
On the Size of Monotone Span Programs

Ventzislav Nikov1, Svetla Nikova2 ?, and Bart Preneel2

1 Department of Mathematics and Computing Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
v.nikov@tue.nl

2 Department Electrical Engineering, ESAT/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Heverlee-Leuven, Belgium
svetla.nikova,bart.preneel@esat.kuleuven.ac.be

Abstract. Span programs provide a linear algebraic model of computa-
tion. Monotone span programs (MSP) correspond to linear secret sharing
schemes. This paper studies the properties of monotone span programs
related to their size. Using the results of van Dijk (connecting codes and
MSPs) and a construction for a dual monotone span program proposed
by Cramer and Fehr we prove a non-trivial upper bound for the size
of monotone span programs. By combining the concept of critical fami-
lies with the dual monotone span program construction of Cramer and
Fehr we improve the known lower bound with a constant factor, showing
that the lower bound for the size of monotone span programs should
be approximately twice as large. Finally, we extend the result of van
Dijk showing that for any MSP there exists a dual MSP such that the
corresponding codes are dual.

1 Introduction

Motivation and Related Work. Span programs have been introduced in 1993
by Karchmer and Wigderson in [14] as a linear algebraic model of computation.
A span program for a Boolean function is presented as a matrix over a field
with rows labelled by literals of the variables, and the size of the program is the
number of the rows. The span program accepts an assignment if and only if the
all-ones row is a linear combination of the rows whose labels are consistent with
the assignment. A span program is monotone if only positive literals are used as
labels of the rows.

One main motivation to study span programs is that lower bounds for their
size imply lower bounds for formula size and other interesting complexity mea-
sures including branching program size. The class of functions computable by
polynomial size span programs over GF (2) is equivalent to the class of functions
computable by polynomial size parity branching programs [7, 14]. Span programs
over other fields are related to other logspace classes [1, 7, 14].
?

The work described in this paper has been supported in part by the European Commission through the IST Pro-
gramme under Contract IST-2002-507932 ECRYPT, IWT STWW project on Anonymity and Privacy in Electronic
Services and Concerted Research Action GOA-MEFISTO-666 of the Flemish Government.

Monotone span programs (MSPs) are also closely related to the cryptographic
primitive secret sharing schemes. The concept of secret sharing was introduced
by Shamir [18] as a tool to protect a secret simultaneously from exposure and
from being lost. It allows a so called dealer to share the secret among a set of
entities, usually called players, in such a way that only certain specified subsets
of the players are able to reconstruct the secret while smaller subsets have no
information about it. Monotone span programs are equivalent to a subclass of
secret sharing schemes called linear secret sharing schemes (LSSSs). The size of
MSPs measures the amount of information that has to be given to the partic-
ipants in LSSSs. Lower bounds on MSPs imply lower bounds on the length of
the shares in LSSSs.

In cryptographic multi-party protocols a general question is to find a “good
measure”, so that “often” the protocols are polynomially efficient in the number
of players. Let complexity mean the total number of rounds, bits exchanged, local
computations performed, etc. The best measure known for the efficiency of an
SSS protocol is the Monotone Span Program Complexity [8] (which is the size of
the MSP) and it coincides with the complexity in terms of linear secret sharing
schemes over finite fields. Thus the question of estimating the MSP complexity
(i.e. the size of the MSP) is a central question in several areas.

In a series of works [3, 5, 11] a lower bound for the size of an MSP has been
proven. Later, Gal [12] proved that the MSP size is in the worst case superpoly-
nomially (in the number of players) lower bounded. In addition it was proven in
[4] that the size of MSPs over two fields with different characteristics is incom-
parable.

Our Results. We focus on studying the properties of MSPs related to their
size. Using the results of van Dijk [10] (connecting codes and MSPs) and a
construction for dual MSPs proposed by Cramer and Fehr [9] we prove a non-
trivial upper bound for the size of MSPs. This result was announced in part in
[16]. On the other hand using the same approach as in [3, 11] (critical families)
together with the dual MSP construction of Cramer and Fehr [9] we improve
the known lower bound with a constant factor; we show that the lower bound
for the size of an MSP should be approximately twice as large. The rank of the
matrix has been used a number of times to prove lower bounds on various types
of complexity. In particular it has been used for the size of monotone formulas
and monotone span programs [13]. We show that the nullity (the dimension of
the kernel) of the matrix also should be taken into account when estimating the
size of MSPs, since the nullity is linked to the rank of the matrix used in the
dual MSP. Next we extend the result of van Dijk [10] showing that for any MSP
M there exists a dual MSP M⊥ such that the corresponding codes C and C⊥
are dual.

Organization. In the next section we recall some definitions and notations
that will be used later in the paper. In the first part of Sect. 3 we give some
known properties of MSPs, then we describe our results: we modify the dual
MSP construction of Cramer and Fehr and present an upper bound for the size of
MSP in terms of the number of minimal and maximal sets in the access structure

computed by the MSP. In Sect. 4 we first present definitions and known results
related to the approach developed in [3, 11, 12]; then we improve the known lower
bound for the size of an MSP.

2 Preliminaries

Let us denote the players in a Secret Sharing Scheme by Pi, 1 ≤ i ≤ n, the set of
all players by P = {P1, . . . , Pn} and the set of all subsets of P (i.e., the power set
of P) by P (P). We call the groups which are allowed to reconstruct the secret
qualified and the groups which should not be able to obtain any information
about the secret forbidden. The set of qualified groups is denoted by Γ (Γ ⊆
P (P)) and the set of forbidden groups by ∆ (∆ ⊆ P (P)). The set Γ is called
monotone increasing if for any set A in Γ any set containing A is also in Γ.
Similarly, ∆ is called monotone decreasing, if for each set B in ∆ each subset
of B is also in ∆. A monotone increasing set Γ can be efficiently described by
the set Γ− consisting of the minimal elements in Γ , i.e., the elements in Γ for
which no proper subset is also in Γ. Similarly, the set ∆+ consists of the maximal
elements (sets) in ∆, i.e., the elements in ∆ for which no proper superset is also
in ∆. The tuple (Γ,∆) is called an access structure if Γ ∩∆ = ∅. It is obvious
that (Γ−,∆+) generates (Γ,∆). If the union of Γ and ∆ is equal to P (P) (so
Γ is equal to ∆c, the complement of ∆), then we say that the access structure
(Γ,∆) is complete and we denote it just by Γ. Throughout the paper we will
consider connected access structures, i.e., the access structures in which every
player is in at least one minimal set. For a complete access structure the dual
access structure could be defined as follows. The dual access structure Γ⊥ of
an access structure Γ , defined on P, is the collection of sets A ⊆ P such that
P \A = Ac /∈ Γ .

In most of the works (e.g. [3, 5, 11, 14]) the connection between MSPs and
monotone Boolean functions has been exploit. Here we will show that there is
one-to-one correspondence between complete access structures and monotone
Boolean functions. Associate with every player Pi a Boolean variable xi. Then
with any set A ⊆ P we associate a variable xA = (x1, . . . , xn) by fixing xi = 1
if and only if Pi ∈ A; xA is sometimes called the characteristic vector of A.
Now a one-to-one mapping between f and Γ is defined in the following way:
f(xA) = 1 if and only if A ∈ Γ . A minterm of a monotone function is a minimal
set of its variables with the property that the value of the function is 1 on any
input that assigns 1 to each variable in the set, no matter what the values of the
other variables are. Using the mapping between access structures and monotone
functions, it is easy to see that minterms correspond to minimal sets. A maxterm
of a monotone function is a minimal set of its variables with the property that
the value of the function is 0 on any input that assigns 0 to each variable in the
set, no matter what the values of the other variables are. Recall the one-to-one
mapping between f and Γ . With this mapping in mind it is not difficult to verify
that maxterms are equivalent to maximal sets. Let f(x1, . . . , xn) be a monotone
Boolean function. Let f∗(x1, . . . , xn) = f(x1, . . . , xn), sometimes f∗ is called

the dual function of f . In fact the minterms of f∗ are exactly the maxterms
of f . Using again the one-to-one mapping between f and Γ it follows that if
access structure Γ corresponds to a monotone function f , then the function f∗

corresponds to the dual access structure Γ⊥.
An SSS is linear if the dealer uses only linear operations to share (reconstruct)

the secret amongst the participants. Each linear SSS (LSSS) can be viewed as
derived from a monotone span program computing its access structure [8]. On
the other hand, each monotone span program gives rise to an LSSS. Hence, one
can identify an LSSS with its underlying monotone span program. Such an MSP
always exists, because MSPs can compute any monotone access structure (see
[2, 11, 14]). An important parameter of the MSP is its size, which turns out to
be also the size of the corresponding LSSS (the sum of all shares).

Let us describe some of the tools we will employ. An m × d matrix M over
a field F defines a map from Fd to Fm by taking a vector v ∈ Fd to the vector
Mv ∈ Fm. Associated with an m×d matrix M (or a linear map) are two natural
subspaces, one in Fm and the other in Fd. They are defined as follows. The kernel
of M (denoted by ker(M)) is the set of vectors u ∈ Fd, such that Mu = 0. The
image of M (denoted by im(M)) is the set of vectors v ∈ Fm such that v = Mu
for some u ∈ Fd. The dimension of the image of M is called the rank of M , and
the dimension of the kernel of M is called its nullity. A central result of linear
algebra, called the rank and nullity theorem states that the dimensions of these
two spaces add up to d, the number of columns in M . It is well known that the
column rank of a matrix M (being the maximal size of a linearly independent
set of columns of M) is equal to the row rank of M (which is the maximal size
of an independent set of rows). The space generated by the rows of a matrix M
will sometimes be denoted by span(M).

For an arbitrary matrix M over a field F, with m rows labelled by 1, . . . ,m
and for an arbitrary non-empty subset A of {1, . . . ,m}, letMA denote the matrix
obtained by keeping only those rows i with i ∈ A. In the sequel vi will denote a
vector but vi stands for the i-th coordinate of the vector v. With the standard in-
ner product 〈v,w〉 we write v ⊥ w, when 〈v,w〉 = 0. For an F-linear subspace V
of Fd, V⊥ denotes the collection of elements of Fd, that are orthogonal to all of V
(the orthogonal complement). It is again an F-linear subspace. For all subspaces
V of Fd we have V = (V⊥)⊥. Other standard relations are (im(MT))⊥ = ker(M)
or im(MT) = (ker(M))⊥, as well as 〈v,MTw〉 = 〈Mv,w〉.

Let F be a finite field and let the set of secrets be K = Fp0 , with p0 = 1.
Associate with each player Pi (1 ≤ i ≤ n) a positive integer pi such that the
sets of possible shares for player Pi, is a linear subspace Si = Fpi . Denote by
p =

∑n
i=1 pi and by N = p0 + p, then the sharing space S = S1 × · · · × Sn = Fp

and K × S = FN .

Definition 1. [10] Consider the vector v ∈ FN . The coordinates in v, which
belong to player Pi are collected in a sub-vector denoted by vi and the coordinates
that correspond to the secret, i.e., to the dealer D are collected in a sub-vector
denoted by v0 or in other words v = (v0,v1, . . . ,vn) where vi ∈ Fpi . The p-

support of a vector v, denoted by supp(v), is defined as the set of coordinates i,
0 ≤ i ≤ n for which vi 6= 0, i.e., supp(v) = {i : vi 6= 0}.

Now we give a formal definition of a Monotone Span Program.

Definition 2. [14] A Monotone Span Program (MSP) M is a quadruple (F,M,
ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m columns)
over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε is a fixed
non-zero vector, called target vector, e.g., the column vector (1, 0, . . . , 0)T ∈ F d.
The size of M is the number m of rows and is denoted as size(M).

As ψ labels each row with an integer i from {1, . . . ,m} that corresponds to
player Pψ(i), we can think of each player as being the “owner” of one or more
rows. Also consider a “function” ϕ from [P1, . . . , Pn] to {1, . . . ,m} which gives
for every player Pi the set of rows owned by him (denoted by ϕ(Pi)). In some
sense ϕ is the “inverse” of ψ. For any set of players B ⊆ P consider the matrix
consisting of rows these players own in M , i.e. Mϕ(B). As it is common, we
shall shorten the notation Mϕ(B) to just MB . The reader should be aware of the
difference between MB for B ⊆ P and for B ⊆ {1, . . . ,m}.

An MSP is said to compute a (complete) access structure Γ when ε ∈ im(MT
A)

if and only if A is a member of Γ . We say that A is accepted by M if and only
if A ∈ Γ , otherwise we say A is rejected by M. In other words, the players
in A can reconstruct the secret precisely if the rows they own contain in their
linear span the target vector of M, and otherwise they get no information about
the secret. There exists a so-called recombination vector λ such that MT

Aλ = ε
hence 〈λ,MA(s,ρ)T 〉 = 〈MT

Aλ, (s,ρ)T 〉 = 〈ε, (s,ρ)T 〉 = s for any secret s and
any random vector ρ. It is easy to check that the vector ε /∈ im(MT

B) if and
only if there exists a vector k ∈ Fd such that MBk = 0 and k1 = 1. Technically
these properties mean that when we consider the restricted matrix MA for some
subset A of P, the first column is linearly dependent on the other columns if
and only if A /∈ Γ .

Note 1. [3, 11] It is well known that the number d of columns in an MSP M
can be increased without changing the access structure computed by it. The
space generated by the 2-nd up to the d-th column of M does not contain even
a non-zero multiple of the first column. Without changing the access structure
that is computed, we can always replace the 2-nd up to the d-th column of M
by any set of vectors that generates the same space.

3 On Upper Bounds for the Size of MSPs

We will start with some known properties of MSPs. Cramer and Fehr [9] proposed
a method to construct the dual MSP (i.e. the MSP computing the dual access
structure Γ⊥) starting from the MSP computing a given access structure Γ .

Lemma 1. [9] Let an MSP M = (F,M, ε, ψ) compute Γ . Denote by λ a solu-
tion of the equation MTλ = ε and let b1,b2, . . . ,b` denote an arbitrary gen-
erating set of ker(MT), (l = nullity(MT)). Then M⊥ = (F,M⊥, ε∗, ψ) is an

MSP computing Γ⊥, where M⊥ = [λ,b1,b2, . . . ,b`] and ε∗ is the column vector
(1, 0, . . . , 0)T ∈ F`+1.

Note 2. Let us define the d× (`+1) matrix E to be a zero matrix except for the
entry in the upper left corner which is 1, or in other words E = ε(ε∗)T . Then
it follows from the construction proposed in Lemma 1 that the matrices M and
M⊥ satisfy the following equation MTM⊥ = E.

In his Ph.D. thesis van Dijk [10] investigates the more general setting when more
than one secret (e.g. s1, . . . , sp0 ∈ F) should be shared with an access structure.
Note that this approach allows consideration of incomplete access structures.
Van Dijk proposed a method (using the generalized vector space construction)
to build matrices which have the properties equivalent to the MSP. Recall that
we consider only the case p0 = 1, i.e. s ∈ F. It is worth to note that because of
[10, Lemma 3.4.14] when we share only one secret (i.e. p0 = 1), the generalized
vector space construction that computes (Γ,∆) coincides with the generalized
vector space construction that computes Note that this is exactly the case for
an MSP, where we consider only one secret and a complete access structure.

Definition 3. ([10, Definition 3.2.2]) Let Γ− = {X1, . . . , Xr}. Then the set of
vectors C = {ci ∈ Fm : 1 ≤ i ≤ r} is said to be suitable for the access structure
Γ if C satisfies the following properties called g(Γ) respectively d−(∆).

– supP (ci) = Xi for 1 ≤ i ≤ r;
– For any vector (µ1, . . . , µr) in Fr, such that

∑r
i=1 µi 6= 0, there exists a set

X ∈ Γ = ∆c satisfying X ⊆ supP (
∑r
i=1 µic

i).

In the next theorem van Dijk provides an important link between a parity check
matrix of a code generated as a span of suitable vectors and the MSP matrix.

Theorem 1. ([10, Theorem 3.2.5, Theorem 3.2.6]) Let Γ− = {X1, . . . , Xr}.
Consider a set of vectors C = {ci : 1 ≤ i ≤ r}. Let H be a parity check matrix of
the code generated by the linear span of the vectors (1, ci), 1 ≤ i ≤ r and let H be
of the form H = (ε | H ′) (This can be assumed without loss of generality). Then
the MSP with the matrix M defined by MT = H ′ computes the access structure
Γ if and only if the set of vectors C is suitable for Γ .

There is a tight connection between an access structure and its dual. It turns
out that the codes generated by the corresponding sets of suitable vectors are
orthogonal.

Theorem 2. ([10, Theorem 3.5.4]) Let Γ− = {X1, . . . , Xr} be an access struc-
ture and (Γ⊥)− = {Z1, . . . , Zt} be its dual. Then there exists a suitable set
C = {ci : 1 ≤ i ≤ r} for Γ if and only if there exists a suitable set C⊥ = {hj :
1 ≤ j ≤ t} for Γ⊥.
Suppose there exists a suitable set C for Γ and a suitable set C⊥ for Γ⊥. Let C∗
be the code defined by the linear span of vectors {(1, ci) : 1 ≤ i ≤ r} and let C⊥
be the code defined by the linear span of vectors of {(1,hj) : 1 ≤ j ≤ t}. Then
the codes C∗ and C⊥ are orthogonal to each other.

Note that C∗ and C⊥ are not necessarily each other’s dual. Now we point out that
the suitable set of vectors are in fact the solutions λ of the equation MTλ = ε
or in other words the suitable set of vectors consists of recombination vectors.

Lemma 2. Let Γ− = {X1, . . . , Xr} be the access structure computed by MSP
M. Also let λi ∈ Fm be the recombination vector that corresponds to Xi. Then
the set of vectors C = {λi : 1 ≤ i ≤ r} defines a suitable set of vectors for the
complete access structure Γ .

Recall that Cramer and Fehr [9] proposed a method to construct the dual MSP
(i.e., the MSP computing the dual access structure Γ⊥) starting from the MSP
computing the given access structure Γ (see Lemma 1). Now we will slightly
modify their construction.

Lemma 3. Let MSP M = (F,M, ε, ψ) compute access structure Γ . Let Γ− =
{X1, . . . , Xr} be the set of minimal sets in Γ . For each Xi denote the corre-
sponding recombination vector by λi ∈ Fm, so MTλi = ε and supP (λi) = Xi.
Then there exists an MSP M⊥ = (F,M⊥, ε∗, ψ) computing Γ⊥, where M⊥ =
[λ1,λ1 − λ2, . . . ,λ1 − λr] and ε∗ is a column vector (1, 0, . . . , 0)T of suitable
length.

Proof. We will follow the proof of Cramer and Fehr with some minor changes.
Note that for any Xi there may be several recombination vectors λi; we pick one
of them and denote it by λi. Note also that the vectors λ1 − λ2, . . . ,λ1 − λr

from ker(MT) may not generate the full kernel space.
If Ac /∈ Γ , then there exists a vector k such that MAck = 0 and k1 = 1.

Define λ∗ = MAk, or equivalently define λ∗∗ = Mk. Note again that λ∗∗A = λ∗

and λ∗∗Ac = 0. Then (M⊥
A)Tλ∗ = (M⊥)Tλ∗∗ = (M⊥)T (Mk) = ((M⊥)TM)k =

(MTM⊥)Tk = ε∗, thus A ∈ Γ⊥.
On the other hand, if Ac ∈ Γ , then there exists a vector λ̃ such thatMT λ̃ = ε

and supP (λ̃) ⊆ Ac, i.e. λ̃A = 0. Note that we can even choose λ̃ to be in the
linear span of the vectors λ1,λ2, . . . ,λr. Now by the definition of M⊥, it follows
that there exists a vector k such that k1 = 1 and M⊥k = λ̃, i.e. M⊥

A k = 0, thus
A ∈ ∆⊥ which concludes the proof. ut

Thus Lemma 3 improves the construction of Cramer and Fehr (see Lemma 1)
showing that a matrix with fewer columns suffices. Recall that r = |Γ−| and
t = |∆+|. Let

r̄ = dim span{λi; 1 ≤ i ≤ r}. (1)

Analogously define t̄ for the dual MSP M⊥. Note that r̄ ≤ r and t̄ ≤ t. Com-
bining Lemma 3 and Note 1 yields a construction of an MSP with particular
properties.

Lemma 4. Let Γ be a connected access structure and let Γ⊥ be its dual. Then
there exist MSPs such that M⊥ has size m × r and M has size m × t, where r
is defined by (1).

Lemma 5. Let Γ be a connected access structure and let Γ⊥ be its dual. Then
there exists an MSP program computing Γ with size:

m = r̄ + t̄− 1.

and such that the matrix M⊥ has size m× r̄ and matrix M has size m× t̄.

Proof. Let H = (ε | MT) and H⊥ = (ε | − (M⊥)T). We prove (see Lemma 2)
that the vectors (1,−λi) generate the code C since they are a suitable set of
vectors. From the construction of the dual MSP (see Lemma 3) it follows that
the generator matrix M can be rewritten as G = (ε | − (M⊥)T). But the last
observation implies that these matrices are the same, i.e. G = H⊥ holds. It is
now straightforward to obtain the equality r + t = m + 1. Finally, note that
because of Lemma 4 we have for M and M⊥ that M⊥ has size m × r and M
has size m× t. ut

Now we are ready to state the main result in this section.

Theorem 3. Let Γ be a connected access structure and let Γ⊥ be its dual. Let
|Γ−| = r and |(Γ⊥)−| = t. Then for any field F, there exists a monotone span
program M computing Γ with size satisfying the following upper bound:

size(M) ≤ r + t− 1.

Proof. From Lemma 5 and the obvious facts that r̄ ≤ r and t̄ ≤ t we obtain that
m ≤ r + t− 1. ut

Note 3. By Definition (Γ⊥)− = {Z1, . . . , Zt} implies that ∆+ = {Y1, . . . , Yt},
with Zj = Y cj . In other words the size of an MSP is limited from above by the
sum of the number of minimal and the number of maximal sets minus one.

We will provide an alternative proof of Lemma 5 using van Dijk’s approach.
Recall that the matrix G is the generator matrix of the code C∗, generated by
the suitable set of vectors (1, ci), 1 ≤ i ≤ r. The matrix H is the parity check
matrix of the code C∗; it is of the form H = (ε | MT). Analogously we have the
matrix G⊥ as a generator matrix of the code C⊥, generated by a suitable set of
vectors (1,hj), 1 ≤ j ≤ t. The matrix H⊥ is a parity check matrix for the code
C⊥, is of the form H⊥ = (ε | (M⊥)T). Here we will use MSP M⊥ with target
vector −ε. If we summarize the results from Theorems 1 and 2 we have:

GHT = HGT = 0
G⊥(H⊥)T = H⊥(G⊥)T = 0
G(G⊥)T = G⊥GT = 0

As we pointed out the codes C∗ and C⊥ are not necessarily each other’s dual,
i.e. H⊥HT = H(H⊥)T 6= 0. Thus our goal now is to prove that for any MSP M
there exists an MSP M⊥ such that C∗ and C⊥ are dual, i.e. C∗ = C.

Lemma 6. Denote the linear span of the rows of matrices G and H⊥ by span(G)
respectively span(H⊥). There are matrices G and H⊥ such that span(G) =
span(H⊥).

Proof. As van Dijk proved in Theorem 2, span(G) ⊆ span(H⊥) (since G(G⊥)T =
G⊥GT = 0). Note that these equations also mean that vectors (1, ci); 1 ≤ i ≤ r
and (1,hj); 1 ≤ j ≤ t are orthogonal. Thus the matrices have the following form:

H =



(1,h1)
(1,h2)

...
(1, h̃1)
(1, h̃2)

...
(0,h

1
)

(0,h
2
)

...


H⊥ =



(1, c1)
(1, c1)

...
(1, c̃1)
(1, c̃2)

...
(0, c1)
(0, c2)

...


MT =



h1

h2 − h1

h3 − h1

...
h̃1 − h1

h̃2 − h1

...
h

1

h
2

...



(M⊥)T =



c1

c2 − c1

c3 − c1

...
c̃1 − c1

c̃2 − c1

...
c1

c2

...


The matrix H consists of the row vectors (1,hj) and probably other vectors

of the form (1, h̃j) and/or (0,h
j
) and all of them are orthogonal to (1, ci). Anal-

ogously, the matrix H⊥ consists of the row vectors (1, ci) and probably other
vectors of the form (1, c̃i) and/or (0, ci) and all of them are orthogonal to (1,hj).
First, note that in the matrix E defined in Note 2 the entry in the upper left
corner could be any non-zero number. Now this entry is −1 since we choose the
target vector in M⊥ to be −ε. Consider the equation (M⊥)TM = MTM⊥ = E

from Note 2. This equation implies that the vectors h1, hj−h1, h̃j−h1 and h
j

are orthogonal to the vectors c1, ci−c1, c̃i−c1 and ci, except that 〈h1, c1〉 = −1
should hold. Now using the orthogonality relations between the vectors (1, ci)
and the vectors (1,hj), (1, h̃j), (0,h

j
) and also between (1,hj) and (1, ci), (1, c̃i),

(0, ci) we obtain:

〈hj
, c̃i〉 = 0, 〈ci, h̃j〉 = 0, 〈hj

, ci〉 = 0, 〈h̃j, c̃i〉 = −1.

Thus, we have

〈(0,hj
), (1, c̃i)〉 = 0, 〈(0,hj

), (0, ci)〉 = 0,

〈(1, h̃j), (1, c̃i)〉 = 0, 〈(1, h̃j), (0, ci)〉 = 0.

Hence H is orthogonal to H⊥, i.e. H(H⊥)T = H⊥HT = 0 holds. But, now it
immediately follows that span(G) ⊇ span(H⊥). Hence span(H⊥) = span(G),
which completes the proof. ut

Define

r̃ = dim span{(1, ci); 1 ≤ i ≤ r}, (2)
t̃ = dim span{(1,hj); 1 ≤ j ≤ t}.

Now we are in position to prove the following result.

Lemma 7. Let Γ be a connected access structure and let Γ⊥ be its dual. Then
there exists an MSP program computing Γ of size m satisfying:

m = r̃ + t̃− 1.

and such that the matrix M⊥ has size m× r̃ and the matrix M has size m× t̃.

Proof. We have that G is an r̃ × (m + 1) matrix, since r̃ is the dimension of
the code C. It also follows that r̃ ≤ r. On the other hand H is a parity check
matrix of code C. Hence H is an (m + 1 − r̃) × (m + 1) matrix, and thus M is
an m× (m+ 1− r̃) matrix, since H = (ε | MT).

Analogously we have that G⊥ is a t̃×(m+1) matrix, since t̃ is the dimension
of the code C⊥. Also it follows that t̃ ≤ t. On the other hand H⊥ is a parity
check matrix of the code C⊥. Hence H⊥ is an (m + 1 − t̃) × (m + 1) matrix,
and thus M⊥ is an m × (m + 1 − t̃) matrix, since H⊥ = (ε | (M⊥)T). Note
that M and M⊥ have the same size m. As a consequence of Lemma 6, i.e. from
span(G) = span(H⊥) the following equality holds: r̃ + t̃ = m+ 1. ut

Recall that the vectors λi form a suitable set of vectors. Note that Lemma 7
actually restates Lemma 5.

Corollary 1. Let M be an MSP program computing Γ , and M⊥ be an MSP
computing the dual access structure Γ⊥. Let the code C⊥ have the parity check
matrix H⊥ = (ε | (M⊥)T) and the code C have the parity check matrix H =
(ε | MT). Then for any MSP M there is an MSP M⊥ such that C and C⊥ are
dual.

4 On Lower Bounds for the Size of MSPs

In earlier works [3, 5, 11, 12] a lower bound for the size of an MSP has been
proven. As we pointed out the problem of estimating the size of an MSP is related
to many problems in complexity theory such as (symmetric) branching programs,
(undirected) contact schemes, formula size as well as with the complexity of some
distributed protocols in cryptography.

That is why it should not surprise the reader that the notation in this section
differs from the original author’s notation. The idea used in [3, 11, 5, 12] is to show
that if the size of a span program (i.e., the number of rows in the matrix) is too
small, and the program accepts all the minimal sets of the access structure then
it must also accept an input that does not contain a minimal set. The latter
means that the program does not compute the access structure, since any input
accepted by the MSP should contain at least one minimal set.

Beimel et al. [3] introduced a notion of a critical family, which we will redefine
as the notion of critical set of minimal sets.

Definition 4. Let Γ− = {X1, . . . , Xr} be the set of minimal sets in the access
structure Γ . Let H ⊆ Γ− be a subset of the set of minimal sets. We say that a
subset H ⊆ Γ− is a critical set of minimal sets for Γ−, if every Xi ∈ H contains
a set Bi ⊆ Xi, |Bi| ≥ 2, such that the following two conditions are satisfied.

B1. The set Bi uniquely determines Xi in the set H. That is, no other set in H
contains Bi.

B2. For any subset Y ⊆ Bi, the set SY = ∪Xj∈H,Xj∩Y 6=∅(Xj\Y) does not contain
any member of Γ−.

Note that Condition B2 requires that SY does not contain any minimal set of
Γ , not just a minimal set from H. We can rewrite the set SY also as

SY = ∪Xj∈H,Xj∩Y 6=∅(Xj ∩ Y c) = (∪Xj∈H,Xj∩Y 6=∅Xj) ∩ Y c

= (∪Xj∈H,Xj∩Y 6=∅Xj) \ Y.

Thus we can restate B2 as follows:
B2′ : For any subset Y ⊆ Bi, there is no member of Γ− which is contained in
the set S′Y = ∪Xj∈H,Xj∩Y 6=∅Xj and is a subset of Y c.

Theorem 4. [3, 11, 5, 12] Let Γ be an access structure, and let H be a critical
set of minimal sets for Γ . Then for every field F, the size of any monotone span
program M computing Γ

size(M) ≥ |H|.

Proof. [sketch]
Let M be the matrix of a monotone span program computing Γ , and let m

be the number of rows of M . Any minimal set of H is accepted by the program.
By definition, this means that, for every X ∈ H, there is some recombination
vector λX ∈ Fm such that MTλX = ε, where λX has nonzero coordinates only
at rows labelled by variables from X. For any given X there may be several such
vectors, we pick one of them and denote it by λX .

Since λX is taken from Fm, the number of linearly independent vectors among
the vectors λX for X ∈ H is a lower bound for m, i.e., for the size of the span
program computing Γ . Thus the following lemma concludes the proof. ut

Lemma 8. [3] Let Γ be an access structure, and let H be a critical set of min-
imal sets for Γ . Then the recombination vectors λX for X ∈ H are linearly
independent.

Gal [12] derives a superpolynomial (in the number of players) worst case asymp-
totic lower bound for the size of MSPs, showing that there are access structures
Γ , with suitable critical sets of minimal sets H. In [17] the authors argued that
there are cases in which asymptotically the number of columns and the number
of rows (the size of MSP) are identical. Beimel et al. observe also that sizes of a
MSP and its dual MSP are equal.

Theorem 5. [3, 11] For every field F, size(M) = size(M⊥).

Note that size(M) ≥ max(|H|, |H⊥|) ≥ |H|+|H⊥|
2 . Now we are ready to prove the

main theorem of this section, the improvement of the bound of Beimel et al. [3]
(see Theorem 4).

Theorem 6. Let Γ be an access structure and Γ⊥ be its dual, let H be a critical
set of minimal sets for Γ and let H⊥ be a critical set of minimal sets for Γ⊥.
Then for any field F, the size of any monotone span program M computing Γ is
bounded from below by the sum of the sizes of both critical minimal sets minus
one, i.e.,

size(M) ≥ |H|+ |H⊥| − 1.

Proof. Let M be the matrix of a monotone span program computing the access
structure Γ , and let m be the number of rows of M . Let Γ− = {X1, . . . , Xr} be
a set of minimal sets in the access structure Γ and let ∆+ = {Y1, . . . , Yt} be a
set of maximal sets in ∆ = Γ c.

For each minimal set Xi consider the corresponding recombination vector
λi ∈ Fm, so MTλi = ε and supP (λi) = Xi. Recall that the recombination
vector λi corresponds to the vectors λX in the original proof of Beimel et al.
[3] (see Theorem 4). For any Xi there may be several such vectors; in that
case we pick one of them and denote it by λi. From the proof of Beimel et al.
(see Lemma 8) it follows that for any critical set of minimal sets H of Γ− the
corresponding recombination vectors λ are linearly independent. Now consider
the vectors λ1 −λi for i = 2, . . . , r. It is easy to see that all these vectors are in
the kernel of the transposed matrix MT , i.e. in ker(MT). Therefore for any H
we have nullity(MT) ≥ |H| − 1.

For each maximal set Yi consider a vector k ∈ Fd such that MYik = 0 and
k1 = 1. For any given Yi there may be several such vectors, again we pick one
of them. Define λ̃i = Mk. Note that supP (λ̃i) = Y ci ∈ (Γ⊥)−. From the proof

of Lemma 1 as well as from the proof of Lemma 3 we have that (M⊥)T λ̃i = ε∗.
Hence we have the same correspondence between recombination vectors λ̃i and
sets Y ci ∈ (Γ⊥)− as we have for recombination vectors λi and sets Xi ∈ Γ−.
Applying again the result of Beimel et al. Lemma 8 but for the dual access
structure Γ⊥ we obtain that for any critical set of minimal sets H⊥ of (Γ⊥)− the
corresponding recombination vectors λ̃i are linearly independent. Now note that
by construction the vectors λ̃i are in the image of the matrixM , i.e. λ̃i ∈ im(M).
Hence rank(M) ≥ |H⊥|. On the other hand since the row rank is equal to column
rank we have rank(MT) = rank(M) ≥ |H⊥|.

The last step is to apply the rank and nullity theorem for the transposed
matrix MT :

m = rank(MT) + nullity(MT) ≥ |H⊥|+ |H| − 1,

which completes the proof. ut

Note that the worst case superpolynomial asymptotic estimation for the size
of MSPs due to Gal [12] does not change because of this relation.

Revisiting the proof of Theorem 6 we notice that nullity(MT) = r̄ − 1 and
rank(MT) = t̄. Hence we have actually three different proofs of the fact that
m = rank(MT) + nullity(MT) = r̄ + t̄ − 1 (see also Lemma 5 and Lemma 7).
Now observe that |H| ≤ r̄ and |H⊥| ≤ t̄ give the lower bound (Theorem 6)

and that r̄ ≤ r and t̄ ≤ t give the upper bound (Theorem 3). Note that the
lower bound is achieved if there exist critical minimal and maximal sets with
exactly (the maximum possible number) r̄ and t̄ elements. However, how one
can efficiently build an MSP computing Γ with the smallest size remains still an
open question.

5 Conclusions

In this paper we have shown an upper and improve the lower bound for the size
of monotone span programs. Next we extend the result of van Dijk showing that
for any MSP there exists a dual MSP such that the corresponding codes are
dual.

6 Acknowledgements

The authors would like to thank Anna Gal, Ronald Cramer, Berry Schoenmakers
and the anonymous referees for the valuable comments and remarks.

References

1. E. Allender, R. Beals, M. Ogihara, The Complexity of Matrix Rank and Feasible
Systems of Linear Equations, ACM STOC’96, 1996, pp. 161-167.

2. A. Beimel, Secure Schemes for Secret Sharing and Key Distribution, Ph.D. Thesis,
Technion, 1996.

3. A. Beimel, A. Gal, M. Paterson, Lower Bounds for Monotone Span Programs,
Computational Complexity, 6, 1996/1997, pp. 29-45.

4. A. Beimel, E. Weinreb, Separating the Power of Monotone Span Programs over
Different Fields, FOCS’03, 2003, pp. 428-437.

5. L. Babai, A. Gal, A. Wigderson, Superpolynomial Lower Bounds for Monotone
Span Programs, Combinatorica 19 (3), 1999, pp. 301-319.

6. E. Brickell, Some Ideal Secret Sharing Schemes, J. of Comb. Math. and Comb.
Computing 9, 1989, pp. 105-113.

7. G. Buntrock, C. Damm, H. Hertrampf, C. Meinel, Structure and Importance of
the Logspace-mod Class, Math. Systems Theory 25, 1992, pp. 223-237.

8. R. Cramer, I. Damgard, U. Maurer, General Secure Multi-Party Computation from
any Linear Secret Sharing Scheme, EUROCRYPT’2000, Springer-Verlag LNCS
1807, 2000, pp. 316-334.

9. R. Cramer, S. Fehr, Optimal Black-Box Secret Sharing over Arbitrary Abelian
Groups, CRYPTO 2002, Springer-Verlag LNCS 2442, 2002, pp. 272-287.

10. M. van Dijk, Secret Key Sharing and Secret Key Generation, Ph.D. Thesis, 1997,
TU Eindhoven.

11. A. Gal, Combinatorial Methods in Boolean Functions Complexity, Ph.D. Thesis,
Chicago, Illinois, 1995.

12. A. Gal, A Characterization of Span Program Size and Improved Lower Bounds
for Monotone Span Programs, Computational Complexity, Vol. 10, No. 4, 2001,
pp. 277-296.

13. A. Gal, P. Pudlak, Monotone Complexity and the Rank of Matrices, Inform. Proc.
Lett. 87, 2003, pp. 321-326.

14. M. Karchmer, A. Wigderson, On Span Programs, Proc. of 8-th Annual Structure in
Complexity Theory Conference, 1993, IEEE Computer Society Press, pp. 102-111.

15. V. Nikov, S. Nikova, B. Preneel, J. Vandewalle, Applying General Access Structure
to Metering Schemes, WCC 2003, Cryptology ePrint Archive: Report 2002/102.

16. V. Nikov, S. Nikova, B. Preneel, Upper Bound for the Size of Monotone Span
Programs, ISIT 2003, 2003, pp. 284.

17. P. Pudlak, J. Sgall, Algebraic Models of Computations and Interpolation for Al-
gebraic Proof Systems, Proof Complexity and Feasible Arithmetic, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 39, 1998, pp. 279-295.

18. A. Shamir, How to Share a Secret, Commun. ACM, 22, 1979, pp. 612-613.

