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Supersingular elliptic curves and CSIDH key validation

CSIDH is an isogeny-based cryptosystem that meets post-quantum security requirements.
It’s a non-interactive key exchange scheme so key-validation is essential.

What is the CSIDH public key?

A ∈ Fp such that EA : y2 = x(x2 + Ax + 1) s.t. EA is supersingular

i.e. EA(Fp) has p + 1 points

Problem: how should we check if EA is supersingular?
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Random Point Test

- It seeks to find a point of order p + 1;

- Hasse’s theorem =⇒ sufficient to find a point of order N ≥ 4
√
p s.t. N | p + 1

- The factorization of p + 1 must be known (as in the CSIDH setting)

In CSIDH,

p + 1 = 4
n∏

i=1

ℓi

Algorithm: Sample point P from EA(Fp), compute Qi = [(p + 1)/ℓi ]P for several prime
divisors ℓi of p + 1

- if Qi ̸= 0 and [ℓi ]Qi = 0 then ℓi is a divisor of N;

- if [ℓi ]Qi ̸= 0, then the curve is not supersingular

- repeat for enough ℓi such that their product exceeds 4
√
p;

For CSIDH-512, where n = 74, this results in ≈ 33 scalar multiplications.
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Product Tree Test

Product tree version (currently in-use in CSIDH/CTIDH)

- The same small primes are being used in the computation of the Qi so compute using a
product tree;

- It searches tree depth first;

- It has a faster run-time but it uses more memory.

N

N/ℓ1ℓ2

N/ℓ1 N/ℓ2

N/ℓ3ℓ4

N/ℓ3 N/ℓ4
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Isogeny Background

An isogeny is a non-constant, rational map between two elliptic curves.

An ℓ-isogeny graph:

- vertices = ℓ-isogenous curves (up to isomorphism)

- edges = ℓ-isogenies (up to isomorphism)
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Sutherland Test

2-isogeny graphs over Fp form a forest of same-sized trees, where the roots are connected by a
cycle. We call them volcanoes.

The cycle of roots is the crater.

The leaves of the trees form the floor.

Supersingular 2-isogeny graphs over Fp2 will form a 3-regular, connected graph.

Ordinary (not supersingular) graphs over Fp2 form a larger volcano.
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Sutherland Test

Sutherland’s test (2011) aims to determine whether a given curve
is supersingular or ordinary by identifying its 2-isogeny graph over
Fp2 as either a volcano or a 3-regular graph.

It does so by

- beginning three (non-backtracking) paths in the Fp2

2-isogeny graph of the curve;

- stepping through each path log2 p + 1 times (the max.
height of the ordinary volcano);

- if none of the paths hit the floor, then the graph is not a
volcano.
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Sutherland Test

We will traverse the graph using modular polynomials.
The (classical) modular polynomial of level 2 is

Φ2(j1, j2) = j31 + j32 − j21 j
2
2 + 1488(j21 j2 + j1j

2
2 )− 162000(j21 + j22 )

+ 40773375j1j2 + 8748000000(j1 + j2)− 157464000000000 .

It has the property that

there exists a 2-isogeny E1 → E2 ⇐⇒ Φ2(j(E1), j(E2)) = 0 .
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Sutherland Test

Compute and factor the cubic Φ2(X , j(E0)) = 0.

· · ·
Compute and factor the quadratic Φ2(X , j(Ei ))/(X − j(Ei−1)) = 0.

- if it is irreducible, we have hit a leaf, so we are ordinary

Repeat log2 p + 1 times.

- after this many steps, we have walked the maximal height of the volcano, so we must be
supersingular
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Modified Sutherland

Sutherland’s modification in the Fp case:

- Assuming we are supersingular, the Fp volcano will be very short—only two levels tall;

- Within two steps, one neighbour will be defined over Fp2 . We take this path down;

- Gives an approximate 3× speedup.
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Modified Sutherland

Our modifications:

- Improved bound on the maximum length of the descending path (if ordinary) of the
volcano

log2 p + 1 7→ 1

2
log2 p + 1;

- We replaced the modular polynomial computations by computing explicit 2-isogenies as
follows:

φ : E −→ E/⟨(α, 0)⟩ ∼= E ′ : y2 = x(x2 + a′2x + a′4).
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Doliskani Test

For m ≥ 0, the m-th division polynomial ψE,m of an elliptic curve E satisfies

ψE,m(x(P), y(P)) = 0 ⇐⇒ P ∈ E [m] \ {0} .

We also have that

ψE,p(x)
2 = 1 ⇐⇒ E is supersingular.

(Note: a curve is supersingular ⇐⇒ it has no p-torsion over any field extension)

Doliskani’s test (2018) applies basic Polynomial Identity Testing to check this criterion.
For a random u ∈ Fp2 ,

ψE,p(u)
2 = 1 =⇒

prob. 1-1/2p
ψ2
E,p = 1 ⇐⇒ E s.s.
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Modified Doliskani

Our modification:
Scalar multiplication can be defined in terms of division polynomials as

[m](x , y) =

(
ϕE,m(x)

ψE,m(x)2
,
ωE,m(x , y)

ψE,m(x)3

)
where ϕE,m(x) and ωE,m(x , y) rely on ψE,m(x).

This tells us that if (X : Y : Z ) = [p](x , y), then X = λϕp(u) and Z = λψ2
p(u) where λ is a

common projective factor.

In our version of Doliskani’s test, we use (projective) differential addition to compute

[p](u : 1) =
(
λϕE,p(u) : λψ

2
E,p(u)

)
where λ is determined by the ladder algorithm.
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Comparison

Test algorithm Asymptotics Supersingular input Non-Supersingular input
Time (Fp-ops) Space (Fp-elts) MCycles: Avg. Med. Stack (B) MCycles: Avg. Med. Stack (B)

Random point O(n log p) O(1) 63.4 62.2 2890 65.3 62.9 2890
Product tree O((log n)(log p)) O(log n) 6.7 6.1 4344 1.7 1.6 3896
Sutherland O(log2 p) O(1) 35.4 35.1 2696 0.8 0.4 2696
Doliskani O(log p) O(1) 4.5 4.7 3280 2.9 2.8 3264

- Using an Intel i7-10610U processor running at 4.90GHz (see paper for details);

- Cycles were measured using the bench utility provided in the CSIDH code package;

- The implementation of the Product tree algorithm was taken directly from the CTIDH
library.

- timings: CSIDH-512 parameters using the CSIDH-512 Fp code

Conclusion: we suggest using Doliskani for CSIDH key validation.
See https://ia.cr/2022/880 for details.
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