}$,

$$\psi_{\mathcal{E},p}(u)^2 = 1 \implies_{\text{prob. } 1-1/2p} \psi_{\mathcal{E},p}^2 = 1 \iff \mathcal{E} \text{ s.s.}$$

Modified Doliskani

Our modification:

Scalar multiplication can be defined in terms of division polynomials as

$$[m](x,y) = \left(\frac{\phi_{\mathcal{E},m}(x)}{\psi_{\mathcal{E},m}(x)^2}, \frac{\omega_{\mathcal{E},m}(x,y)}{\psi_{\mathcal{E},m}(x)^3}\right)$$

where $\phi_{\mathcal{E},m}(x)$ and $\omega_{\mathcal{E},m}(x,y)$ rely on $\psi_{\mathcal{E},m}(x)$.

Modified Doliskani

Our modification:

Scalar multiplication can be defined in terms of division polynomials as

$$[m](x,y) = \left(\frac{\phi_{\mathcal{E},m}(x)}{\psi_{\mathcal{E},m}(x)^2}, \frac{\omega_{\mathcal{E},m}(x,y)}{\psi_{\mathcal{E},m}(x)^3}\right)$$

where $\phi_{\mathcal{E},m}(x)$ and $\omega_{\mathcal{E},m}(x,y)$ rely on $\psi_{\mathcal{E},m}(x)$.

This tells us that if (X : Y : Z) = [p](x, y), then $X = \lambda \phi_p(u)$ and $Z = \lambda \psi_p^2(u)$ where λ is a common projective factor.

Modified Doliskani

Our modification:

Scalar multiplication can be defined in terms of division polynomials as

$$[m](x,y) = \left(\frac{\phi_{\mathcal{E},m}(x)}{\psi_{\mathcal{E},m}(x)^2}, \frac{\omega_{\mathcal{E},m}(x,y)}{\psi_{\mathcal{E},m}(x)^3}\right)$$

where $\phi_{\mathcal{E},m}(x)$ and $\omega_{\mathcal{E},m}(x,y)$ rely on $\psi_{\mathcal{E},m}(x)$.

This tells us that if (X : Y : Z) = [p](x, y), then $X = \lambda \phi_p(u)$ and $Z = \lambda \psi_p^2(u)$ where λ is a common projective factor.

In our version of Doliskani's test, we use (projective) differential addition to compute

$$[p](u:1) = \left(\lambda \phi_{\mathcal{E},p}(u) : \lambda \psi_{\mathcal{E},p}^2(u)\right)$$

where λ is determined by the ladder algorithm.

Comparison

Test algorithm	Asymptotics		Supersingular input			Non-Supersingular input		
	Time (\mathbb{F}_{p} -ops)	Space (\mathbb{F}_p -elts)	MCycles: Avg.	Med.	Stack (B)	MCycles: Avg.	Med.	Stack (B)
Random point	$O(n \log p)$	O(1)	63.4	62.2	2890	65.3	62.9	2890
Product tree	$O((\log n)(\log p))$	$O(\log n)$	6.7	6.1	4344	1.7	1.6	3896
Sutherland	$O(\log^2 p)$	O(1)	35.4	35.1	2696	0.8	0.4	2696
Doliskani	$O(\log p)$	O(1)	4.5	4.7	3280	2.9	2.8	3264

- Using an Intel i7-10610U processor running at 4.90 GHz (see paper for details);

- Cycles were measured using the bench utility provided in the CSIDH code package;
- The implementation of the Product tree algorithm was taken directly from the CTIDH library.
- timings: CSIDH-512 parameters using the CSIDH-512 \mathbb{F}_p code

Comparison

Test algorithm	Asymptotics		Supersingular input			Non-Supersingular input		
	Time (\mathbb{F}_{p} -ops)	Space (\mathbb{F}_p -elts)	MCycles: Avg.	Med.	Stack (B)	MCycles: Avg.	Med.	Stack (B)
Random point	$O(n \log p)$	O(1)	63.4	62.2	2890	65.3	62.9	2890
Product tree	$O((\log n)(\log p))$	$O(\log n)$	6.7	6.1	4344	1.7	1.6	3896
Sutherland	$O(\log^2 p)$	O(1)	35.4	35.1	2696	0.8	0.4	2696
Doliskani	$O(\log p)$	O(1)	4.5	4.7	3280	2.9	2.8	3264

- Using an Intel i7-10610U processor running at 4.90 GHz (see paper for details);

- Cycles were measured using the bench utility provided in the CSIDH code package;
- The implementation of the Product tree algorithm was taken directly from the CTIDH library.
- timings: CSIDH-512 parameters using the CSIDH-512 \mathbb{F}_p code

Conclusion: we suggest using Doliskani for CSIDH key validation. See https://ia.cr/2022/880 for details.