
Embedded Systems

T he embedded systems field is growing rapidly,
with devices such as cellular phones, PDAs, smart
cards, and digital music players permeating soci-
ety. On the horizon are futuristic technologies

such as embedded network sensors and wearable com-
puters, which promise even greater interaction between
humans and machines. 

As embedded devices are increasingly integrated into
personal and commercial infrastructures, security becomes
a paramount issue. For example, if a patient is wearing a
heart-monitoring device that sends data wirelessly to a doc-
tor, the embedded system must keep this information con-
fidential and deliver it uncorrupted to the doctor. An
embedded network sensor monitoring water quality to
prevent bioterrorism must have multiple methods to detect
tampering in both hardware and software, lest an attacker
bypass security measures and corrupt the water supply.

The design of security for embedded systems differs
from traditional security design because these systems are
resource-constrained in their capacities (and conse-
quently in their defenses) and easily accessible to adver-
saries at the physical layer. Embedded security can’t be
solved at a single security abstraction layer, but rather is a
system problem spanning multiple abstraction levels. We
use an embedded biometric authentication device to
demonstrate the necessity of addressing all levels of the se-
curity pyramid to ensure a fully robust and secure embed-
ded system. (See the “Related Work and Design
Alternatives” sidebar for a discussion of some other solu-
tions to the embedded systems security problem.)

Embedded design challenges
Embedded systems are essentially processor-based devices

operating under
resource-constrained
conditions. Embedded devices include systems as diverse
as automobile microcontrollers, cellular phones, smart
cards, embedded network sensors, and digital cable
boxes. These devices are often portable, communicate via
wireless channels, and are battery-powered or otherwise
energy-limited. Because these systems are often consid-
ered small computers, it’s tempting to port workstation-
based security techniques directly onto the devices to
make them secure. However, embedded systems have
characteristics that differentiate their security architecture
from that of workstations and servers. We group these
characteristics into two categories: resource limitation
and physical accessibility.

Resource limitation
Embedded devices pose severe resource constraints on
the security architecture in terms of memory, compu-
tational capacity, and energy. For example, the Smart-
Dust node1 is a  battery-powered device possessing an
8-bit, 4-MHz CPU with 8,000 bytes of instruction
flash memory, 512 bytes of RAM, and 512 bytes of
EEPROM.

Clearly, such a platform severely limits potential secu-
rity scenarios. In terms of memory, sophisticated public-
key cryptography techniques such as RSA or
elliptic-curve cryptography might simply be infeasible.
Considering the device’s 4-MHz computational horse-
power, certain protocols could cause too much latency to
be useful. Furthermore, an energy-intensive security
scheme can cause the node to perish from battery ex-
haustion before it can perform useful work. Power dissi-
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pation and other resources are infrequently major con-
cerns when dealing with workstation-based security. 

Physical accessibility
Devices such as stolen smart cards or compromised sensor
nodes are easily accessible at the physical layer. This acces-
sibility has led to several new security attacks in recent
years in the areas of physical tampering and side-channel
analysis. For example, Paul Kocher, Joshua Jaffe, and Ben-
jamin Jun’s differential power analysis (DPA) attack shows
that an adversary can monitor a smart card’s power line to
extract the card’s cryptographic key.2 Such attacks might
be irrelevant to workstation-based security but are ex-
tremely important in embedded system design.

An issue related to physical accessibility and portability
is privacy, particularly with networked embedded sys-
tems. For example, the recent US Federal Communica-
tions Commission (FCC) mandate for enhanced 911
(the number citizens in North America call in case of
emergency) requires a user’s location to be available to an
emergency dispatcher, often through GPS devices on cell
phones. This mandate has sparked a debate between
safety and privacy advocates. In addition, as camera
phones have pervaded society, laws have banned phones
in places such as locker rooms and courtrooms because of
potential privacy violations. In general, networked em-
bedded systems have caused many new sociological and
legal issues to emerge.

Storing data on an embedded system also creates pri-
vacy concerns. On the one hand, storing sensitive infor-
mation on a device rather than on multiple servers
minimizes the number of locations where an attack can
occur. On the flip side, small devices can be easily lost or
stolen, and hence must have extra security measures built
in to ensure that private data can’t be compromised.

Embedded security pyramid
Because of these unique characteristics, we can’t solve em-
bedded security at a single level of abstraction—that is, it’s
not a point problem. Rather, embedded security is a sys-
tem problem that we must solve at all abstraction levels. 

The security pyramid in Figure 1 illustrates the five
primary abstraction levels in an embedded system: 

• protocol level, which includes the design of protocols to be
performed on embedded devices to achieve such secu-
rity goals as confidentiality, identification, data integrity,
data origin authentication, and nonrepudiation; 

• algorithm level, consisting of the design of crypto-
graphic primitives (such as block ciphers and hash
functions) and application-specific algorithms used at
the protocol level; 

• architecture level, consisting of secure hardware/software
partitioning and embedded software techniques to pre-
vent software hacks;

• microarchitecture level, which deals with the hardware de-
sign of the modules (the processors and coprocessors)
required and specified at the architecture level; and 

• circuit level, which requires implementing transistor-
level and package-level techniques to thwart various
physical-layer attacks. 

For an embedded system to be secure, every level must
be secure. For example, a smart card can possess an ad-
vanced protocol applying a strong cipher; however, if the
circuit design allows for side-channel attacks that can ex-
tract the key, the smart card’s security is broken. 

We categorize security issues into two general types:
single-level security issues, in which the problem and the rem-
edy are at the same abstraction level; and translevel security is-
sues, in which we can fix a problem at one level only with a
remedy at another (lower) level. We discover such issues by
examining the subtle interrelationships between levels. 

Building the pyramid
The wireless biometric authentication device shown in
the upper left of Figure 1 is our embedded system’s driver
application. With a form factor of a keychain dongle, this
device consists of a complementary metal-oxide
semiconductor (CMOS) fingerprint sensor, a 32-bit
reduced-instruction-set computing (RISC) micro-
controller, specialized security and biometric hardware,
an infrared wireless transmitter, and embedded memory.
The device’s primary function is to facilitate secure bio-
metric authentication between a user and a server in ap-
plications such as intelligent keys, credit card and smart
card replacement, and access control.

Figure 2a illustrates a classic server-based fingerprint
verification scheme. In this method, a user enters a
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Figure 1. Embedded security pyramid. To ensure security in an
embedded system, we must address the problem in all abstraction
layers. 
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claimed identity (which can be stored on a magnetic card
or smart card) into a server. After the server validates the
claimed identity, the user impresses a fingerprint on the
server’s sensor. The server extracts the fingerprint’s unique
features and matches them with a previously stored tem-
plate. The server decides to corroborate or deny the user’s
claimed identity based on a matching threshold.

Although this verification scheme is most common,
it possesses potential security flaws. For example, a resid-
ual fingerprint image stays on the public sensor, where
it’s easily accessible for biometric theft and illegal repro-
duction. In addition, storing the actual biometric on a
server can have sociological ramifications because every
bank, employer, and computer a user interacts with must
also store the template, which can be considered a pri-
vacy violation.

In a device-based scheme, shown in Figure 2b, a user
authenticates directly with an embedded device (using
biometric techniques), which wirelessly authenticates
both itself and the user with a fixed server (using crypto-
graphic techniques). The fingerprint sensor and the tem-
plate are located on the device, avoiding the server-based
security issues. In addition, all biometric-processing al-
gorithms are performed on the device, localizing sensi-
tive biometric data. The server stores only a keyed hash of

the biometric template which, because of its noninvert-
ible nature, doesn’t violate the user’s privacy. Other secu-
rity issues exist, however, as we’ll discuss later. 

Protocol level:
Wireless biometric verification
We designed our security protocols to operate on an em-
bedded implementation. For example, the verification
protocol in Figure 3 combines elements of challenge–
response symmetric-key authentication and biometric
verification. The protocol assumes that a shared key K
exists between the device and the server. The device
stores the template, while the server stores a hash of the
template H(K, TEMPLATE).

The device initiates a verification transaction by trans-
mitting its ID to the server. After corroborating the de-
vice’s identity, the server sends two random numbers,
RAND and RANDT, to the device (in the figure, | denotes
concatenation). The device receives these values and be-
gins the biometric-verification protocol. After obtaining
the user’s fingerprint locally, the device extracts the can-
didate minutiae and compares them with the stored tem-
plate. If the match is positive, the device loads the key K
and generates the hash of the template H(K, TEMPLATE).
If the match is negative, the device loads a dummy key,
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Figure 2. Biometric authentication. (a) In a server-based fingerprint authentication scheme, the server matches a user’s
fingerprint with a previously stored template. (b) In a device-based scheme, a user authenticates directly with the
embedded device.
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setting K = 0, and a dummy template,
setting H(K, TEMPLATE) = 0. 

Next, the device encrypts RAND to
create a session key SK = E(K, RAND).
It uses the session key to encrypt
RANDT concatenated with H(K, TEM-
PLATE), producing an authentication
token TOKEN = E(SK, RANDT | H(K,
TEMPLATE)), which it forwards to the
server. The server decrypts the token
and the transmitted template hash
H(K, TEMPLATE), and compares the
template hash with the stored hash to
check the device’s authenticity. The
server then sends a final transaction re-
sult to the device and lets it access the
system if all tests check.

A single-level security flaw at the
protocol level could allow a server
masquerade attack. Because the device
never authenticates the RAND | RANDT

values, a false server could easily send these values unde-
tected. We can fix this at the protocol level by requiring
the server to send an additional hash, say H(SK�, RAND |
RANDT | ID), to the device, where SK� is a session
hash/message authentication code (MAC) key. The de-
vice can then authenticate the server at each transaction.
Other solutions at this level include using a MAC to pro-
tect token integrity, sequence numbers to prevent replay
attacks, or a different key for token hashing. 

Figure 3 shows a software bypass attack, an example of
a translevel security flaw. In this attack, the adversary in-
serts malicious software into the device to bypass the bio-
metric functions. Directly after receiving the random
numbers, the hacked program loads the key K, falsely
telling the device that a match has been made. This attack
effectively breaks the biometric tie between the user and
device, letting anyone use the hacked device without a
correct fingerprint. The server assumes that the device is
operating properly, so it allows unauthorized access to
system resources. We can’t fix the software bypass attack at
the protocol level because it modifies any protocol it en-
counters. Instead, we must take measures at the architec-
ture and microarchitecture levels. 

Our protocol performs all biometrics on-device for
maximum security. We can design a suite of protocols
that variously partitions the biometric functions between
the device and server, based on the limitations of embed-
ded performance, latency, energy, and memory. Protec-
tion mechanisms similar to those used for the secret key
should safeguard the template; in fact, greater protection
mechanisms might be necessary because keys are replace-
able, whereas biometrics are not. 

Future directions for template storage involve storing
a transformation (hash) of the template and performing a

match directly in the transformed space. Further consid-
erations of biometric security are available elsewhere.3

Alternatives to embedded biometrics for authentication
include smart cards, RFID tags, and secure authenticators
such as RSA SecurID.

Algorithm level:
Embedded biometric signal processing
At the algorithm level, a designer must select or design
both cryptographic and application-specific algorithms
for implementation on the embedded device. We imple-
mented an Advanced Encryption Standard-128 cipher
(128-bit key, 128-bit data) for the encryption operator—
encryption on plaintext P with a key K produces cipher-
text C = E(K, P). We similarly implemented the
keyed-hash function via the standard cipher-block chain-
ing (CBC) MAC mode, hashing a variable-length data
stream D to a fixed 128-byte hash = H(K, D). 

We also developed two embedded fingerprint signal-
processing algorithms at this level:

• a feature-extraction algorithm, which extracts the minu-
tiae from the raw image; and 

• a matching algorithm, which performs a matching oper-
ation between these minutiae and a stored template. 

We based our feature-extraction algorithm on a US
National Institute of Standards and Technology floating-
point algorithm. However, because this algorithm was
intended for workstation-based computing, we con-
verted it into fixed-point representation and optimized it
for memory and energy for inclusion in the embedded
device. We designed the matching algorithm as a local-
neighborhood matching scheme for implementation on
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Figure 3. Device-based verification protocol. The device interacts with the user and the
server to perform a biometric authentication transaction where all biometrics are
performed on the device. (Bold text signifies secure functions.)
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embedded devices. The experimental error rates for the
combined algorithm are a 1-percent false reject rate
(FRR) and a 0.01-percent false accept rate (FAR).

Architecture level: Security partitioning
At the architecture level, the protocol and algorithms must

be mapped onto an embedded architecture platform. At
this stage, we partition the device into secure and insecure
modules. Secure modules are hardware modules that run
secure functions, house secure memory, and use various
hardware and software techniques to protect themselves.
Insecure modules run insecure functions, house insecure
memory, and aren’t protected from attack. 

Because providing security has a cost overhead in
terms of area, power, and computation, we must clearly
distinguish between the protocol’s secure and insecure
parts. Then, we can provide security to the secure parts
only, reducing the overhead. Basically, we try to confine
the secure parts to the smallest possible portion of the sys-
tem. At the protocol level, we move secure parts from
server to device; at the architecture level, we move them
to a limited area of the device (the secure module). We
call this security-driven hardware–software partitioning, or se-
curity partitioning. Security partitioning isolates the de-
vice’s sensitive data and functions so both software
(architecture-level) and physical (circuit-level) mecha-
nisms can protect them. 

Security partitioning is the application of a variant of
Kerckhoffs’ principle, which is to minimize the number
of secrets in a system. If the device as a whole is physically
compromised, it remains secure as long as the secure
module is intact. The technique addresses the software
bypass attack as well as resource limitation and physical
accessibility issues. Later, we’ll discuss a technique to se-
cure a system at the circuit level, which requires approxi-
mately twice the normal area and power. Securing only a
required subset of the system thus addresses area and en-
ergy limitations. 

Partitioning the device into secure and insecure mod-
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Figure 4. Partitioning topology strategies. (a) A single-chip solution partitions a chip into secure and insecure modules
connected by a secure-to-insecure bus structure. (b) A dual-chip solution implements the same functionality as a single-
chip solution but uses separate chips for greater design flexibility.
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Figure 5. Partitioning of secure functions (mapping) phase. At this
phase, we map functions in the protocol onto the secure or insecure
modules in the architecture. 
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ules involves four primary steps at the architecture level:
determine partitioning topology, determine coupling
and secure-to-insecure bus structure, partition functions
and their data, and construct a secure instruction set. 

Partitioning topology. Figure 4 shows a partitioning
topology that defines how a device is divided into secure
and insecure modules. Consider the single-chip solution
in Figure 4a. It partitions a single chip into two modules
connected by a secure-to-insecure bus structure. The
two modules can consist of either an insecure micro-
processor and a secure microprocessor, or an insecure
microprocessor and a secure coprocessor. Using a gen-
eral-purpose microprocessor for the secure module pro-
vides for easy programmability and short design time, but
wastes area and power. A custom-designed secure co-
processor is efficient in area and performance, but dra-
matically increases design time. 

Figure 4b shows a dual-chip solution, which lets us
design and fabricate each module independently, but the
secure-to-insecure bus is physically exposed and accessi-
ble on a board, rather than contained in the chip package.
The solution can also require additional power and inter-
face circuitry and bus-handshaking protocols.

Our embedded system architecture uses the single-
chip insecure microprocessor and secure coprocessor
topology. The microprocessor is a 32-bit RISC processor
called Leon (www.gaisler.com), which is an embedded
Sparc V8 open source core. It possesses an arithmetic
logic unit and data and instruction caches, as well as an ad-
vanced microprocessor bus architecture (AMBA) con-
taining interfaces with memory, universal asynchronous
receiver–transmitter, and other peripherals. We custom
designed the secure coprocessor, which we describe later. 

Coupling and bus structure. Assuming a fixed topol-
ogy, we next determine the coupling between modules.
The secure and insecure modules can be loosely cou-
pled (memory-mapped) or tightly coupled (register-
mapped). In general, loosely coupled coprocessors have
performance advantages over tightly coupled co-
processors but design time disadvantages. Our coupling-
mechanism selection directly determines the
secure-to-insecure bus structure, which is the only means
of communication between the secure and insecure
modules. We selected a memory-mapped coprocessor
with three buses shared between the secure and insecure
modules: a 16-bit instruction bus INS, a 32-bit data-in
bus D_IN (from insecure to secure), and a 32-byte data-
out bus D_OUT (from secure to insecure).

Partitioning of secure functions, or mapping phase.
Next, we map functions in the protocol onto the archi-
tecture’s secure or insecure modules, as Figure 5 illus-
trates. A secure function contains secret or sensitive

information as an input, output, or intermediate internal
value. If such a function operates in an insecure location,
puts sensitive data on a publicly exposed bus, or is exe-
cuted out of sequence, it could potentially leak informa-
tion. A clear example of a secure function is Figure 3’s “If
match, load K” function. 

We partitioned all of the secure functions to operate on
the secure coprocessor, which is accessible to the insecure
processor only through an instruction set. We also parti-
tioned long-term storage of secure data at this point; our
device requires secure storage of the TEMPLATE and key K.
The other secure functions are in bold text in Figure 3.

Secure instruction set. To protect the secure functions
from software bypass attacks and their variants, we con-
struct a secure instruction set. Recall that a software by-
pass attack skips over the biometric functions and
immediately loads the key K to begin encryption.

Consider the control flow diagram in Figure 6 de-
scribing an (artificially simplified) secure instruction
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Figure 6. Secure instruction set control flow. The insecure processor
accesses the coprocessor through the $DO_MATCHING and
$DO_CRYPTO instructions. The first loads the stored template and
matches it against the candidate template; the latter instructs the
secure coprocessor to perform cryptographic steps to produce the
token.
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set. The insecure processor accesses the coprocessor
via two instructions: $DO_MATCHING and $DO_CRYPTO.
The $DO_MATCHING instruction loads the stored tem-
plate, matches it against the candidate minutiae, and
sets a match flag internal to the coprocessor. The se-
cure coprocessor doesn’t send the match flag result
back to the insecure processor, but rather a
READY_FOR_CRYPTO signal indicating that the match-
ing function has completed. (To prevent a timing
analysis attack, we ensure that the coprocessor pro-
duces the READY_FOR_CRYPTO signal after a constant
number of cycles, regardless of whether the match is
positive or negative.) At the $DO_CRYPTO instruction,
the coprocessor loads the internal match flag and per-
forms cryptographic steps to produce the token, which
is returned to the insecure processor and forwarded to
the server. The secure coprocessor resets the match flag
as it produces the token. 

This secure instruction set thwarts the software bypass
attack. The insecure processor has no way to set the
match flag high other than through biometric processing.
In addition, neither module leaks sensitive information
onto the secure-to-insecure bus, ensuring secure inter-
module communication at the software level. The only
information sent on the bus is the READY_FOR_CRYPTO

response and the token, which the insecure processor
can’t decrypt because it doesn’t have the key K. Hence,
the construction of a secure instruction set demonstrates
how we can fix a security hole created at the protocol
level by addressing the issue at the architecture level. 

Figure 7 shows the new protocol
with architectural enhancements. De-
vice(I) and Device(S) indicate the inse-
cure and secure modules. Intermodule
communication occurs over the se-
cure-to-insecure bus structure. We
mapped the indented functions in bold
type onto the secure module and exe-
cuted the other functions on the inse-
cure device or the server.

Microarchitecture level:
Hardware design 
We designed and simulated the ar-
chitecture’s hardware implementa-
tion at the microarchitecture level.
This involved designing the hard-
ware for the insecure and secure
modules and their interfaces. We
used the Leon processor with a con-
figurable Amba bus structure for the
insecure module and designed a
memory-mapped interface on the
Amba peripheral bus to communicate

with the secure module. 
The secure module is a custom-designed secure co-

processor (see Figure 8). The coprocessor consists of a
top-level controller, a cryptographic engine, and a
matching engine (with template storage). The coproces-
sor includes two categories of buses: public and private.
The public buses are the coprocessor’s interface to the
outside world (that is, the secure-to-insecure bus struc-
ture) and are thus insecure. The private buses are secure
buses internal to the coprocessor, such as those between
the matching and cryptographic submodules. These pri-
vate buses ensure that sensitive data remain local to the
coprocessor and aren’t directly accessible to the insecure
module. The top-level controller monitors for illegal and
out-of-sequence instructions. Hence, the insecure
processor can’t access the coprocessor’s internal data; it
can access the coprocessor only using instructions on the
public buses, which the top-level controller monitors for
foul play.

One challenge at the microarchitecture level is to ac-
curately cosimulate the secure and insecure modules. In
our design, this implies a hardware (coprocessor)/soft-
ware (Leon) cosimulation, including a thorough se-
quence of valid and invalid instructions to protect against
false-instruction attacks. For such a cosimulation, we
need a design and simulation environment that can simu-
late the secure and nonsecure modules together. This is
because the boundary between hardware and software is
often a weak part of secure systems, simply because
they’re designed and developed separately (and often by
different teams). 
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Device(I)→Server ID
Server  Load corresponding K
 Generate RAND, RANDT, SK = E(K, RAND)
Server→Device(I) RAND | RANDT
Device(I)  Obtain RAW IMAGE from user
 Perform FEATURE extraction algorithm to obtain minutiae
Device(I)→Device(S) INS = $DO_MATCHING, D_IN = minutiae
Device(S)    Load TEMPLATE
   Perform MATCH algorithm of minutiae versus TEMPLATE
   If MATCH, set MATCH_FLAG = 1; Else, set MATCH_FLAG = 0
Device(S)→Device(I) D_OUT = READY_FOR_CRYPTO
Device(I)→Device(S) INS = $DO_CRYPTO, D_IN = RAND | RANDT
Device(S)   If MATCH_FLAG == 1, load K and generate H(K, TEMPLATE)
   Else, set K = 0000 and set H(K, TEMPLATE) = 0000
   Generate SK = E(K, RAND)
   Generate TOKEN = E(SK, RANDT | H(K, TEMPLATE))
   Reset MATCH_FLAG = 0
Device(S)→Device(I)  D_OUT = TOKEN
Device(I)→Server  TOKEN
Server  Decrypt TOKEN and determine result
Server→Device(I)  TRANSACTION RESULT

Figure 7. Modified verification protocol. Intermodule communication between the
secure and insecure modules (Device(I) and Device(S)) occurs over the secure-to-
insecure bus structure. (Bold type indicates the secure functions.)
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In our Gezel environment (http://rijndael.ece.
vt.edu/gezel2), we simulate the secure hardware module
together with software running on the Leon processor’s
instruction set simulator (ISS). The protocol has a total of
487 million cycles and has been verified against invalid
and out-of-sequence instruction attacks.

Another issue at the microarchitecture level is the
formal constraints on the top-level controller—that is,
the allowed combinations of instructions. The issue
here is one of security versus flexibility. The more possi-
ble instructions the coprocessor has, the more flexible
and programmable it is; however, the greater number of
possible combinations of out-of-sequence attacks
weakens security. A restricted instruction set limits the
possibilities for instruction attacks, but also reduces flex-
ibility and programmability. 

Using a hardware coprocessor instead of a software
implementation of cryptographic algorithms greatly re-
duces the energy required for encryption. For instance,
an AES implementation, similar to the one used in our
secure coprocessor, can generate more than 10 Gbits per
Joule whereas AES in Java on an embedded core gener-
ates fewer than 10 Kbits per Joule.4

The microarchitecture level implements the design
and security features described at the architecture level,
but suppose an attacker chooses an out-of-band attack at
the physical level. In this case, the architecture and mi-
croarchitecture defenses are meaningless. We therefore
need new defenses at the circuit level. 

Circuit level: Combating
electrical side-channel attacks
At the circuit level, the system can be implemented as an
integrated circuit with measures such as tamper proofing
to defend against physical attacks.

In standard complementary CMOS logic (scCMOS),
the building blocks of most modern integrated circuits,
the only transition that causes dynamic power dissipation
from the power supply is a 0 � 1 output transition. A 1 �
0 transition causes a stored output capacitance to dis-
charge to ground. During a 0 � 0 or 1 � 1 transition,
the circuit uses no dynamic power. Paul Kocher has
shown that this asymmetry in power demand causes in-
formation leakage.5 We can therefore successfully deduce
an encryption circuit’s secret key by analyzing its power
traces’ statistical properties. This differential power analy-
sis (DPA) is unique to embedded systems, which are by
definition easily accessible.

To combat a DPA attack at the circuit level, consider a
circuit style that has the same dynamic power dissipation
regardless of the transition (0 � 1, 1 � 0, 0 � 0, or 1 �
1). This circuit style, which we call sense amplifier based
logic,6 uses elements of both differential and dynamic cir-
cuit styles to form a secure circuit. SABL makes the four
output events equal by charging the same capacitance at

every event. Figure 9a shows a sample SABL logic gate
that can be used as a NAND or AND. 

Figure 9b shows the resulting energy consumption
per cycle for a typical encryption operation (here, a sam-
ple Kasumi S9 box). As the figure shows, a standard
CMOS module varies widely in energy dissipated—from
0 petaJoules (pJ) per cycle to 10.42 pJ per cycle—making
it relatively easy to perform a DPA attack. SABL dissipates
a narrow range of energy—between 11.14 through 11.51
pJ per cycle. This reduces dynamic power variation by
116 times as the cell essentially dissipates the same energy
each cycle, thus foiling DPA attacks.

This secure circuit technology entails power and area
penalties, however. Although it reduces dynamic power
variation, it almost doubles average power consumption
(11.32 pJ per cycle versus 5.92 pJ per cycle) and increases
cell area 1.8 times. If the entire embedded device used this
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Figure 8. Secure coprocessor microarchitecture. A top-level
controller, a cryptographic engine, and a matching engine make up
the coprocessor. Public buses serve as the coprocessor’s interface to
the physical world and, as such, are insecure. Private buses are
internal to the coprocessor and prevent the insecure module from
accessing sensitive data.
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technology, huge power and area penalties would result.
However, recall that all the secure functions and sensitive
data (which could leak in a DPA attack) reside in the secure
module. Hence, security partitioning helps us because
SABL needs to protect only the chip’s secure portion.

Table 1 gives the estimated area of the device in a
0.18-micrometer (�m) Taiwan Semiconductor Manu-
facturing Company (TSMC) CMOS technology as 2.92
mm2 without memory area. If we implemented the en-
tire device in SABL, the total area would become 5.26
mm2—an 80-percent increase. However, by judiciously
partitioning at the architecture and microarchitecture
levels, we need to secure only the coprocessor module,
resulting in a total area of 3.77 mm2—a 51-percent area
savings over the full-SABL solution. We can make similar
remarks for total power consumption. Hence, by com-
bining the partitioning techniques in the architecture and
microarchitecture levels with security techniques at the
circuit level, we can make the entire device robust with-
out wasting area and power. This again shows that em-

bedded design must account for the
interrelationships between security
levels.

To address embedded systems’
physical accessibility, we can in-
corporate tamper resistance (not ad-
dressed in this article) and resistance
to side-channel attacks in the secure
module. By using SABL, we achieve
side-channel resistance against power-

analysis attacks. We can mitigate timing attacks using a
matching algorithm whose processing time is the same
for a match or reject. Using a secure coprocessor in-
creases performance (reducing cycle counts and overall
energy expenditure as explained in the previous section)
while minimizing the amount of area and power over-
head required to maintain adequate security.

A s embedded systems evolve from isolated devices to
always-on networked devices, security will become

increasingly important, as a hijacked device could wreak
havoc on an entire network. Strengthening the security at
all levels of the security pyramid will thus be simultane-
ously more challenging and more critical to society. 
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LEON SECURE TOTAL AREA AREA INCREASE
PROCESSOR COPROCESSOR

1.86 mm2 (scCMOS) 1.06 mm2 (scCMOS) 2.92 mm2 N/A

1.86 mm2 (scCMOS) 1.91 mm2 (SABL) 3.77 mm2 29%

3.35 mm2 (SABL) 1.91 mm2 (SABL) 5.26 mm2 80%

Table 1. Area comparison of scCMOS and SABL.

Figure 9. Sense amplifier based logic. (a) Sample SABL gate for use as a NAND or AND gate. (b) SABL energy consumption
per cycle in comparison to scCMOS. Because it varies widely in the amount of energy dissipated, a standard CMOS module
is vulnerable to differential power analysis attacks. SABL dissipates a far narrower range of energy, so is more robust against
DPA attacks.
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Related work and design alternatives

Agreat deal of recent work has focused on security design alter-

natives and secure platforms for embedded systems. One

approach to PC and embedded security is trusted computing, which

is spearheaded by the Trusted Computing Group (www.trusted

computinggroup.org). The TCG specifications localize a system’s

security components into a trusted platform module. The TPM is a

hardware module used for secure key storage and generation,

digital signature authentication, and attestation, depending on

what hardware and software is present on the system. TCG

members are preparing protection mechanisms for next-

generation PCs (Microsoft’s Next-Generation Secure Computing

Base and Intel’s LaGrande, for example) and are moving toward

embedded platforms.

The embedded processor community has also presented some

design alternatives to achieve security. ARM (www.arm.com) has

recently developed the TrustZone security architecture (www.arm.

com/products/esd/trustzone_home.html), which lets users designate

system modules and data as secure or nonsecure via a security bit. A

processor operating mode controls the security operating state and

the transitions between nonsecure and secure domains. MIPS

(www.mips.com) has also developed a secure processor core that

includes secure memory management, protection against side-channel

attacks, and uses an architecture that provides fast software cryp-

tography using the SmartMIPS extensions to the MIPS32 architecture.

At the architecture and microarchitecture levels, IBM has

produced a tamper-proof coprocessor that incorporates security at

three abstraction levels,1 which they denote as firmware, software,

and hardware. Secure boot is included in the coprocessor, whose

hardware components include a 486 processor, data encryption

standard engine, modular math engine, and secure memories.

One alternative to coprocessors for security is instruction set

extensions to speed up cryptography. However, partitioning into

secure and insecure instructions/modules might be difficult.

At the circuit or physical level, you can find research in tamper

proofing and resistance techniques.2,3 Another active research area

in preventing side-channel attacks is the development of counter-

measures such as power-analysis, timing, fault-injection, and

electromagnetic-radiation attacks. Secure memory techniques

under development include encryption and secure access-control

techniques, such as those in the Dallas Semiconductor/Maxim-IC

DS2432 (www.dalsemi.com). 
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