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Abstract 
 

Creating and Collecting Meaningful Musical Material with Machine Learning 
 

By 
 

Jonathan Gillick 
 

Doctor of Philosophy in Information Science 
 

University of California, Berkeley 
 

Professor David Bamman, Chair 
 

This dissertation explores how machine learning and artificial intelligence can be 
applied within music composition and production.  My approach in this research stems 
from an underlying perspective that these technologies are deeply intertwined with the 
people who use them or are affected by them: we can’t hope to understand one side of 
the picture without looking at the other.  From this vantage point, I explore the 
following questions: How do we design algorithms, datasets, and models to support the 
processes of composers, producers, and other creators?  How can we design meaningful 
interactions with these algorithms?  And finally, how do music creators and listeners 
experience interacting with algorithms for creating music in situations when they have 
reasons to be emotionally invested in the music? 

First, I explore new approaches to music creation technology with machine 
learning, focusing on two musical settings: beat-making and orchestration.  I find that 
creative tools can benefit from incorporating machine learning if we introduce models 
in specific contexts motivated by well-defined musical goals.  For beat-making, I use 
machine learning to expand the possibilities for groove in drum machines by modeling 
the timing and dynamics of professional drummers, and for orchestration, I use 
machine learning to predict the timbral characteristics that result when mixing many 
different instruments together.  In both cases, I find that careful data collection and 
management are key components. 

Next, I investigate some of the main technical choices that need to be made when 
using machine learning in creative musical contexts: data representations and controls 
for guiding models.  Here, I find that allowing users to provide more than one 
demonstration at a time can allow for more diverse and more precisely controlled 
model outputs.  I also find that using data representations designed to capture musical 
gestures can provide benefits in settings with limited musical data. 

Finally, in the last part of the dissertation, I conduct a series of qualitative studies 
to investigate the individual experiences of listeners and musicians over the course of 
interactions with algorithms that generate personalized music samples using machine 
learning. I find the musical “quality” of algorithmically generated music to be 
comparatively unimportant to participants; instead, the degree to which music fits with 
the participants’ existing narratives or creative intentions matters more to them. These 
findings highlight the need to understand the contexts in which algorithms are 
deployed as well as the artistic choices that listeners may or may not feel comfortable 
turning over to an automated process when working with emotionally sensitive 
materials. 
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Chapter 1

Introduction

In April 2020, employing hundreds of Graphics Processing Units (GPU’s) and tens of
thousands of hours of computation time, OpenAI released Jukebox, a giant (by 2020’s
standards) machine learning model for automatically generating music with a single
click of a button [1]. Trained on a catalogue of 600,000 popular music tracks together
with metadata scraped from the internet, Jukebox is able to synthesize high resolu-
tion audio that mimics the voices, lyrics, performances, and compositions of artists
past and present. OpenAI’s research paper, along with an accompanying website for
browsing thousands of uncanny generated songs featuring ”deepfake” versions of real
musicians, sparked a flurry of concern among artists as well as a variety of other stake-
holders throughout the music industry.

Within a week of Jukebox’s release, hip-hop artist Jay-Z submitted a copyright claim
to YouTube through his company Roc Nation, requesting that two videos containing
deepfaked audio of Jay-Z be taken down [2]. Though these fake versions of Jay-Z’s
voice were actually not created with OpenAI’s software (anonymous YouTube creator
”Vocal Synthesis” used Google’s text-to-speech model Tacotron 2 [3]), Roc Nation’s
reaction foreshadowed a growing uncertainty and unease within creative industries
and creative communities about what the impacts of AI generated content might be.

Systems like Jukebox certainly offer intriguing creative possibilities for music pro-
duction, composition, sound design, and other musical activities. At the same time,
technologies based on machine learning often turn out to be difficult for musicians to
use in meaningful ways (e.g. because they create irrelevant results or are cumbersome
to interact with). They also can easily end up harming the same communities that
they are nominally designed to support (e.g. by exploiting the ghost work [4] of artists
through the use of music as training data without compensation). Despite impressive
progress in machine learning methods in recent years, designing useful and easy-to-use
machine learning technology to support meaningful creative practices for musicians is
a difficult challenge that requires engaging deeply with both the technology itself and
the artistic practices, processes, and communities of the people who might use it.

As I write this thesis in 2022, it remains to be seen how music generation tech-
nology will be broadly deployed, adopted, or regulated in practice [5]. The effects
of new technologies on musical culture can be shaped dramatically by the specific af-
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fordances those technologies provide (like sampling on Akai’s MPC), along with the
cultural practices of niche communities formed by early adopters (like hop-hop artists
using the MPC in the late 1980’s). For this reason, the current moment in time appears
to be a pivotal one: practices that gain traction over the next few years among commu-
nities of artists, researchers, and practitioners hold potential to shape the future of both
AI’s impact on artists and artists’ impact on AI.

This dissertation takes some small steps to explore one artist-centric vision for how
machine learning might be applied to music. Over the course of the chapters that
follow, I ask: How might the same kind of technology used to mimic existing music
instead be designed and used to help individuals produce unique music that draws
from their individual experiences? Rather than using AI to copy from or create echoes
of earlier work, how can we leverage AI to honor these influences, learn from them,
and ultimately synthesize them with our own unique experiences to express ourselves
through new music and art?

Part 1: Building New Machine Learning Models for Music Creation
The first part of the dissertation presents two attempts to use machine learning to ex-
pand the creative possibilities offered by digital production or composition tools. Chap-
ter 2 focuses on making beats, reimagining how drum machines might be designed
with more flexible notions of rhythm and groove by modeling the nuances of how pro-
fessional drummers play the drum set. Chapter 3 applies machine learning to musical
orchestration with the aim of assisting composers by predicting the timbral charac-
teristics that might result from mixing many different musical notes and instruments
together.

I hope that these two examples can serve as useful references for music technol-
ogy designers and developers who are interested in applying machine learning to new
musical scenarios. These chapters illustrate a range of design, data collection, data rep-
resentation, and modeling problems that can arise in the process and offer examples of
how to approach those problems.

Part 2: Designing for Musical Interaction with Machine Learning
Chapters 4 and 5 dig further into the details of designing and building machine learn-
ing models for interactive use, focusing on embodied musical concepts like groove and
gesture. In Chapter 4, I explore how models for generating drum loops can be designed
to facilitate interaction via accepting multiple user-provided demonstrations that de-
scribe different characteristics of what a model’s output should sound like. Chapter 5
takes a closer look at how low-level choices of data representation can have an impact
on the affordances that models can ultimately provide for end users.

I hope that these chapters can provide insight about how modeling decisions might
shape the experiences of users and illustrate technical and musical considerations that
can play a role in those decisions.
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Part 3: Musician and Listener Perspectives on Interactions with AI
In Chapter 6, I look at musical interactions with AI through a series of three user stud-
ies with listeners and musicians. While the preceding chapters fit for the most part into
machine learning or technically-oriented human-computer interaction research disci-
plines, Chapter 6 is less concerned with offering technical solutions. Here, I use quali-
tative design research to develop a better understanding of subjective, emotional expe-
riences as people interact with the kind of technology developed in earlier chapters.

This chapter is intended for both artists and researchers, and I hope that it sheds
light on the importance of context and process whenever people use machine learning
in the course of music creation.

3



Chapter 2

Designing for Music Creation with
Machine Learning in the Loop:
Modeling Groove in Drum Machines1

Abstract
This chapter explores models for translating abstract musical ideas (scores, rhythms)
into expressive performances using Seq2Seq and recurrent variational Information Bot-
tleneck (VIB) models. Though Seq2Seq models usually require painstakingly aligned
corpora, we show that it is possible to adapt an approach from the Generative Ad-
versarial Network (GAN) literature (e.g., Pix2Pix [7] and Vid2Vid [8]) to sequences,
creating large volumes of paired data by performing simple transformations and train-
ing generative models to plausibly invert these transformations. Music, and drum-
ming in particular, provides a strong test case for this approach because many common
transformations (quantization, removing voices) have clear semantics, and models for
learning to invert them have real-world applications. Focusing on the case of drum
set players, we create and release a new dataset for this purpose, containing over 13
hours of recordings by professional drummers aligned with fine-grained timing and
dynamics information. We also explore some of the creative potential of these models,
including demonstrating improvements on state-of-the-art methods for Humanization
(instantiating a performance from a musical score).

2.1 Introduction
A performance can be viewed as a translation of an idea conceived in the mind to
a finished piece on the stage, the screen, or the speakers. The long-standing goal of
many creative technologies is to enable users to render realistic, compelling content

1The material is this chapter draws upon my previously published work in Learning to Groove with
Inverse Sequence Transformations at the 2019 International Conference on Machine Learning [6] with co-
authors Adam Roberts, Jesse Engel, Douglas Eck, and David Bamman.

4



Figure 2.1: Learning inverse sequence transformations for drumming. Moving from left to
right, the representations become progressively simpler, first removing expressive timing (small
shifts off the grid) and dynamics (color, with higher velocities in red), then removing one of the
voices, and then compressing all voices to a single track. We train models to map from each of
these deterministically compressed representations back to complete realizations of drum per-
formances. The inverse transformations correspond to Humanization, Infilling, and Tap2Drum
respectively, and require progressively easier inputs for an untrained user to create.

that brings an idea to life; in so doing, finding a balance between realism and control is
important. This balance has proved difficult to achieve when working with deep gen-
erative models, motivating recent work on conditional generation in several modalities
including images [9], speech [3], and music [10]. In this work, rather than generating
new content conditioned on one of a fixed set of classes like rock or jazz, we are inter-
ested in learning to translate ideas from representations that are more easily expressed
(musical abstractions such as scores) into instantiations of those ideas that would oth-
erwise be producible only by those skilled in a particular instrument (performances).

We use the metaphor of translation from idea to finished work as a starting point
for our modeling choices, adapting and modifying Seq2Seq models typically used in
machine translation [11]. While musical scores and performances can be thought of
as different expressions of the same idea, our setting differs from translation in that
musical scores are designed to be compressed representations; the additional informa-
tion needed to create a performance comes from the musician. In this chapter, we set
up a data collection environment in which a score can be deterministically extracted
from the performance in a manner consistent with the conventions of western music
notation, effectively yielding a parallel corpus. Furthermore, though western music
notation is well established as one compressed representation for music, our data al-
lows us to explore other representations that are compressed in different ways; we
propose and explore two such transformations in this chapter, which we call Infilling
and Tap2Drum. Learning to map from these reduced versions of musical sequences to
richer ones holds the potential for creative application in both professional and amateur
music composition, production, and performance environments.

This chapter focuses specifically on drums; though drums and percussion are essen-
tial elements in many styles of modern music, creating expressive, realistic sounding
digital drum performances is challenging and time consuming. Humanization func-
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tions have been embedded in industry standard music production software for many
years, but despite evidence that the current methods used in professional toolkits (ran-
domly jittering note timings and dynamics with Gaussian noise) have little effect on
listener preferences [12], machine learning based methods have not yet made their way
into many mainstream environments to replace them. We hope that our data, models,
and methods for generating and controlling drum performances will continue to drive
forward the growing body of work on expressive performance modeling.

In summary, this chapter makes the following contributions:

• We collect a new dataset an order of magnitude larger than the largest previously
publicly available, with 13.6 hours of recordings of 10 drummers playing elec-
tronic drum kits instrumented with sensors to capture precise performance char-
acteristics in MIDI format. We pair this data with associated metadata including
anonymized drummer identifiers, musical style annotations, and tempo, while
also capturing and aligning the synthesized audio outputs.

• We present a data representation and a class of models that we call GrooVAE.
We use our models to explore the task of Humanization, learning to perform a
musical score for drum set, demonstrating improvements over previous methods.

• We introduce, implement, and evaluate two new tasks made possible by our data
and model, which we call Drum Infilling and Tap2drum. We argue that these
models, along with Humanization, may allow for user control over realistic drum
performance generation without expertise playing the drum set.

Code, data, trained models, and audio examples are available online. 2

2.2 Related Work
A small number of previous studies explore machine learning methods for generat-
ing expressive drum performance timing, employing linear regression and K-Nearest
Neighbors [13], or Echo State Networks [14]. These studies use data from different mu-
sical genres and different drummers, so relative performance between methods is not
always clear. In most cases, however, listening tests suggest that qualitative results are
promising and can produce better outputs than those created heuristically through a
groove template3 [13].

Other expressive performance modeling focuses on piano rather than drums, lever-
aging data from performances recorded on electronic keyboards or Disklaviers, pianos
instrumented with MIDI inputs and outputs [15, 16, 17, 18, 19]. Recent impressive re-
sults in generating both MIDI and audio also suggest that given enough data, neural
sequence models can realistically generate expressive music. One drawback of the large

2https://g.co/magenta/groovae
3Groove templates, which are used commonly in music production practice, copy exact timings and

velocities of notes from a template sequence.
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piano datasets, however, is that they lack gold standard alignments with corresponding
musical scores, making tasks like Humanization more challenging.

There are of course many other settings besides music in which learning to translate
from abstractions to instantiations can be useful. State-of-the-art methods for speech
synthesis [20, 21], and story generation [22] typically use Seq2Seq frameworks. Unlike
our case, however, these methods do require paired data, though some recent work
attempts to reduce the amount of paired data needed through self-supervised learn-
ing [23].

Perhaps most similar to our setting is recent work in the image domain, which has
demonstrated the ability of GAN models to translate from simple, potentially user-
provided, inputs into photo-realistic outputs [7, 8]. Images and music are similar in
that their contents can survive abstraction into simplified versions through lossy trans-
formations like quantization or edge detection while still retaining important semantic
details. Images, however, are structured fundamentally differently than musical se-
quences and tend to benefit from different modeling choices – in particular the use of
GANs, which have not been demonstrated to work as well for music as recurrent neural
networks.

2.3 Data
Existing work on expressive drum modeling focuses only on small datasets with a lim-
ited number of sequences, drummers and genres [13, 24]. Other studies that model
expressive performance on different instruments (typically piano) use larger and more
diverse datasets [18, 25, 19], but these data lack ground truth alignments between
scores and performances; this alignment, which allows use to measure time relative
to a metronome, is key to the applications we explore in this chapter. Several compa-
nies also sell drum loops played to a metronome by professional drummers, but these
commercially produced loops may be edited in post-production to remove human er-
ror and variation, and they also contain restrictive licensing agreements that prohibit
researchers from sharing their models.

There is currently no available gold standard dataset that is of sufficient size to rea-
sonably train modern neural models and that also contains a precise mapping between
notes on a score and notes played by a performer.

Groove MIDI Dataset
To enable new experiments and to encourage comparisons between methods on the
same data, we collect a new dataset of drum performances recorded in MIDI format
(the industry standard format for symbolic music data) on a Roland TD-114 electronic
drum kit. MIDI notes (we also refer to them as hits) are each associated with an instru-
ment, a time, and a velocity. Microtimings, (we also call them timing offsets), describe

4https://www.roland.com/us/products/td-11/
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Figure 2.2: A drummer recording for the Groove MIDI Dataset

how note timings stray from a fixed grid, and velocities (or dynamics) denote how
hard notes are struck. Taken together, we refer to microtiming and velocity as perfor-
mance characteristics or groove, and the quantized times of the notes define a musical
score (also called a pattern or sequence). While some nonpercussive instruments like
strings or horns, which allow for continuous changes to a single note, are difficult to
represent with MIDI, many styles of drum set playing can be well specified through
microtiming and velocity. This dataset, which we refer to as the Groove MIDI Dataset
(GMD)5, has several attributes that distinguish it from existing ones:

• The dataset contains about 13.6 hours, 1,150 MIDI files, and 22,000 measures of
drumming.

• Each performance was played along with a metronome set at a specific tempo by
the drummer. Since the metronome provides a standard measurement of where
the musical beats and subdivisions lie in time, we can deterministically quantize
all notes to the nearest musical division, yielding a musical score. Recording to
a metronome also allows us to take advantage of the prior structure of music by
modeling relative note times (quarter note, eighth note, etc.) so as to free mod-
els from the burden of learning the concept of tempo from scratch. The main
drawback of the metronome is that we enforce a consistent tempo within each
individual performance (though not across performances) so we do not capture
the way in which drummers might naturally change tempo as they play.

5https://magenta.tensorflow.org/datasets/groove
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• The data includes performances by a total of 10 drummers, 5 professionals and
5 amateurs, with more than 80% coming from hired professionals. The profes-
sionals were able to improvise in a wide range of styles, resulting in a diverse
dataset.

• The drummers were instructed to play a mix of long sequences (several minutes
of continuous playing) and short beats and fills.

• Each performance is annotated with a genre (provided by the drummer), tempo,
and anonymized drummer ID.

• Most of the performances are in 4/4 time, with a few examples from other time
signatures; we use only the files in 4/4 in this work.

• In addition to the MIDI recordings that are the primary source of data for the ex-
periments in this work, we captured the synthesized audio outputs of the drum
set and aligned them to within 2ms of the corresponding MIDI files. These aligned
audio files may serve as a useful resource for future research in areas like Auto-
matic Drum Transcription.

• A train/validation/test split configuration is provided for easier comparison of
model accuracy on various tasks.

Preprocessing
Though the Groove Midi Dataset contains all the information captured by the electronic
drum kit, including multiple sensors to detect hits on different parts of each drum, we
make several preprocessing choices to simplify our models for this work. First, we map
all drum hits to a smaller set of 9 canonical drum categories, following Roberts et al.
[26]. These categories represent the most common instruments in standard drum kits:
bass drum, snare drum, hi-hats, toms, and cymbals. Table 2.1 displays the choice of
MIDI notes to represent the nine essential drum voices for this study, along with the
counts of each pitch in the data.

After partitioning recorded sequences into training, development, and test sets, we
slide fixed size windows across all full sequences to create drum patterns of fixed
length; though we explored models for sequences of up to 16 measures, for consis-
tency we use 2 measure (or 2 bar) patterns for all reported experimental evaluations,
sliding the window with a hop size of 1 measure. We chose 2 measures for our experi-
ments both because 2 bars is a typical length for drum loops used in music production
practice and because these sequences are long enough to contain sufficient variation
but short enough to quickly evaluate in listening tests.

As a final step, motivated by the fact that music production software interfaces
typically operate at 16th note resolution [27], we take 16th notes as the fundamental
timestep of our data. Each drum hit is associated with the closest 16th note metrical
position; if multiple hits on the same drum category map to the same timestep, we
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Pitch Roland Mapping GM Mapping Drum Category Count
36 Kick Bass Drum 1 Bass (36) 88067
38 Snare (Head) Acoustic Snare Snare (38) 102787
40 Snare (Rim) Electric Snare Snare (38) 22262
37 Snare X-Stick Side Stick Snare (38) 9696
48 Tom 1 Hi-Mid Tom Mid Tom (48) 13145
50 Tom 1 (Rim) High Tom High Tom (50) 1561
45 Tom 2 Low Tom Low Tom (45) 3935
47 Tom 2 (Rim) Low-Mid Tom Mid Tom (48) 1322
43 Tom 3 (Head) High Floor Tom Low Tom (45) 11260
58 Tom 3 (Rim) Vibraslap Low Tom (45) 1003
46 HH Open (Bow) Open Hi-Hat Open Hi-Hat (46) 3905
26 HH Open (Edge) N/A Open Hi-Hat (46) 10243
42 HH Closed (Bow) Closed Hi-Hat Closed Hi-Hat (42) 31691
22 HH Closed (Edge) N/A Closed Hi-Hat (42) 34764
44 HH Pedal Pedal Hi-Hat Closed Hi-Hat (42) 52343
49 Crash 1 (Bow) Crash Cymbal 1 Crash Cymbal (49) 720
55 Crash 1 (Edge) Splash Cymbal Crash Cymbal (49) 5567
57 Crash 2 (Bow) Crash Cymbal 2 Crash Cymbal (49) 1832
52 Crash 2 (Edge) Chinese Cymbal Crash Cymbal (49) 1046
51 Ride (Bow) Ride Cymbal 1 Ride Cymbal (51) 43847
59 Ride (Edge) Ride Cymbal 2 Ride Cymbal (51) 2220
53 Ride (Bell) Ride Bell Ride Cymbal (51) 5567

Table 2.1: List of Drum Categories
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keep the loudest one. Although this preprocessing step forces us to discard some of the
subtle details of drum rolls that can be played on a single drum faster than 16th notes,
we found that perceptually, much of the expressiveness in drumming can be conveyed
at this resolution. Moreover, after experimenting both with finer resolutions (32nd or
64th notes) and data representations that count time in absolute time (milliseconds)
rather than relative time (as in Simon et al. [25]), we found that the gains in model-
ing yielded by this constraint were more important than the details lost. One potential
path forward in future work might be to supplement our data representation with an
explicit token for a drum roll.

Data Represention
After preprocessing, our data points are of fixed length: each sequence has T timesteps
(one per 16th note) and M instruments per timestep. The full representation consists
of the below three T ⇥ M matrices, with values T = 32 and M = 9 for all reported
experiments.

Hits. To represent the presence or absence of drum onsets, or hits, in a sequence, we
define a binary-valued matrix H , which contains all the information in a basic drum
score. A column of H contains the drum score for one of the nine instruments in the
drum set, and a row of H contains the drum score for all nine instruments at a single
timestep.

Offsets. A continuous-valued matrix O stores the timing offsets, taking values in [-
0.5, 0.5) that indicate how far and in which direction each note’s timing lies relative
to the nearest 16th note. Drum hits may fall at most halfway between their notated
position in time and an adjacent position. We can examine O to compute statistics on
microtiming: positive values indicate playing behind the beat (late); negative values
demonstrate playing ahead (early).

Modeling continuous as opposed to discrete values for offsets allows us to take ad-
vantage of the fact that timing appears to be approximately normally distributed at
any given metrical position (as shown in Figure 2.3); intuitively, models should be pe-
nalized more for predictions that are further from the ground truth. We experimented
with various continuous and discrete representations including logistic mixtures [28],
thermometer encodings [29], and label smoothing [30], but we found that modeling
timing offsets and velocity as single Gaussian distributions (conditional on the LSTM
state) produced by far the most perceptually realistic results.

Velocities. Another continuous-valued matrix V stores the velocity information (how
hard drums are struck). We convert velocity values from the MIDI domain (integers
from 0-127) to real numbers in [0,1].
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Figure 2.3: Distribution of timing offsets for notes in the training set. On-beat notes (landing
on an eighth note), shown on the left, are more often played late, whereas off-beat notes (not
landing on an eighth note), on the right, are more often played early.

2.4 Modeling Objectives
We focus our experiments and analysis on three particular applications of expressive
performance modeling. For audio examples of additional tasks such as unconditional
sampling, interpolation, and style transfer, see the online supplement6.

Humanization. Our first objective is to generate, given a 16th-note-quantized drum
pattern with no microtiming or velocity information (i.e., a drum score), a MIDI perfor-
mance of that score that mimics how a professional drummer might play it. Because
this task has an existing body of work, we focus most of our experiments and evalua-
tions on this task.

Infilling. We introduce a second task of interest within the same contexts as Human-
ization that we call Drum Infilling. The objective here is to complete or modify a drum
beat by generating or replacing the part for a desired instrument. We define an instru-
ment as any one of the 9 categories of drums and train models that learn to add this
instrument to a performance that lacks it. For brevity, we choose a single drum category
(hi-hat) as a basis for our evaluations. Infilling provides a case for examining computer
assisted composition, allowing a composer to sketch parts for some pieces of the drum
kit and then receive suggestions for the remaining parts. Previous work explores Infill-
ing in the context of 4-part Bach compositions [31] and in piano performance [32]; we
look at the task for the first time in the context of drums.

6http://goo.gl/magenta/groovae-examples
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Tap2Drum. In this last task, we explore our models’ ability to generate a perfor-
mance given an even further compressed musical representation. While western mu-
sical scores usually denote the exact notes to be played but lack precise timing spec-
ifications, we propose a new representation that captures precise timing but does not
specify exactly which notes to play. In this setting, which we call Tap2Drum, we give
our model note offset information indicating the microtiming, but we do not specify
the drum categories or velocities as inputs, leaving the decision of which instrument to
hit and how hard to the model. Because almost anyone can tap a rhythm regardless of
their level of musical background or training, this input modality may be more accessi-
ble than musical notation for those who would like to express their own musical ideas
on a drum set but lack the skills of a drummer.

2.5 Models
We compare several models for Humanization, selecting the best performing one for
our experiments with Infilling and Tap2Drum.

Baselines
For our baseline models, we focus on models from the literature that have been used
before for Humanization in the context of drum performances aligned to a metronome.

Quantized

As a simple baseline, we set all offsets to 0 and velocities to the mean value in the
training set.

Linear Regression

For this baseline, we regress H against V and O, predicting each element of V and O as
a linear combination of the inputs H .

K-Nearest Neighbors

Wright and Berdahl [13] report strong results in using K-Nearest Neighbors to predict
microtiming in Brazilian percussion. They define a hand-crafted distance measurement
between notes, retrieve the K notes in the training set nearest to a given note in a
test sequence, and then take the mean timing offset of those notes. Their definition
of nearest notes, however, requires that the same sequence appear in both training and
test sets. Since our test set emphasizes unseen sequences, we adapt the method as
follows: first we retrieve the K nearest sequences, measuring distance Di,j by counting
the number of notes in common between a test sequence xi and each training sequence
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xj , which can be computed easily through the Hadamard product of their respective
binary matrices, Hi and Hj :

Di,j =
X

Hi �Hj (2.1)

Given the closest K sequences [S1, . . . , SK ], we then compute predicted velocities V̂ and
offsets Ô by taking the element-wise means of the corresponding V and O matrices:

V̂ =
1

K

X

k

Vk (2.2)

Ô =
1

K

X

k

Ok (2.3)

When reconstructing a MIDI sequence, we ignore the entries of V̂ and Ô for which the
corresponding entry of H is 0.

Choosing K = 1 is equivalent to selecting the most similar sequence as a groove
template, and choosing K to be the cardinality of the training set yields a single groove
template that summarizes the average performance characteristics of the entire set.
Through a grid search on the development set, we found that setting K = 20 performed
best, close to the reported K = 26 from Wright and Berdahl [13].

Proposed Models
MLP

To train multilayer perceptron (MLP) neural networks for Humanization, we concate-
nate the matrices H , V , and O to form a target matrix y 2 RT⇥(M⇤3). We pass H into
the model as inputs, training the network to minimize the squared error between y
and predictions ŷ. For the MLP, we use a single hidden layer of size 256 and ReLU
nonlinearities. We train all our neural models with Tensorflow [33] and the Adam op-
timizer [34].

Seq2Seq

Sequence to sequence models [11] encode inputs into a single latent vector, typically
with a recurrent neural network, before autoregressively decoding into the output
space. For this architecture, we process the drum patterns over T = 32 timesteps,
encoding a drum score to a vector z with a bidirectional LSTM and decoding into a
performance with a 2-layer LSTM.

Encoder The encoder is based on the bidirectional LSTM architecture used in Roberts
et al. [26], though we change the LSTM layer dimensions from 2048 to 512 and the di-
mension of z from 512 to 256. At each timestep t, we pass a vector ht, which is row t of
H , to the encoder, representing which drums were hit at that timestep; velocities and
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Figure 2.4: The forward direction of our encoder architecture for the Seq2Seq Humanization
model. Input sequences are visualized as piano rolls, with drum categories on the vertical axis
and time on the horizontal axis. LSTM inputs are shown for a single timestep t. Instruments
with no drum hits at time t are shown as blank, although for implementation we fill these blank
cells with 0’s. Note that no velocity or timing offset information is passed to the encoder.
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Figure 2.5: Decoder architecture for Seq2Seq Humanization model. The decoder generates
outputs for drum hits, velocities and timing offsets. Velocity is visualized in color, and output
notes appear slightly earlier than the grid lines, indicating negative offsets.

timing offsets are not passed in. As shown in Figure 2.1, we keep the same architec-
ture for Infilling and Tap2Drum, only modifying the inputs to switch tasks. Figure 2.4
demonstrates one step of the forward direction of the encoder.

Decoder We use a 2-layer LSTM of dimension 256 for our decoder, which we train to
jointly model H , V , and O. Unlike Roberts et al. [26], however, we split the decoder
outputs at each timestep t into 3 components, applying a softmax nonlinearity to the
first component to obtain a vector of predicted hits ĥt, sigmoid to the second component
to get velocities v̂t, and tanh to the third, yielding timing offsets ôt. These vectors are
compared respectively with ht, vt, and ot, the corresponding rows of H , V , and O, and
finally summed to compute the primary loss for this timestep Lt:

Lt = CrossEntropy(ht, ĥt) + (vt � v̂t)
2 + (ot � ôt)

2 (2.4)

We train the model end to end with teacher forcing.

Groove Transfer

We experiment with one more model that we call Groove Transfer. This architecture
is identical to our Seq2Seq model except that at each timestep t we concatenate ht,
the vector for the hits at time t, to the decoder LSTM inputs using the conditioning
procedure of Simon et al. [10]. By allowing the decoder to learn to copy ht directly to its
outputs, we incentivize this encoder to ignore H and only learn a useful representation
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for generating V and O. The main benefit of this architecture over Seq2Seq is that
the modification allows us to disentangle the performance characteristics (the groove)
of a sequence S1 from the score H1, capturing the performance details in the groove
embedding z1. We can then pass z1 to the decoder along with the content H2 of another
sequence S2 to do style transfer for drum performances. Audio examples of Groove
Transfer can be found in the supplementary materials.

We also apply Groove Transfer to Humanization as follows: given a score H2, we
embed the closest k = 3 sequences in the training set as defined by the distance metric
in Section 2.5, store the mean of the k embeddings in a vector zk, and then transfer the
groove vector zk to H2.

Variational Information Bottleneck
Our test data, while disjoint from the training data, comes from the same set of drum-
mers, and its distribution is meant to be similar. In the real world, however, we would
like to be able to trade off between realism and control; when faced with a very unlikely
drum sequence, such as one quickly sketched in a music production software interface,
we may want to choose a model that constrains its output to be close to the realistic ex-
amples in the training set, potentially at the cost of changing some of the input notes. To
this end, we add a variational loss term to both Seq2Seq and Groove Transfer, turning
the models into a Variational Information Bottleneck (VIB) [35] and training the em-
beddings z to lie close to a prior (multivariate normal) distribution. Following Roberts
et al. [26], we train by maximizing a modified Evidence Lower Bound (ELBO) using
the hyperparameter � = 0.2. We report our quantitative metrics both with and without
the VIB.

2.6 Results

Listening Tests
As is the case with many generative models, especially those designed for creative
applications, we are most interested in the perceptual quality of model outputs; for
this reason, we also highly encourage the reader to listen to the audio examples in the
supplementary materials. In our setting, high quality model outputs should sound
like real drum performances. We examine our models through multiple head-to-head
listening tests conducted on the Amazon Mechanical Turk platform.

Humanization: Comparison with baseline. For this experiment, we compare the
Humanization model that we judged produced the best subjective outputs (Seq2Seq
with VIB), with the best baseline model (KNN). We randomly selected 32 2-measure
sequences from the test set, removing all microtiming and velocity information, and
then generated new performances of all 32 sequences using both Humanization mod-
els. We presented participants with random pairs of clips, one of which was generated
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Figure 2.6: Results of head-to-head listening tests for different tasks and baselines, with 95%
confidence interval bands. The experiments included 56, 188, 189, and 177 comparisons, re-
spectively.

by each model, asking them to judge which clip sounds more like a human drummer.
The Seq2Seq model significantly outperformed the baseline as can be seen in the first
column of Figure 2.6.

Comparison with real sequences from the test set. Perhaps a more compelling test of
the real-world viability of our models is to ask listeners to compare generated outputs
with clips of real drum performances; if the model outputs are competitive, this sug-
gests that the generated drums are perceptually comparable with real performances.
We structured this test in the same way as the baseline comparison, asking listeners
which sequence sounds more like a human drummer; in this case each pair contains
one real clip from the test set and one generated clip. As noted in Section 2.3, because
our models do not generate drum rolls faster than 16th notes, we compared against
the preprocessed versions of test set clips (which also do not have faster drum rolls) to
ensure fair comparison. Figure 2.6 summarizes the results of this test for each of our
tasks (Humanization, Infilling, and Tap2Drum), showing the generated outputs from
our Seq2Seq models are competitive with real data.

Quantitative Metrics
Though it is difficult to judge these generative models with simple quantitative met-
rics, we report several quantitative evaluations for comparison, summarizing results in
Table 2.2, along with 95% bootstrap confidence intervals.
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Model MAE (ms) MSE (16th note) Timing KL Velocity KL
Baseline 22.6 [22.45–22.72] 0.041 [0.041–0.042] N/A N/A
Linear 19.77 [19.63–19.88] 0.033 [0.033–0.034] 4.79 [4.68–4.88] 1.70 [1.66–1.74]
KNN 22.34 [22.19–22.45] 0.043 [0.042–0.0438] 1.10 [1.07–1.12] 0.53 [0.51–0.56]
MLP 19.25 [19.13–19.40] 0.032 [0.031–0.032] 7.62 [7.44–7.80] 2.22 [2.16–2.29]
Seq2Seq 18.80 [18.67–18.90] 0.032 [0.031–0.032] 0.31 [0.31–0.33] 0.08 [0.08–0.09]
Seq2Seq+ 18.47 [18.37–18.60] 0.028 [0.028–0.029] 2.80 [2.72–2.86] 0.22 [0.21–0.23]
Transfer 25.04 [24.82–25.28] 0.052 [0.051–0.053] 0.24 [0.23–0.25] 0.12 [0.12–0.13]
Transfer+ 24.49 [24.25–24.72] 0.051 [0.049–0.052] 0.27 [0.26–0.28] 0.20 [0.19–0.20]

Table 2.2: Metrics for different Humanization models, with 95% bootstrap confidence intervals.
Seq2Seq+ and Transfer+ refer to the Seq2Seq model and the Groove Transfer model with the
Variational Information Bottleneck included. Seq2Seq and Transfer refer to the same models
without the Variational Information Bottleneck.

Timing MAE. We report mean absolute error in milliseconds, which is useful for in-
terpreting results in the context of studies on Auditory Temporal Resolution, a mea-
sure of the minimum amount of time required for the human ear to perceive a change
in sound. Studies show that temporal resolution depends on the frequency, loudness,
and envelope of the sound as well as on the listener and type of recognition test (e.g.,
noise or pitch recognition) [36, 37]. On tests for which the ear is more sensitive, such
as the Gap-in-Noise test, mean values can be as low as 2ms, while for pitched tests like
Pure Tone Discrimination, values can be 20ms or more [38]. Most likely, the resolution
at which the ear can perceive differences in drum set microtiming lies somewhere in
between.

Timing MSE. Following Wright and Berdahl [13], for another perspective on timing
offsets, we look at mean squared error relative to tempo, here using fractions of a 16th
note as units. Since beats are further apart at slower tempos, this metric weights errors
equally across all tempos.

Velocity KL / Timing KL. One drawback of the above metrics, which are aggregated
on a per-note basis, is that they do not account for the possibility of mode collapse or
blurring when comparing methods [39]. The effects of blurring seem to be particularly
severe for velocity metrics; instead of averaging velocity errors across all notes, pre-
vious work computes similarity between the distributions of real and generated data
[40, 41]. We adopt this approach, first predicting velocities and offsets for the entire
test set and then comparing these with ground truth distributions. For these metrics,
we aggregate all predicted notes into four groups based on which 16th note position
they align with. We calculate the means and standard deviations for each group of
notes, compute the KL Divergence between predicted and ground truth distributions
based on those means and standard deviations, and then take the average KL Diver-
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gence across the four groups. These distribution based metrics should not be treated
as a gold standard either, but they do tend to penalize severe instances of blurring or
mode collapse, as can be seen with the Linear and MLP models.

2.7 Analysis

Comparisons with KNN baseline
Based on the results of the listening tests shown in Figure 2.6, Seq2Seq models clearly
offer a powerful method for generating expressive drum performances. The listener
preference for Humanization using Seq2Seq over KNN is substantial, and moreover,
these survey participants were not specifically chosen from a pool of expert musicians
or drummers; that this pool of listeners was able to so clearly identify the Seq2Seq
models as more realistic than the baseline seems to indicate that the model captures
important nuances that make drumming realistic and expressive.

Comparing Humanization to real data
The survey results indicate that, at least for our population of listeners, drum perfor-
mances generated through Seq2Seq Humanization are difficult to distinguish from real
data; statistically, the results show no significant difference.

Comparing Infilling to real data
Perhaps counter-intuitively, a significant fraction of listeners in this experiment (nearly
60%) identified the generated outputs as sounding more human than the real data. One
potential explanation for this result is that among our test data, some sequences sound
subjectively better than others. A small fraction of the recordings are from amateur
drummers, who sometimes make mistakes or play at a lower level. In replacing the
original hi-hat parts, the Infilling model in effect resamples from the data distribution
and may generate better sounding, more likely parts. This result suggests a potential
use for the model as a corrective tool that works by resampling parts of an input that
have noise or imperfections.

Comparing Tap2Drum to real data
Figure 2.6 demonstrates the slight preference of listeners for the real data over perfor-
mances generated by Tap2Drum (about 56%). This difference is significant but com-
paratively small relative to the difference between Seq2Seq and KNN Humanization,
indicating that Tap2Drum may be a viable way of controlling expressive performances
in practice. More work is needed to better understand how much control this model
offers and how people interact with the model in different contexts; qualitative research
with musicians and music producers offers one path forward.
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Groove Transfer
Evaluating Groove Transfer is challenging in the absence of existing methods for com-
parison; nonetheless, we believe that this particular version of style transfer yields sub-
jectively interesting outputs and merits further investigation both in terms of its archi-
tecture and its potential for creative application in the future.

Quantitative Results
As might have been expected, the Seq2Seq models achieve the best results on the timing
MAE and MSE metrics, while also outperforming the baselines on the distribution-
based metrics. The Groove Transfer models, in exchange for the added control given
by the ability to perform a beat in the style of any other beat, sacrifice some accuracy on
the Humanization task compared to Seq2Seq, as can be seen by the higher MAE error.

2.8 Conclusions
In this chapter, we demonstrate that learning inverse sequence transformations can be
a powerful tool for creative manipulation of sequences. We present the Groove MIDI
Dataset, new methods for generating expressive drum performances, and quantitative
and qualitative results demonstrating state-of-the-art performance on Humanization.

We also explore new applications, such as Tap2Drum, which may enable novices to
easily generate detailed drum performances. Our results raise the possibility of learn-
ing other creative inverse transformations for sequential data such as text and audio.
We hope this line of research will ultimately lead a variety of interesting creative appli-
cations, just as similar GAN-based techniques have done for images and video.
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Chapter 3

Expanding the Scope of Music Creation
Tools using Machine Learning:
Target-Based Orchestration1

Abstract
This chapter explores how machine learning can be used to expand the scope of music
creation tools, focusing here on the context of computer-assisted musical orchestration.
Target-based assisted orchestration can be thought of as the process of searching for
optimal combinations of sounds to match a target sound, given a database of samples,
a similarity metric, and a set of constraints. A typical solution to this problem is a pro-
posed orchestral score where candidates are ranked by similarity in some feature space
between the target sound and the mixture of audio samples in the database correspond-
ing to the notes in the score; in the orchestral setting, valid scores may contain dozens
of instruments sounding simultaneously.

Generally, target-based assisted orchestration systems consist of a combinatorial op-
timization algorithm and a constraint solver that are jointly optimized to find valid
solutions. A key step in the optimization involves generating a large number of combi-
nations of sounds from the database and then comparing the features of each mixture of
sounds with the target sound. Because of the high computational cost required to syn-
thesize a new audio file and then compute features for every combination of sounds, in
practice, existing systems instead estimate the features of each new mixture using pre-
computed features of the individual source files making up the combination. Currently,
state-of-the-art systems use a simple linear combination to make these predictions, even
if the features in use are not themselves linear.

In this chapter, we explore neural network models for estimating the features of a
mixture of sounds from the features of the component sounds, finding that standard

1The material is this chapter draws upon my previously published work in Estimating Unobserved Au-
dio Features for Target-Based Orchestration at the 2019 International Society for Music Information Retrieval
Conference [42] with co-authors Carmine-Emanuele Cella and David Bamman.
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features can be estimated with accuracy significantly better than that of the methods
currently used in assisted orchestration systems. We present quantitative comparisons
and discuss the implications of our findings for target-based orchestration problems.

3.1 Introduction
In many music information retrieval and signal processing contexts, we are required
to reason about signals that are themselves the sum of multiple sources. Whether the
summing comes from instruments in a multi-track recording, voices in a group conver-
sation, or simply from noise in the signal, we generally need to consider the full set of
sources that make up an audio signal.

Much work in MIR deals with pulling apart the sources in a signal, either in the most
straightforward sense via source separation [43, 44], or through any of a number of
classification tasks such as tagging [45, 46], instrument recognition [47, 48], or automatic
transcription [49, 50]. A separate body of work deals with the inverse problem, that
of putting sources together: work in applications like assisted orchestration [51] and
automatic mixing [52, 53] aims to guide people through the task of combining signals
together with the help of a machine in the loop.

In the cases of both separation and combination, tasks can be solved presumably
because the source components and the summed signal are sufficiently correlated; the
more correlated a source is with the mixture, the easier it is to identify, and as more sig-
nals are summed together, correlations between the combination and any single source
tend to diminish. In a computational setting, these correlations are of course measured
through a set of features of the signals, whether they be hand-engineered features like
FFT and MFCC, or modern features learned by neural networks.

There are some cases, however, in which we can observe the source signals of a
mixture, but it is impractical or impossible to actually compute the features of the signal
in question; these are the cases that we investigate in this chapter. Broadly speaking,
there are two primary settings in which we may be unable to observe the features of
audio signals:

1. We do not have access to the signals.

2. Computing the features for all relevant signals is computationally expensive.

The first setting is commonly encountered in MIR, in which, as with many fields
centered around media that may be under copyright or other protections, it is quite
common for researchers to have access to pre-computed features but not to raw data
itself. For example, the audio files of the million songs that comprise the Million
Song Dataset [54], which serves as a benchmark for many common MIR tasks, cannot
be legally distributed. Instead the data contains common audio features like MFCC,
chroma, note onsets, and spectral centroids. Though these kinds of dataset are attrac-
tive because of their size and scope, they have been of limited use as source material
for constructing additional audio mixtures. As semi-supervised and self-supervised
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approaches to machine learning have become more competitive with fully supervised
systems, large datasets even of weakly labeled source material are becoming more use-
ful for research in areas like source separation [55, 56]; estimating the features of mix-
tures might be one path towards making use of this data in new contexts.

The second setting in which we cannot observe audio features, which is the focus
of this chapter, is the case where the computational cost of calculating an exponen-
tial number of audio mixtures is prohibitively high. This computational bottleneck
often arises in the aforementioned body of work that attempts to automatically com-
bine signals together during the course of tasks like target-based orchestration. In this
context, learning algorithms need to explore a combinatorial space of potential solu-
tion sets, making it infeasible to compute the real features of all possible mixtures of
signals. Moreover, methods for narrowing down this set of possible solutions, such as
reinforcement learning algorithms, are generally iterative, requiring online evaluation
of a reward function before the next set of candidates can be explored. Because these
methods both have a large solution space and need to be evaluated iteratively, features
must be computed on the fly, making fast feature computation, or accurate estimation,
a necessity.

In this chapter, we take steps to explore the potential of machine learning models
for predicting audio features of a mixture of sounds that we are unable to observe,
focusing on the task of target-based assisted orchestration [51, 57, 58]. Concretely, we
consider models of the following form: given a feature function f and M individual
signals S1, . . . , SM , we learn mappings from input features f(S1), . . . , f(SM) to the true
feature of the mixture f(S1 + . . .+ SM).

In experiments, we examine one standard feature that is known to typically behave
linearly when summed (FFT magnitude spectra) and one feature that is less well suited
to linear approximation (MFFC coefficients), investigate the ability of different models
to predict each feature across a varying number of mixtures ranging from 2 notes to
30, and discuss the implications of our findings for target-based assisted orchestration
as well as for the broader range of scenarios in which real audio features cannot be
observed.

Code to reproduce our results can be found at https://github.com/jrgillick/
audio-feature-forecasting.

3.2 Target-Based Assisted Orchestration
Musical orchestration, and in many cases, music production, consists largely of choos-
ing combinations of sounds, instruments, and timbres that support the narrative of a
piece of music. Strong orchestration can bring a composition to life by emphasizing,
clarifying, or perhaps questioning the elements of the music, and through this process,
orchestration can often be a difference-maker to critical or commercial success [59, 60].

Different musical styles and composition environments have different constraints
(for example, scores for live performance should only require the sounds of the in-
struments in the group, whereas the sounds available for use on a recording are only
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limited by their stylistic relevance), but fundamentally, finding the right set of sounds
is important regardless of the context. For composers and producers, employing MIR
systems during the orchestration process holds the potential to help spark inspiration,
solve challenging problems, or save time.

Though the orchestral setting has been explored extensively in previous work, as-
sisted orchestration methods hold the potential for application in other styles. For ex-
ample, layering drum samples is common practice in music production, and MIR-based
tools for drum sample search are beginning to make their way into professional toolk-
its2; existing methods for query-based drum sample retrieval [61] could be extended to
consider mixtures of drum samples.

3.3 Related Work
Existing systems for target-based assisted orchestration compute spectral similarities
using standard spectral features [51] or perceptual descriptors [57], along with evolu-
tionary methods for exploring the solution space.

Most relevant to our experimental setting is the implementation of the publicly
available state-of-the art Orchidea system [62], which is based in part on a study con-
ducted in [63] on predicting timbral features of combined sounds. This study found
that for 3 features (Spectral Centroid, Spectral Spread, and Main Resolved Partials),
and for mixtures of up to 4 sounds, predicting the features of the mixture by a linear
combination of the source features both achieved a low error and did not vary as a
function of the number of mixture components.

Since computing a linear combination has very low computational cost, this find-
ing enables real-time estimation of thousands of candidate mixtures for use in online
reinforcement learning, making tools like Orchidea practical for real-world use. The
effects on the features of mixing many more components, along with the behavior of
higher-dimensional and richer features, however, have not yet been investigated.

3.4 Experiments

Data
For our experiments, we use the OrchDB dataset of individually recorded musical notes
from a variety of orchestral instruments. OrchDB is a streamlined subset of the Studio
Online (SOL), dataset that has been optimized for assisted orchestration [64]. Collected
as part of the Studio Online project at IRCAM, the full SOL data set contains over
117,000 instrument samples, including extended techniques and contemporary play-
ing styles. OrchDB, which contains a curated subset of these samples, has been used
for assisted orchestration since 2008 [65]; the contents of the data are summarized be-
low:

2https://www.xlnaudio.com/products/xo

25



• OrchDB contains about 20,000 notes with lengths ranging from about 1 second to
30 seconds.

• Instruments include bassoon, clarinet, flute, horn, oboe, saxophone, strings, trom-
bone, trumpet, and tuba.

• Approximately 30 different playing styles are represented in OrchDB, such as or-
dinario, pizzicato, pizzicato Bartók, aeolian, Flatterzung, col legno battuto; brass
instrument samples include a variety of different types of mutes.

• Notes across the pitch range are included, along with a range of dynamics from
ppp to fff, including sforzato and crescendo.

Mixtures of Notes
To train and evaluate models for feature estimation, we partition the dataset for train-
ing, development, and testing, choose 6 different numbers of mixture components M
between 2 and 30, and then for each M , we synthesize a dataset of new audio files by
adding together the waveforms of M randomly chosen notes. Finally, we divide the
summed signals by M to keep the amplitudes of the mixture in the same range as those
of the source files.

For each value of M , we synthesize 7500 new audio mixtures for training, 2000 for
development, and 2000 for testing, creating these new mixtures after partitioning our
data so that no source file that appears in the training set can be chosen as part of
a mixture in the test set. After synthesizing the mixtures, we compute and store the
real FFT and MFCC features for every mixture for use in training and evaluating our
models.

Predicting Unobserved Features
With this data in hand, we explore several models for predicting the features of a mix-
ture of audio signals given the features of the individual signals. In all experiments,
given a feature function f and M individual signals S1, . . . , SM , each model is trained
to learn a mapping from input features f(S1), . . . , f(SM) to the true feature of the mix-
ture f(S1 + . . .+ SM).

3.5 Models

Features
For our modeling experiments, we choose two standard features: 1024-dimensional
FFT magnitude spectra and 19-dimensional MFCC coefficients (we discard the first
of 20 MFCC coefficients). Our choice of features is meant to capture the most com-
mon MIR settings, so we use the default FFT and MFCC dimensions specified in the
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Figure 3.1: Standard Deviations (averaged across all 19 coefficients) of the measured MFCC
coefficients of mixtures of audio files. As M increases, the variance in the MFCC coefficients
goes down.

Librosa library [66] and compute the features on audio files sampled at 22050 Hz us-
ing the default window size (2048 samples) and hop size (512 samples) of the Librosa
implementations. We then follow [51] in flattening both the FFT and MFCC features
from 2-dimensional time-frequency representations into 1-dimensional feature vectors
by taking a linear combination of the features at each frame, weighted by the RMS
energy at the corresponding frame.

This method of averaging over time allows us to summarize the spectral character-
istics of signals with different lengths using a single feature feature vector, while at the
same time ignoring the quieter parts of the signal. In addition, we preserve the inter-
pretability of the FFT and MFCC features through this process, which is particularly
useful for inspecting and analyzing our model outputs. Of course, the downside of
this preprocessing step is that we discard all time-domain information, so we are un-
able to predict anything about the envelope or movement of the sound. Depending on
the source material and the downstream application, different preprocessing choices
might be more appropriate than averaging over time; for example, unpitched percus-
sive sounds require different modeling choices from pitched material. Since our data
consists of mostly pitched notes from orchestral instruments, however, we follow the
convention of the assisted orchestration literature by focusing on timbre independent
of time.

Finally, before training or evaluating models, in order to best align our quantitative
results to the expected perceptual results with regards to timbre, we normalize the FFT
feature vectors such that the maximum value is 1. Although in the FFT case, relative
magnitudes are known to be more correlated with perception of timbre than the raw
amplitudes are, magnitudes of MFCC coefficients are important descriptors of timbre,
so we do not normalize the MFCC’s, instead predicting the real values.
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Baseline
As a baseline, we compute the element-wise mean of the feature vectors over the en-
tire training set. This vector is computed once for each value of the number of mixture
components M . Models that perform better than this baseline can be said to be cap-
turing some useful information about how the features sum together. One important
factor to take into account when evaluating results it that as we increase M , mixing
more and more notes together, the variance in the features of the mixtures decreases,
making the predictive task appear easier. The MFCC features, because they are much
lower dimensional than the FFT’s, are especially effected by this change in variance;
the higher dimensional FFT features exhibit the same trend but to a smaller extent, as
they can capture a wider range of combinations of signals. For this reason, in Section
3.6, we report error metrics as a percentage relative to the error metric of this baseline
at the corresponding value of M . Concretely, an error of 0.5 would mean that, averaged
over the test set, the sum of squared errors of our predictions was equal to half of the
sum of squared errors obtained by always predicting the mean of the data set.

Linear Combination
The first model we examine is the linear combination of features proposed in [63],
which is currently used in state-of-the-art assisted orchestration systems [62]. This
model implicitly assumes that for a feature f , the feature of the sum is approximately
equal to the sum of the features:

w1f(S1) + . . .+ wMf(SM) ⇡ f(w1S1 + . . . wMSM) (3.1)

When features are linear or can be well approximated linearly, this method can be
a strong baseline. Especially with high dimensional features like our 1024 FFT magni-
tudes, subtle details that might be difficult to summarize in an intermediate represen-
tation can be easily preserved with a linear model.

For this model, we combine source features in two ways, first by taking the element-
wise mean of the M feature vectors as shown in Equation equation 3.2 and second by
weighting the features by the corresponding RMS energies a1 . . . aM of the component
signals as in Equation equation 3.3:

f̄ =
1

M

X

fi

(3.2)

f̃ =

P
fiaiP
ai

(3.3)

MLP
Particularly for nonlinear features, it is reasonable to expect that nonlinear models have
the potential to make better estimates. We train multilayer perceptron (MLP) neural
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networks to predict both FFT and MFCC features. For these models, we use a single
hidden layer, and we minimize the mean squared error (MSE) between the predictions
and the targets. For the FFT models, in order to constrain the network to output mag-
nitudes between 0 and 1, we use a ReLU activation followed by a L1 normalization
layer as the last stage in our network. Although we found empirically that sigmoid
activations gave similar accuracies, these choices match better with the intuition of nor-
malization performed in preprocessing. We train all our neural network models with
Tensorflow [33] and Keras [67], Dropout [68], and the Adam optimizer [34].

Because we are interested in testing our methods on a variable number of audio
mixtures M , we train separate MLP models for each value of M . As M increases, the
input size and number of parameters in the network increases accordingly; with a fea-
ture of dimension D and a hidden layer of size H , the first layer of these networks has
D ⇥M ⇥H trainable parameters.

LSTM
As we increase the number of mixtures M , a recurrent network architecture is a natural
choice to reduce the number of parameters needed. Intuitively, if a network can learn to
estimate the sum of two signals, the same network should be able to process M signals
in sequence over M steps by estimating the sum of one signal with the sum of all the
signals processed so far.

Ordered Sets

Because the true sum of M signals is independent of the order in which they are com-
bined, we experiment with two approaches inspired by the literature on sequence mod-
els for sets. First, even when no true ordering exists, previous results demonstrate that
the ordering of inputs to factorized probabilistic models still affects the ability of mod-
els to learn [69]. In the case where two semantically valid orderings exist, empirical
results from machine translation show that simple changes to the ordering, such as re-
versing the words in a sentence, can significantly affect model performance [11]. Based
on these results, for this variant of the model, we sort the signals by their L2 norm be-
fore passing them to LSTM model, such that the source signal with the highest energy
is observed at the final timestep before outputting a final prediction.

Unordered Sets

Although previous work points to the benefits of ordering the signals in a consistent
way, fixing an ordering prevents us from implementing a simple but potentially pow-
erful form of data augmentation - randomly shuffling the order of mixtures during
training. We empirically test the relative benefits of these two options, reporting results
for both ordered and unordered inputs with the same LSTM archicture.

29



Residual Connections

Finally, we experiment with one more variation of our LSTM model, in which we add
a residual connection [70] between the model inputs at each timestep and the outputs
of the LSTM layer, which allows information to pass directly from the input to the final
layer without having to be mediated by the nonlinear structure of the LSTM. Intuitively,
to the degree to which features are linear, this connection should provide the model
with the option to directly sum up the features as part of its computation.

3.6 Results
We train and evaluate all of the models across 6 different numbers of mixtures M rang-
ing from 2 to 30, summarizing the results in Tables 3.1 and 3.2 and displaying the trends
across values of M in Figures 3.2 and 3.3.

Predicting FFT Features
As demonstrated in Figure 3.2, the linear combination outperform the neural methods
for values of M between 2 and 12, but the LSTM models make up ground and ulti-
mately begin to overtake the linear combinations at M = 20 mixtures. All of the mod-
els in the FFT setting trend up in error towards the baseline as the number of mixtures
increases; with M = 30, all models except for the residual LSTM cross the threshold of
the baseline. These results indicate several findings:

• While the ordering in which the mixtures are passed to the LSTM model does
not appear to make a significant difference here, the residual LSTM model out-
performs the rest of the neural methods at all values of M , demonstrating in-
creasingly large gains as the number of mixtures goes up. This suggests that the
residual connection may be enabling the model to exploit the linearity of features
when it is advantageous to do so, while maintaining flexibility to make better
estimations once the signal from the linearity of the feature fades.

• In confirmation with previous findings [63], these results suggest that linear ap-
proximations of FFT features can be quite accurate. As the number of mixtures
increases, however, these estimates worsen; by M = 30, the linear approximations
are no better than random.

• Although estimating a high dimensional feature like the FFT is clearly a challeng-
ing task as many streams of audio are mixed together, these results show that
neural models do possess the potential to estimate these features to some degree
even in settings with many different sources.
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Model Mix 2 Mix 3 Mix 6 Mix 12 Mix 20 Mix 30
Baseline 1 1 1 1 1 1
Linear (Mean) 0.44 0.60 0.73 0.85 0.99 1.16
Linear (Energy-Weighted) 0.15 0.25 0.41 0.62 0.83 1.04
MLP 0.72 1.10 1.23 1.24 1.17 1.36
LSTM (Unordered) 0.54 0.69 0.78 0.81 0.89 1.34
LSTM (Ordered) 0.55 0.73 0.85 0.88 0.86 1.35
LSTM (Residual) 0.49 0.67 0.84 0.85 0.81 0.91

Table 3.1: Mean Squared Error for predicting FFT features across mixtures.

Predicting MFCC Features
Unlike in the case of the FFT features, all of the neural models outperform the linear
combination for both small and large numbers of mixtures, and as shown in Figure 3.3,
with more than 6 mixtures, linear combinations of MFCC features no longer contain a
useful signal. We detail our findings from the MFCC experiments below:

• Because MFCC features are nonlinear, it is not surprising that nonlinear models
are able to predict them better than the linear combination. Relative to the base-
line, however, we can see that for mixtures of 2, 3, and even 6 different sources, a
linear combination of MFFC’s can still be reasonably accurate. This suggests that
in some cases, MFFC features do behave approximately linearly when summed.

• In contrast to the FFT setting, the residual LSTM does not appear to offer any
gains in comparison with the other LSTM models. Perhaps because of the much
smaller dimension of the features, the Unordered LSTM model, which we train
with data augmentation by randomizing the order in which mixtures of pro-
cessed, performs best.

• As M continues to increase, the accuracies of the LSTM models flatten out rather
than continuing to approach the baseline. This trend suggests that even when
dozens of notes are mixed together, we may be still able to estimate certain fea-
tures of these mixtures based only on the features of the source files.

Computation Time
While the exact computation time of FFT or MFFC features depends on the implemen-
tation, the length of the audio files, and the availability of parallel processing, esti-
mating features with the networks we explore is, in practice, significantly faster than
computing the real features. Though it is beyond the scope of this chapter to report
results on a comprehensive list of hardware and software configurations, as a point of
reference, Table 3.3 displays running times for parallel computation on our research
server containing 20 CPU’s and one Tesla K40 GPU.

31



Figure 3.2: The linear models work well for predicting FFT features of smaller numbers of
mixtures, but at around M = 20 mixtures, the best performing LSTM model overtakes the
linear combination.

Model Mix 2 Mix 3 Mix 6 Mix 12 Mix 20 Mix 30
Baseline 1 1 1 1 1 1
Linear (Mean) 0.43 0.58 0.81 1.03 1.32 1.54
Linear (Energy-Weighted) 0.36 0.59 0.94 1.30 1.69 2.02
MLP 0.42 0.55 0.71 0.79 0.88 0.93
LSTM (Unordered) 0.30 0.46 0.57 0.63 0.71 0.70
LSTM (Ordered) 0.30 0.46 0.61 0.66 0.73 0.73
LSTM (Residual) 0.32 0.47 0.64 0.71 0.77 0.77

Table 3.2: Mean Squared Error for predicting MFCC features across mixtures.
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Figure 3.3: The neural models outperform the linear combinations significantly, widening the
gap as M increases.
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Feature Real (CPU x 20) LSTM (CPU x 20) LSTM (GPU x 1)
FFT (Mix 2) 14.71 0.32 0.07
FFT (Mix 30) 14.71 4.75 1.10
MFCC (Mix 2) 73.50 0.03 0.01
MFCC (Mix 30) 73.50 0.34 0.15

Table 3.3: Time in seconds to compute or estimate energy-weighted FFT or MFCC features
for the 2000 audio files in the test set using parallel processing. FFT (Mix 30) refers to the FFT
feature of a mixture of 30 audio files, which requires 30 autoregressive LSTM steps. LSTM refers
to the Residual LSTM model.

3.7 Conclusions
In this chapter, we experiment with neural models for predicting unobserved audio fea-
tures based on precomputed features of source files in a mixture, examining the cases of
FFT features, which should behave linearly when summed, as well as MFCC’s, which
are known to be nonlinear. We find that in the case of nonlinear features, LSTM models
significantly outperform the methods currently in use for feature estimation, and fur-
ther, that while the linear predictors perform well for small numbers of mixtures, as we
mix more and more signals together, the neural models begin to outperform the linear
methods as well.

Our results suggest that we may be able to improve current assisted orchestration
systems [62] by replacing feature estimation components with LSTM-based nonlinear
predictors. As with any real-world problem that involves perceptual similarity rather
than comparisons in a feature space, however, more work is needed to understand how
these models may interact with other components of systems they may be embedded
in. Deep neural network models can and do adapt to any correlations present in the
data, so understanding how these models are making there estimates may be impor-
tant.

Beyond tasks like assisted orchestration in which we cannot always observe the
features of an audio file because of computational limitations, we hope that future work
may be able to take advantage of the methods for feature estimation explored here
in order to make creative use of data like the Million Song Dataset, for which pre-
computed features are available but raw data cannot be distributed.
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Chapter 4

What to Play and How to Play it:
Guiding Generative Music Models with
Demonstrations1

Abstract
This chapter proposes and evaluates an approach to incorporating multiple user-provided
inputs, each demonstrating a complementary set of musical characteristics, to guide
the output of a generative model for synthesizing short music performances or loops.
We focus on user inputs that describe both “what to play” (via scores in MIDI format)
and “how to play it” (via rhythmic inputs to specify expressive timing and dynam-
ics). Through experiments, we demonstrate that our method can facilitate human-AI
co-creation of drum loops with diverse and customizable outputs. In the process, we
argue for the interaction paradigm of mapping by demonstration as a promising approach
to working with deep learning models that are capable of generating complex and re-
alistic musical parts.

4.1 Introduction
Communication between musicians can take time, effort, multiple attempts and clarifi-
cations, and often requires trial and error. In performance, composition, or production
environments, contributors need to explain what they want from each other; any part-
nership or collaboration depends on the ability to clearly communicate ideas to the
person whose job it is to execute those ideas musically (e.g. by playing an instrumental
part, arranging a score, setting the level of a reverb effect, and so on).

When musicians and composers work with complex musical instruments and tools,
communicating ideas to a machine can also require effort, exploration, and expertise

1The material is this chapter draws upon my previously published work in What to Play and How
to Play it: Guiding Generative Music Models with Multiple Demonstrations at the 2021 New Interfaces for
Musical Expression Conference [71] with co-author David Bamman.
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(albeit expressed in a much different form), especially when the details of how an in-
strument works are opaque. Musical instruments and tools based on Artificial Intelli-
gence (AI) and Machine Learning (ML), especially those built on powerful generative
models capable of synthesizing human-like audio or MIDI, can be particularly difficult
for users to navigate in predictable ways. Still, realistic and expressive outputs from
this kind of model have inspired a growing interest among music creators to explore
incorporating generative ML models into their creative practices [1, 72, 73].

Recent research highlights that while music creators can often count on ML music
models to provide them with surprising or unexpected ideas, they tend to have a hard
time controlling them, finding it difficult to achieve specific results when desired [73, 74,
75]. In response, a number of recent studies seek to make generative models easier for
users to control by making them conditional - by training models with different types of
input variables as probabilistic conditioning.

In practice, inputs to conditional generative models can take many forms, for exam-
ple categorical variables like genre or the identity of a specific artist [1], initial themes
for continuation [76, 18, 77], pitch contours [78, 79, 80], chord symbols [10, 81, 82],
accented rhythms [6], or features summarizing the characteristics of individual notes
[83, 84]. Once a model has been trained, these variables can be exposed in different
ways within user interfaces to provide different affordances. Before reaching this stage,
however, the choice of conditioning variables (along with the choice of training data)
outlines an initial set of limitations that define how a model might be used.

If our intended use for a generative model is to provide inspiration, to help us break
out of existing patterns or habits, or to challenge ourselves by including a “musical
other” into our composition practice [73], then many different ways of conditioning a
model may serve us well; indeed, other approaches that do not involve ML may also
work just as well. As soon as we begin to make our goals more specific, however, de-
signing and implementing conditional models becomes harder [74] and requires solv-
ing interconnected technical and interaction challenges at the same time.

In this chapter, taking inspiration from the ways in which musicians communicate
with one another - in particular, by demonstrating an idea with multiple views drawn
from different modalities - we contribute and experiment with a framework for de-
signing and training conditional generative models with multiple complementary user
inputs.

To anchor this notion of communication through multiple demonstrations with a
specific recorded example, consider the diverse array of communication styles dis-
played by music producer Oak Felder in the process of collaborating with a drum-
mer [85]. Within the span of no more than a few minutes, Felder: (1) offers high-level
stylistic suggestions (“I’m wondering if it should be a little more complex.”), (2) pro-
vides specific instructions about one instrumental part (“No hi-hat.”), (3) demonstrates
a drum pattern through sound with a vocal imitation, (4) indicates a drum fill by briefly
playing air drums, and (5) nods his head to the side in time with the music to show
where accented beats should go. Some of this guidance is given through examples (e.g.
vocal and motion-based gestures), and other instructions, though expressed verbally by
Felder, could presumably also be demonstrated to a machine by example (e.g. a blank
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hi-hat track indicates “No hi-hat.”) Over the course of this interaction, Felder conveys
some of the more concrete details only once (e.g. “No hi-hat”), while reinforcing more
abstract concepts by demonstrating them in more than one way (e.g. gesturing a drum
pattern in the air while vocalizing a version of it at the same time). In the end, based
on all these different cues, the drummer picks up on the intentions of the producer, and
they successfully record the part together.

We do not bring up this example in order to argue that we should interact with com-
puter models just like we do with humans, using natural language interfaces and so on;
rather, we find it instructive to highlight the range of examples that a producer instinc-
tively draws on here in order to convey their intention to the drummer. By breaking
down an idea, which at firsts only exists in Felder’s imagination, into complementary
(even if sometimes overlapping) components, some of which can be expressed well
in one way and some better in another, the producer can convey information to the
drummer more effectively.

Drawing inspiration from this kind of multifaceted communication between pro-
ducer and musician, which happens not instantaneously but over the course of the
time it takes to design or perform the relevant demonstrations, we experiment in this
chapter with building generative models that accept two or more user-provided con-
ditioning inputs given by example, with each input designed so as to be possible for a
user to create. ML models offer promise as useful tools particularly when a user has an
idea in mind that is difficult to create from scratch (for example because the user is not
sitting in front of a drum kit or doesn’t know how to play drums [6], but which can be
still be specified by example in some simpler form.

To ground our experiments in a context that we hope can be of practical use to music
creators, we focus on models for generating two-measure drum loops. This particular
task of creating drum and percussion parts is of broad interest to creators in many
styles of music, and models for generating drums have already been implemented in
publicly available toolkits for music producers [75, 86, 87], making it easier to imple-
ment the methods we explore within interfaces similar to those in the toolkits above.
Using drum recordings from the Groove Midi Dataset [6], we explore Variational Au-
toEncoder (VAE) models [88] for generating drum beats based on two or more user
inputs, with every input defined in MIDI format and able to be specified by example
either through gestures recorded by a MIDI keyboard or microphone, or through grid
interfaces like those found in drum machines. In working on creating drum loops, we
pay particular attention not just to the pattern of which drums are to be played, but
also to how they are played, modeling precise microtiming and dynamics information,
which is known to be difficult for users to create by hand without performing any ges-
tures to demonstrate.

This chapter’s primary contributions are as follows:

• We design and implement a factorized Variational AutoEncoder model for gen-
erating drum performances conditioned on multiple inputs that cover aspects of
both a musical score and how that score should be played. We experiment with
a model that accepts two inputs and another that takes up to eleven, more fine-
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grained, inputs. We demonstrate that these models allow us to generate drum
loops with more diverse and more precisely specified outputs than existing meth-
ods.

• We show that by factorizing score and performance characteristics into separate
latent variables, we can overcome difficulties with sampling encountered in pre-
vious work in order to maintain diverse outputs while still leveraging efficient
data representations that use continuous rather than discrete values to model mi-
crotiming and dynamics in music.

• We tie together recent research in conditional generative models for music with
the interaction framework of mapping by demonstration and offer a technical ap-
proach based on models that can accept multiple demonstrations from users,
which we hope will take steps toward enabling future user-centered research on
human-AI co-creation with music generation models.

Code and pre-trained models developed in this chapter can be found at: https:
//github.com/jrgillick/groove

4.2 Related Work
This chapter builds on previous research on drum loop generation from Chapter 2,
which serves as a starting point for the applications and the machine learning methods
explored here. Previously, we proposed two models for conditional generation of drum
loops using a Recurrent Variational AutoEncoder (a GrooVAE). One model explores
the task of Humanization - automatically generating dynamics and timing variations
giving a quantized Midi input, and the other proposes an application called Drumify,
in which a model generates drum loops based on an input rhythm with expressive
timing (which could be tapped out on a surface or implied by the onsets of another
instrument), but with no specified instrumentation or score. In each case, these models
are able to synthesize realistic drums that listeners have difficulty distinguishing from
real loops in the data set.

Both of these interactions, however, are limited in that they only afford the user one
input at a time in order to specify what they want. This means that in practice, if a
user has a specific beat in mind, the Humanize model does not offer control over how
the model will add expressive dynamics and timing to that beat; as a result, for any
given input score, the output is almost always the same. Similarly, the Drumify model
does not provide any control over which drums are played; for example, it is left up
the model to choose whether to use the ride cymbal or the hi-hat. In our experiments
here, we attempt to address these limitations with regard to both diversity and control.

We also draw more broadly from a number of other studies on conditional mod-
els for music generation. Recent work on music generation based on some kind of
user input includes models that provide counterpoint to an improvised melody [89],
map eight buttons on a game controller to the 88 keys on a piano [90], or synthesize
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the audio for one instrument based on fine-grained pitch contours and dynamics from
another signal [80]; we build on these by exploring multiple complementary gestural
inputs at the same time. On the modeling side, we also build on work using factorized
representation learning to control generation of monophonic [91] or polyphonic [78, 81]
music scores. We explore a different kind of factorization here, however, by separating
out scores from performance characteristics, as well as a different model architecture.

Finally, we draw inspiration from gesture mapping [92, 93, 94] in designing the con-
ditioning inputs used in generative models around the concept of a gesture (which has
been defined in a number of different ways but can be broadly categorized as some kind
of sensed input performed or specified by a user). Much research within the NIME and
Computer Music communities focuses on interaction paradigms centered around map-
ping various kinds of user inputs (which often take the form of performable gestures)
onto output parameters for controlling sound [93, 95]. By providing demonstrations of
gestures, users can train their own mapping models by example using machine learn-
ing [94]. Most approaches to gesture mapping attempt to modify a relatively small
number of output parameters (e.g. a handful of knobs on a synthesizer) [96], as op-
posed to the many thousands or millions of parameters in large neural network mod-
els; as a result, gesture mapping often provides more precise control than has typically
been possible with large music generation models.

In addition to the large number of parameters to learn, another barrier that has
inhibited music generation models from being put to use in the same way as gesture
mapping is the size of datasets and expense of computational resources needed to train
them, which prevents users from choosing and manipulating their own training data.
A number of recent studies have explored ways to either make models smaller and
faster to train [87] or to enable customization of pre-trained models to meet user needs
[97]. We see this line of work as complementary to the model conditioning work that we
explore here; depending on the context, interactions may be better facilitated by more
precise conditioning controls, easier management of training data, or a combination of
both.

4.3 Proposed Models and Implementation

Modeling Two Inputs: Score and Groove
Starting from the hypothesis that multiple different forms of user input can lead to
more controllable and diverse generated music, we operationalize the idea of model
inputs as gestures by implementing a factorized neural network model architecture
called an Auxiliary Guided Variational AutoEncoder [98]. We first implement a model
that accepts two inputs - one for quantized drum scores (specifying what to play) and
one for tapped rhythmic inputs (specifying how to play it), with each of these inputs
implemented exactly as in the previously published Humanize and Drumify models [6].
An important point to make here is that these inputs are not directly provided in the
data set; at training time, as with other AutoEncoder models, we are restricted to using
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Figure 4.1: Auxiliary Guided Variational AutoEncoder model trained to take two user inputs
(a quantized drum score and a tapped rhythm expressing the groove of the loop). Features of
the drum sequence, which are designed to be similar to inputs that could be demonstrated by
a user through an example, are extracted via functions F1(X) (here, a quantization function
that removes microtiming and velocity) and F2(X) (here a “squashing” function that preserves
microtiming and velocity but discards the score).

inputs that can be computed with some function F applied to an input data point X .
Through the design of a function F (X), we specify a mapping from drum loops (high
dimensional realistic data points) to simplified descriptors of those loops (which are
easier for users to create with a gesture); we then train models to learn inverse map-
pings from gestures to data. For this model, we define two functions during training
that take the place of user inputs at inference time: F1(X) is a quantization function
that removes all microtiming and velocity information from a drum loop (keeping only
drum score), and F2(X) is a “squashing” function that has the opposite effect, keeping
performance characteristics in the form of microtiming and velocity, but discarding the
drum score. Figure 4.1 visualizes the architecture of this neural network model.

This architecture differs from a standard VAE in two ways. First, while a typical
VAE, which we treat as a baseline, has a single latent variable Z, the Score and Groove
inputs to this model are each encoded (in this case with bidirectional LSTM encoders)
into separate latent variables Z1 and Z2, which are both independently trained to match
standard normal distributions; following Roberts et al. [26], we train using the free bits
method (hyper-parameters to balance the two loss terms in a VAE) with a tolerance
of 48 bits. Z1 and Z2 are subsequently concatenated and passed to a decoder (also an
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LSTM), whose goal is to reconstruct the original drum sequence from the training data.
This separation between Z1 and Z2 (sometimes called factorizing or disentangling) aims
to explicitly capture some of the variation among each of these two aspects of the data
(Score and Groove) with specific variables. One of our goals of factorizing in this way is
to attempt to overcome problems with diversity reported in previous work, in which
when generating performance characteristics for an input score, a given loop was al-
ways Humanized in the same way [6]; with this model, by sampling different values
for Z2 or inputting different Grooves, we can try to synthesize different performances
for the same score. This factorization also affords a user two complementary ways of
specifying a desired drum loop (by independently providing a Score and a Groove).

The second distinguishing feature of this architecture is the inclusion of Auxiliary
Decoders, similar in form to those proposed by Lucas and Verbeek for image gener-
ation [98]. As shown in Figure 4.1, in addition to the decoder trained to reconstruct
the original drum loop, separate decoders (Decoder1 and Decoder2) are trained at the
same time to reconstruct the input Score and the input Groove. This variant of an Au-
toEncoder, which appears not to have been employed before for modeling music, offers
promise for two reasons: first, it explicitly reinforces the incentive for the latent vari-
ables Z1 and Z2 to capture the relevant information, and second, it offers a mechanism
for users to inspect the model’s interpretation of each input gesture: along with a gener-
ated drum loop, a user can also listen to or visualize the model’s reconstructions of the
Score and the Groove corresponding to that loop. Examining these auxiliary reconstruc-
tions allows the user (or model developer) one option for investigating the strengths
and weaknesses in the model, which may be helpful in learning how to work with it.
For example, if the auxiliary reconstruction of a user-provided Groove is inaccurate, this
suggests that the model is unable to recognize the given gesture; this feedback can di-
rect the user to try again by performing the gesture slightly differently in order to better
work within the model’s limitations.

Breaking it Down Further: Modeling More Inputs
In addition to the VAE with two inputs, in the spirit of our motivating example where
a producer explains a drum beat to a drummer in several different ways, we further
experiment with factorizing our model into more components, with the hope of cap-
turing more options for diverse outputs and controllable interaction. Here, we divide
the latent variable Z into 11 components Z1 . . . Z11. This time, we separate the 9 differ-
ent drum instruments from the score into 9 different latent variables (visualized at the
top of Figure 4.2), such that a user can specify as few or as many of these as they choose
to, with the option to sample the others. For example, a user can specify a pattern for
the kick and snare drums, provide an empty pattern on the crash cymbal channel indi-
cating not to play any crash cymbals, and through sampling the other latent variables,
leave the choice of whether to add hi-hats or ride cymbal for the model to decide. At
the same time, in addition to the Groove input defined in the first model, we add a sec-
ond performance-style input that captures musical Accents, indications of where notes
are emphasized by being played louder. Here, we define accents as binary vectors with
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Figure 4.2: Auxiliary Guided VAE Model with 11 Inputs. This version breaks drum loops fur-
ther into 11 different latent variables: 9 based on the score (1 for each instrument in the kit) and
2 based on performance features (one specifying microtiming through a tapped rhythm and one
specifying accented beats).

one input corresponding to each 16th note timestep (we use a 16th note resolution in
time for these models, although other resolutions offer different advantages and disad-
vantages [87]; we consider a metrical position in the dataset to be accented if it contains
a note (on any drum) whose Midi velocity is more than one standard deviation above
the mean velocity for that drum, calculated over the entire sequence.

In describing our models, we adopt the terminology of gesture to refer to each of the
inputs, though some inputs could be either performed by a user in the typical sense of
a gesture, or created in another way, for example by composing them in a Midi editor.
In this second model, because each gesture is expected to be packed with less infor-
mation, we simplify the encoder and decoder architectures in the interest of reducing
model size and training time, using small feed-forward MLP neural networks instead
of LSTM. We experimented with simplifying the main decoder as well, but we found
that in order to generate realistic outputs comparable to those in previous work, it was
important to use a more powerful architecture than an MLP, so we use an LSTM here
as well.
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4.4 Experiments
To evaluate our model designs, we examine metrics computed on the test partition of
the Groove Midi Dataset, measuring two main aspects of our proposed methods. First,
we look at the diversity of generated drum loops using our models, comparing against
the aforementioned GrooVAE model [6] in the context of the task of Humanizing quan-
tized drum scores (by generating MIDI velocities and microtimings), and second, we
examine the potential for controllability afforded by these models. While controllability
will ultimately depend on the context of how, and with which users, a model is situated
in an interactive setting, as a starting point, we use the idea of fidelity as proxy: given
a particular input gesture, we examine the degree to which the model outputs exhibit
the characteristics demonstrated by that input.

We have not yet deployed these models in an interactive interface to study their
usability in practice, but this choice of metrics is informed by our previous findings in
which we deployed the Humanization and Drumify models (treated here as baselines) as
plugins in Ableton Live [6, 75] and tested them with users. We believe that improving
on these quantitative metrics is an important next step in our ongoing iterative process
of designing tools for musical human-AI co-creation.

Measuring Diversity in Generated Performance Characteristics
To measure diversity, we explore the task of Humanization. In this task, a model’s job
is to take a quantized drum loop as input (a Score), and then synthesize performance
characteristics (microtiming and velocity) for that input. One of the motivating fac-
tors for exploring the work in this chapter was the shortcoming of our baseline model
proposed in Chapter 2, which, although able to create realistic outputs, always gener-
ated the same stylistic outcomes. For this metric, we look at the standard deviations
of timing offsets generated by each model. Following the baseline implementation, we
calculate timing offsets as continuous numbers between -1 and 1, which represent how
far each drum onset falls between the current timestep and an adjacent one. Drum hits
played late, or behind the beat, are represented by positive numbers here, and drum
hits played early, or ahead of the beat, are given negative numbers.

Using two-measure windows taken from every drum performance in the test set (a
total of 2192 sequences), we humanize each drum sequence five times with each model,
and then among each set of five generated loops, we compute the mean element-wise
standard deviations of the timing offsets, such that notes in the same position (e.g.
a snare on beat 3) are compared with each other. This yields a single measurement
for each test sequence, which we finally average across the entire test set. A higher
standard deviation here indicates more diverse outputs.

In this experiment, we compare three conditions: (1) the baseline Variational Au-
toEncoder model that includes neither factorized latent variables nor Auxiliary De-
coders, (2) our factorized model without Auxiliary Decoders, and (3), the full model
shown in Figure 4.1. In the baseline model, only the Score input is provided; for our
new models, we implement the Humanization task by taking a single score as input,
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while, across each of the five runs, we sample a random vector for Z2 to pass to the
decoder.

Measuring Fidelity to a Gesture
In a second experiment, as a proxy for measuring the controllability of interactions with
our models, we look at how well the generated outputs match the characteristics of a
given gesture in the new model. Here, we fix an input Groove with a pre-specified pat-
tern of timing offset values (e.g. 0.5 for every off-beat 16th note and 0 for every on-beat
16th note to indicate a 16th note swing), before applying the same Groove to every Score
in the test set using the 2-input Auxiliary Guided VAE model shown in Figure 4.1. Af-
ter applying the same 3 Grooves as conditioning inputs paired with the Score extracted
from every sequence in the test, we plot the resulting distributions for each groove and
measure the means and standard deviations of the generated timing offsets on the off-
beats. For the three different input grooves, we use a different fixed offset value (-0.05,
-0.2, and -0.4, respectively) for every alternate 16th note position. This corresponds
roughly to choosing a particular Swing value (as is common in drum machines) as a
conditioning input. Unlike drum machines, however, in which timing offsets are ap-
plied uniformly through a templated approach, we might not expect the synthesized
outputs from our machine learning models to conform exactly to this value; the goal
here is again to guide the model towards a particular groove rather than to control it
exactly.

4.5 Results and Discussion
Through our quantitative evaluations, we find that, in general, the methods explored
in chapter work appear promising for both diversity and controllability in generated
drum loops. As Table 1 shows, our measurement of diversity confirms the finding re-
ported previously that the baseline model usually performs Humanization in the same
way each time. The Standard Deviation metric of 0.061 (measured as a proportion of
the distance between successive metrical positions as 16th note resolution) for the base-
line in Table 4.1 is quite small; for context, even changing the timing of a drum pattern
by two standard deviations here would not be enough, for example, to change a beat
from a straight feel to a heavy swing feel. The factorized VAE models, however, show
a different trend, with much higher Standard Deviations among the timing offsets; the
version using Auxiliary Decoders shows the most diversity here with a Standard Devi-
ation of 0.22. Furthermore, alternative methods for adding diversity during sampling
do not help the baseline here: increasing the value of the temperature parameter in the
decoder does not change the metrics in Table 4.1, and adding noise to the latent vector
Z before decoding has the undesirable side effect of causing the model not to follow
the given input Score.

Our subjective experience in listening to these Humanizations accords with the met-
ric here as well; we find that unlike with the baseline, these models generate perceptu-
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Model Standard Deviation of Timing Offsets
Baseline VAE [6] 0.061 ±0.001
Factorized VAE 0.200 ±0.002
Factorized VAE + Auxiliary Decoders 0.222 ±0.002

Table 4.1: Measuring Diversity in Generating Timing Offsets

Target Generated (Mean) Generated (Std. Dev.) Difference in Means
-0.05 -0.091 0.161 0.042
-0.2 -0.214 0.163 0.014
-0.4 -0.366 0.175 0.034

Table 4.2: Measuring Fidelity to a Gesture (Swing Amount)

ally different results. Depending on the Groove conditioning, sometimes the same beat
is played with a swung or triplet feel, and other times it is played straight. In addition,
drums and metrical positions are accented different across different runs.

In our second experiment, a case study in examining the fidelity of our Auxiliary
Guided VAE model to a gesture (the gesture in question is a Groove representing a
particular amount of swing), we find that when applied broadly to a large number
of input Scores, the average swing values (as measured by timing offsets on off-beats)
come quite close to the target values. Different swing values lead to slightly different
trends here: guiding the model toward more heavily swung beats tends to give slightly
larger variation in the generated outputs than when specifying beats with less swing,
and in general, offset values tend to regress slightly to the mean of the entire dataset.
Table 4.2 summarizes these results, and Figure 4.3 visualizes the distributions from this
experiment.

In addition to the metrics reported above, which focus on the 2-input model factor-
izing Score and Groove, we also explored the larger 11-input model more informally by

Figure 4.3: Distribution of timing offsets for 3 different target Grooves. From left to right, the
target values specified by the three conditioning inputs are -0.05, -0.2, and -0.4.
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listening to a number of outputs with different conditioning setups. For example, in
one experiment, we fixed all of the gestural inputs except for the features specifying
the intended patterns for hi-hats and ride cymbals. We then applied several different
hi-hat or ride input patterns given the same fixed set of other conditioning inputs. We
found that the results were usually quite realistic, though in some cases slightly less
so than with the baseline or the simpler 2-way model. The possibilities for diversity
and control, however, appear richer: the model did follow the input specification, reli-
ably switching between hi-hat and ride cymbal, while still following the same groove
in each alternate condition. The model also seemed to make reasonable choices in this
case when forced to choose between mismatched conditioning inputs (e.g. specify-
ing an Accent or emphasizing a Groove in a metrical position where the corresponding
score is blank). As we might expect, however, not all combinations of input gestures are
able to lead to realistic results; in particular, when we specified less common patterns
through the input gestures, model outputs were either less realistic or less faithful to
the specified gesture.

4.6 Conclusions
Designing and developing technology to guide complicated generative music models
towards user-specified musical goals is a challenging problem that has recently seen in-
creased interest among ML and MIR research communities. As researchers from these
communities have increasingly turned away from working solely on the technical as-
pects of machine learning and toward studying how to making generative models eas-
ier for users to control, research questions have begun to overlap with existing work
on mapping from the NIME community: increased control, broader interaction pos-
sibilities, and new methods for human-AI co-creation motivate much recent work on
conditional models for music generation [10] [15][23]. This convergence (which has also
been raised by others [3]) motivates our current work, in which we aim to continue to
move music generation research toward directions where it may be able to meet the
creative needs of music creators.

In this chapter, we build on this strand of technical research, exploring a new combi-
nation of conditioning inputs and implementing them in a model for generating drum
loops. At the same time, drawing inspiration from work in on gesture mapping, we
reinterpret the technical formulation of conditional generative models into a simple
interaction paradigm based on guiding ML models with demonstrations, and show
through experiments as well as informal subjective evaluations that our approach can
enable diverse and controllable interactions with music generation models. We hope
that this approach will provide useful grounding for future technical and user-centered
research on musical interactions between people and AI.
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Chapter 5

Data Representations and their Impact
on Music Creation1

Abstract
This chapter presents a new data representation for music modeling and generation
called a Flexible Grid. The representation aims to balance flexibility with structure in
order to encode all the musical events (notes or rhythmic onsets) in a dataset without
quantizing or discarding any temporal information. In experiments with a dataset of
MIDI drum performances, we find that when implemented in a Variational AutoEn-
coder (VAE) model, Flexible Grid representations can enable detailed generation of
music performance data that includes multiple different gestures and articulations.

5.1 Introduction
One of the central affordances of music production and editing tools is the ability to
place musical elements at precise positions along a timeline; many genres of music
have emerged out of communities of artists working within the constraints of perfectly
consistent rhythms and tempos. How and when to diverge from that grid is an impor-
tant factor for creators to consider; many of the instrumental gestures that our ears are
attuned to, like drumrolls, guitar strums, and trills, are composed of groups of rhyth-
mic onsets that live in the spaces between the grid lines. Some music producers, like
UK garage artist Burial, prefer to ignore the grid altogether [100], while others rely on
setting global parameters like ”swing” [101]. Both of these approaches have their draw-
backs: working completely without a grid is too time consuming for most to consider,
and adjusting timing with global parameters offers only broad strokes rather than pre-
cise control.

1The material is this chapter draws upon my previously published work in Drumroll Please: Modeling
Multi-Scale Rhythmic Gestures with Flexible Grids in the Special Issue on AI and Musical Creativity of the
Transactions of the International Society for Music Information Retrieval Journal [99] with co-authors
Joshua Yang, Carmine-Emanuele Cella, and David Bamman.
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Given these limitations, one of the more intriguing directions offered by AI for ex-
panding the rhythmic possibilities in music production is its ability to assist users in
intelligently and subtly keeping their music ”off-the-grid” by modeling the rhythmic
nuances of existing music. In the context of drums and percussion, several systems
based on modeling instrumental performances have already been designed and made
available within mainstream music production tools like Ableton Live [102, 86, 87].

Despite a long history of research in expressive performance analysis and genera-
tion (see [103] for a detailed review), generating expressive musical parts on the scale
of even one or two measures in length remains a challenging problem.

Most research on expressive performance generation has been situated in the con-
text of Western art music [103] and often relies on note-level alignments with scores
or other structural elements of notated music like dynamics markings [104]. Some
recent approaches based on deep learning have instead attempted to jointly model
both composition and performance using MIDI data sourced from instruments out-
fitted with sensors (like a Disklavier or electronic drum kit), or from audio recordings
automatically transcribed to MIDI [19]. Still, designing and engineering models that
work well enough to generate compelling outputs requires large instrument-specific
training datasets [19], compromising on temporal precision through varying levels of
quantization [6], or both. To enable creators to explore the potential uses of expressive
performance models in practice, we would like to be able to train music generation
models with as little data as possible [87], while at the same time preserving the nu-
ances of expressive music that can only be captured with precise temporal resolution.

In this chapter, by taking a close look at the representations used to encode drum
performance data, we take steps to address some of the challenges that arise when
modeling off-the-grid data with neural networks. We analyze the tradeoffs imposed by
different representations, propose an alternative approach called Flexible Grids, and
conduct experiments to investigate the relative advantages of each data representation.

Although the primary focus of this chapter deals with methodology — how to
represent musical data when working with machine learning models — our work is
motivated by the range of real-world applications that depend on these underlying
mathematical representations of music. For this reason, in choosing our technical di-
rection, we prioritize applicability toward directions that would otherwise be difficult
for creators to explore (off-the-grid music), real-world constraints on data size and
computational efficiency that are necessary for making AI broadly accessible [105, 87],
and considerations of interpretability and controllability that matter to music creators
when co-creating with AI [106]. Concretely, our contributions include the following:

• We analyze and compare existing data representations that have been used re-
cently for music generation in the MIDI domain, highlighting opportunities for
improvement.

• We present Flexible Grids (visualized in Figure 5.3 and described in Section 5.3)
as an alternative data representation, along with motivations and implementation
details.
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• Using the Groove MIDI Dataset [6], a collection of drumset recordings contain-
ing expressive timing and dynamics, we experiment with training Variational
AutoEncoder models using Flexible Grids as well as several other data repre-
sentations, comparing results through quantitative metrics and a listening survey
carried out with drummers. We also compare the same set of representations in
classifying the anonymized identities of drummers in the dataset.

Code and trained models are available at: https://github.com/jrgillick/
groove.

5.2 Data Representations for Musical Events
Recent work on music generation in the MIDI domain typically takes one of two broadly
defined approaches to representing musical data. These two categories, which we will
refer to throughout this chapter as Fixed-Grid and Event-Based representations, differ
primarily in terms of how they handle musical time and tempo. While not all existing
approaches fit neatly into one bucket or the other, this distinction is convenient for sum-
marizing the main factors to consider when choosing a musical representation; [107]
draw a similar distinction while connecting Fixed-Grid and Event-Based representa-
tions respectively with similar structures developed in Computer Vision and Natural
Language Processing.

Fixed-Grid representations
Fixed-Grid representations break down music into equal chunks of time, typically as-
sociating each timestep with a musical duration such as an 8th note or a 16th note.
As a consequence, musical constructs like tempo and beat subdivision can be built into
Fixed-Grids, with time usually defined relative to a local or global tempo. This structure
accords with theories of how humans perceive rhythm in that when multiple rhythmic
onsets take place within a short time frame (a ”beat bin”), humans tend to group them
together, hearing them as forming a single beat [108]. Tempo-relative representations
are also advantageous for machine learning because they implicitly keep track of time,
while at the same time outlining a shared structure for jointly modeling music recorded
at different tempos.

Besides capturing some useful temporal musical structure, the other defining char-
acteristic of Fixed-Grid representations is that they have a consistent size; this means
that any sequence lasting one measure will always have the same number of timesteps
(e.g. 16 or 32) and the same number of features per timestep, regardless of the density of
musical events actually present in that sequence. Fixing the size of sequences is desir-
able for two main reasons: first, it enforces fewer constraints on the machine learning
models and architectures we can choose from (feed forward and convolutional neu-
ral networks are a workable choice here), and second, maintaining an alignment with
musical time allows us to design more predictable interactions: for example, we can
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Figure 5.1: Fixed-Grid representation of a 1-measure pattern for 12 drums in a web interface
designed by Yuri Suzuki (808303.studio) and inspired by Roland’s TR-808 Rhythm Composer.
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Figure 5.2: Fixed-Grid representation of a 1-measure pattern for a single drum in the interface
for Propellerhead’s ReDrum drum machine.

select, visualize, or manipulate musical parts that last for a specific number of beats or
measures.

Formally, a Fixed-Grid representation consists of a grid of size (T ⇥ E ⇥M ), where
a musical sequence consists of T timesteps, a given timestep t includes a maximum of
E possible events, and each event contains M modification parameters for capturing
details like expressive timing and dynamics.

Figure 5.1 shows an example of a drum machine interface with 16 timesteps and 12
instruments, which can be represented with a Fixed-Grid using T = 16 and E = 12;
the controls for ”Tempo” and ”Shuffle” can each be implemented with a single param-
eter that applies to the entire sequence. Figure 5.2 demonstrates a different Fixed-Grid
design for a drum machine, which includes an option to let users switch between reso-
lutions of T along with three settings for velocity defined by the ”dynamic” parameter.

In addition to the role they play in drum machines, Digital Audio Workstations
(DAW’s), and other musical devices, Fixed-Grids are common choices for music model-
ing and generation. Recent examples include MidiNet [109], which generates melodies
and chords, and MusicVAE [26] which creates melodies and drum patterns. MIDI-VAE
[110] models instrument dynamics in addition to sequences of notes, and GrooVAE
[6] includes both instrument dynamics and expressive microtiming. R-VAE [87] and
InpaintNet [111] explore finer resolutions as well as ternary divisions on a grid, with
R-VAE modeling timesteps as small as 32nd-note triplets.

The main downside of Fixed-Grid representations in the context of machine learn-
ing is that it can be difficult to choose an appropriate resolution for T . Too fine a res-
olution (such as a 1/128th note) results in long and sparse sequences that are difficult
to model, while too coarse a resolution (like an 8th note or 16th note) can result in a
lossy representation where some notes need to be quantized or discarded [112, 6]. This
tradeoff often arises when music is sparse in some places and dense in others, which
happens commonly when fast runs or alternate articulations are played on the same
instrument.

Event-Based representations
Event-Based representations also have a long history in music generation; they have
been used in models based on Markov Chains [113, 114], Recurrent Neural Networks
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[115, 116, 117] and Transformers [18, 107]. In contrast to Fixed-Grid representations,
which keep track of an event’s temporal position by encoding it relative to a specific
point on a timeline, Event-Based representations track the passage of time through a
discrete vocabulary of time-shift events, each of which moves a playhead forward by a
specific increment. These increments can be measured in musical durations like 8th or
16th notes, for example to generate jazz improvisations [114] or folk tunes [117], but
of particular interest here are a recent series of models of expressive performance that
use more fine-grained timespans, with vocabularies allowing time shifts as short as 8
milliseconds. These extended vocabularies of time shifts makes room for models to
learn directly from data in formats like MIDI without explicitly modeling tempo and
beat.

PerformanceRNN [17] and Music Transformer [18] both take this approach, using
Event-Based representations handling time in milliseconds to generate piano perfor-
mances. REMI [107], replaces milliseconds with beat-based timesteps along with a
modifier to handle local tempo variations in an Event-Based representation for pop
piano music.

The main downside of Event-Based representations that measure time at high enough
resolution for expressive music generation is that in exchange for flexibility, they sac-
rifice metrical and grouping structures that are connected to the way humans perceive
music [118]. Empirical results show that generative models trained with these repre-
sentations tend to sound less realistic than similarly parameterized models trained with
a Fixed-Grid and can have trouble maintaining steady rhythms, particularly over long
sequences [107, 6].

5.3 Flexible Grid Representations
To address some of the challenges posed by Fixed-Grid or Event-Based data represen-
tations, we introduce a new data representation called a Flexible Grid (visualized in
Figure 5.3). Our design for this representation stems from the following question: How
can we best encode every musical event in a dataset of expressive performances into
fixed-length sequences without needing to quantize or discard any notes?

Avoiding quantization with continuous offsets
As a starting point, we begin with the data representation proposed in chapter 2 for
the GrooVAE model (which we treat as a baseline for experiments in section 5.5). This
representation, used for modeling expressive drumming with a kit containing 9 drums,
encodes drum hits onto a 16th-note grid along with two continuous modification pa-
rameters that define, respectively, a velocity v between 0 and 1, and a timing offset o
between -0.5 and 0.5, which indicates where between two adjacent metrical positions
a note onset occurs. Using the notation from Section 5.2, one measure of drums can
be represented by GrooVAE in a Fixed-Grid of size (T = 16) ⇥ (E = 9) ⇥ (M = 3).
Because of the continuous offset parameters, the drum hits captured here do not need
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Figure 5.3: (a) One measure of drums from the Groove MIDI Dataset visualized in pianoroll
format. In a grid at 16th-note resolution, 9 of the 15 snare drum hits in this measure would
be mapped to duplicate slots in a matrix; of these, only 3 notes (colored in yellow) could be
kept, and the other 6 (colored in red) would need to be discarded or quantized. (b) Mapping
drum onset events to slots in our proposed Flexible Grid data representation. Red notes are
considered secondary. Each instrument channel (kick, snare, hi-hat, etc.) receives one primary
event per 16th note timestep, and space for secondary events is distributed with the minimum
number of slots needed to fit the densest passages in the training set. Every event here has two
continuous modification parameters for velocity and timing offsets.

to be quantized, so microtiming is preserved at the same resolution it was originally
captured. Evidence from several studies indicating that timing fluctuations at the level
of individual notes are better explained as deviations from a local tempo rather than
as short-term changes in tempo [103, 119], supports this choice of representation using
timing offsets rather than tempo changes. Building off of this representation, we use
the same modification parameters v and o to accompany each event in a Flexible Grid.

Avoiding skipped notes with secondary events
The Fixed-Grid representation used by GrooVAE breaks down, however, when more
then one onset occurs at the same timestep on the same instrument channel. This is a
common occurrence whenever a fast musical gesture spans multiple onsets (e.g. a flam,
roll, or double stroke on a snare drum).

Figure 5.3(a) shows one example of a measure from the Groove MIDI Dataset that
leads to this problem: At three different points in this measure, the snare drum chan-
nel contains two or more events mapping to one point in time and so cannot be fully
captured by the Fixed-Grid at 16th-note resolution. Of 9 snare drum onsets, only the
3 shown in yellow are preserved, while the 6 shown in red are ignored. Whenever we
run out of slots in the matrix like this, we need to make a choice about which to keep;
in chapter 2 we chose to keep the loudest event when faced with this decision. While
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the reasons underlying this kind of quantization are not easy to make transparent to
users of tools built on these representations, low-level decisions like this can have a
far-reaching impact on the ways that tools actually can be used.

One way to avoid skipping notes is to increase the resolution of T from 16th notes
to 32nd notes, 64th notes, and so on [6, 87]. This approach, however, does not easily
resolve the problem; in the example shown in Figure 5.3, a 32nd-note resolution still
misses 4 of the 9 notes in question, and a 64th-note resolution misses two. Moreover,
increasing the resolution makes sequences longer and correlations between related po-
sitions in the grid less regular. Previous results [6], show that music generation models
using Fixed-Grids with too high a resolution are more difficult to train and produce
more audible artifacts. A second option for avoiding skipped notes, then, is to switch
to a tempo-free Event-Based representation in order to bypass the problem through the
use of variable length sequences. This choice, however, comes at the cost of potentially
less data-efficient training and generated outputs that may accumulate timing errors
over the course of a sequence.

Rather than taking one of the above approaches, we instead observe that the snare
drum events in Figure 5.3 can be accommodated into a grid if we allocate three extra
slots for snares, increasing the E dimension of our matrix from 9 to 12 so that at each
timestep, we have a maximum of 4 snare drum events along with one event for each of
the other 8 instruments in the drum kit. This simple change lets us encode this entire
measure into a grid of dimension (T = 16)⇥ (E = 12)⇥ (M = 3) without any dropped
events. Viewed another way, we concatenate our primary grid P , of size (T = 16)⇥(E =
9)⇥ (M = 3), with a secondary grid S of size (T = 16)⇥ (E = 3)⇥ (M = 3). P encodes
the blue and yellow notes in Figure 5.3, while S encodes the red notes.

Encoding in this way can provide two advantages over increasing the temporal res-
olution: first, a smaller and denser matrix gets us to the point where we do not lose
any data, and second, the musical events featurized by the secondary matrix S share
a common structure that differs from the events in the primary matrix P : all of these
events represent musical gestures moving faster than the subdivision of the grid, and
they all occur in close proximity to other events on the same channel, which presum-
ably correspond to other onsets produced by the same gesture (e.g. a drumroll). This
method of constructing S does not have the undesirable side effect of degrading the
rich correlation structure in P (P is left unchanged), which happens when we increase
the resolution of T from 16 to 32. Another way to think about why this representa-
tion should be beneficial is that, similar to the way in which Fixed-Grid representations
make machine learning problems easier by injecting information about metrical po-
sition, separating primary and secondary events injects contextual information about
musical gestures into the data representation. Taken together, P and S make up a Flex-
ible Grid representation of the drums shown in Figure 5.3.

Applying a Flexible Grid to a dataset
Although we can encode the measure shown in Figure 5.3 into the P and S matrices
above, surely there are other measures in our dataset that will not be captured by that
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encoding, in which we have secondary slots for snare drums, but not for the other 8
drum channels.

If we generalize our method of expanding S, however, we can construct a Flexible
Grid that fits every sequence in the data; this can be thought of as making space in S
for events that happen as fast as the fastest gestures in our data, but no faster than that.
To do this with the Groove MIDI Dataset, we map every drum onset to its closest 16th
note timestep, count the number of onset events mapped to each instrument channel
(snare drum, kick drum, closed hi-hat, etc.) at every timestep, and then take the max-
imum value of this quantity for each of the 9 drum instruments that occurs anywhere
in the entire dataset. These resulting 9 values Ec (representing the maximum number
of possible events for each channel) correspond to the maximum number of times that
each instrument in the kit was played within the span surrounding a single timestep.

Table 5.1 shows the result of this computation applied to the Groove MIDI Dataset
at 16th-note resolution: we design S to fit one extra ride cymbal, 2 more open hi-hats,
6 additional snares, and so on; by adding a total of 21 extra grid slots per 16th note, we
can capture every event in the dataset.

Drum Maximum Number of Onsets Within a 1/16 Note Window
Kick 3
Snare 7

Closed Hi-hat 4
Open Hi-hat 3

Low Tom 3
Mid Tom 3
Hi Tom 3

Crash Cymbal 2
Ride Cymbal 2

Total 30

Table 5.1: Statistics of the Groove MIDI Dataset used to build a Flexible Grid Representation at
16th note resolution.

This approach to constructing primary and secondary grids and encoding a musical
sequence into the relevant locations can be summarized with the following sequence of
steps:

1. Associate every event in a musical sequence with the closest point in time on the
grid.

2. For each input channel c (in our case one of 9 drums in a drum set), count the max-
imum number of events Ec that have been associated with any single timestep.

3. Set the dimension of E in the primary event matrix P to be equal to the total num-
ber of instrument channels, and set the dimension of E in the secondary matrix
to

P
c(Ec � 1).
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4. When encoding a sequence, map the first event at time t and channel c into the
corresponding position in the matrix P , along with its modification parameters
for velocity and timing offset.

5. If there are any more events at time t on channel c, map each of those in temporal
order to the corresponding positions in the matrix S, such that subsequent slots
will never be filled without first filling all previous slots. If there is no event in P
at time t and channel c, then S cannot contain any events at that position.

Considerations for designing Flexible Grids
Of course, the choices of what events to consider as primary depend on the content of
the music in the dataset and especially on the types of repetition that take place most
often. For example, if our dataset contains many 8th-notes and 8th-note triplets, as
pointed out by [87], we may benefit from constructing a primary grid that includes
both of those resolutions. Or, to take another example, if our dataset contains many
possible pitches (e.g. 88 piano keys), we might want to fit the more common pitches,
like those in the current key center, into a primary grid, while leaving slots for out-
of-key notes to a secondary grid (e.g. with modification parameters for sharps, flats,
octaves, and so on).

While the structure outlined here is perhaps the most straightforward arrangement
of a Flexible Grid and could be plugged into drum machine interfaces or off-the-shelf
machine learning models, given an appropriate model or musical context, the sec-
ondary matrix S could be structured differently, for example as a variable-length se-
quence in a hybrid setting alongside the fixed matrix P .

5.4 Experiments

Data
To explore Flexible Grids and compare with other representations in the context of
machine learning models, we conduct experiments using data from the Groove MIDI
Dataset [6]. This data consists of about 14 hours of professional drum performances
(recorded by a total of 10 drummers) captured in MIDI format on an electronic drum
kit. It was recorded by drummers playing along to a metronome, so we are able to as-
sume a known tempo and downbeat (this is one of the main structural assumptions we
need to make; in situations where this information is not captured with the dataset, we
would need to automatically infer these quantities using beat-tracking). The drumming
in this dataset is representative of typical rhythmic patterns from several styles includ-
ing jazz, latin, and rock music. For our experimental setup, we divide the dataset into
2-measure segments with a 1-measure sliding window, following the same procedure
as in chapter 2. This results in a training set of about 17000 2-measure drum sequences
and development and test sets containing about 2200 sequences each.
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Data representations for comparison
For experiments, we consider four baseline data representations, keeping machine learn-
ing model architectures, hyperparameters, and training procedures the same, while
changing the data representation.

Fixed-Grid(16) This baseline corresponds to the data representation used in chapter
2 for generating drums with the GrooVAE model. Here, events for each of the 9 drum
categories are encoded using a fixed grid at 16th-note resolution, with continuous mod-
ification parameters for each event’s velocity and timing offset relative to the nearest
16th note. A 2-measure drum sequence is represented using a grid with dimensions
(T = 32)⇥ (E = 9)⇥ (M = 3).

Fixed-Grid(32) Here, to add resolution in the time domain, we increase the number
of timesteps T from 16 to 32 per measure, so a 2-measure sequence has dimension
(T = 64)⇥ (E = 9)⇥ (M = 3).

Fixed-Grid(64) This representation further increases the number of timesteps per mea-
sure to 64, using a grid of dimension (T = 128) ⇥ (E = 9) ⇥ (M = 3) to represent two
measures of drums.

Event-Based For this baseline, we use the Event-Based representation from Oore et
al. [17], where MIDI notes are converted into variable-length sequences using a vocab-
ulary V of 9 Note-on events, 127 Time-shift events from 8-1000ms, and 32 Set-velocity
events (Note-off events are not needed for our percussion dataset). With this data
structure, 2-measure sequences are represented by a variable length matrix of size
(T = t) ⇥ (V = 168), with the sequence length t taking values up to 300 (the largest
number of tokens in this vocabulary needed to represent any 2-measure sequence in
the training set). We convert all data to a tempo of 120BPM before any other process-
ing.

Flexible Grid We use a Flexible Grid constructed at 16th-note resolution as described
in Section 5.3. The P component of this representation is equivalent to the first baseline,
Fixed-Grid(16). The S component is a secondary grid of size (T = 32)⇥(E = 21)⇥(M =
3). For modeling, we concatenate P and S along the E dimension into a (T = 32)⇥(E =
30)⇥ (M = 3) grid.

Analysis of skipped notes
Because the drumming in the dataset is quite varied, the prevalence of different kinds
of gestures also vary depending on the drummer and the musical material. We first ex-
tend the same analysis applied to the measure in Figure 5.3 to the entire dataset in order
to understand how many notes are quantized or dropped by each data representation.
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This measurement aims to give a sense about the scope of the impact a data represen-
tation can have when used in models. If a representation drops many events, this effect
will always be passed on to any models that use it. If a representation does not drop
any notes, we can say that it has the potential to accurately model all the details of the
data; of course, the question of evaluating how those models actually perform is left
for subsequent modeling experiments.

Music generation with VAE
Next, we explore training a Variational AutoEncoder model to unconditionally gener-
ate 2-measure musical parts. In practice, this model can be used for generating new
drum loops, interpolating between existing loops, or other applications that motivate
research into VAE’s for music [26]. While this experiment aims to capture the most gen-
eral setting for generation in order to best isolate the effects of the data representation,
VAE’s also include encoders (unlike autoregressive models or Generative Adversarial
Networks), which are important for any creative applications that involve conditional
modeling based on user input control signals like MIDI scores or rhythmic performance
gestures [6].

For our model, we adopt the Recurrent-VAE neural network architecture used in
chapter 2. While examining a variety of different models here in conjunction with
choices of data representation merits further exploration, we restrict ourselves to one
model here to focus on differences between representations. This architecture is con-
venient because it lends itself well to both fixed and variable-length sequences; we
are able to use the same network for all 5 conditions including the Event-Based rep-
resentation. We follow the same choice of hyperparameters as in chapter 2, except for
reducing the value of the VAE regularization parameter � from 0.2 to 0.002 (increasing
the weight given to the reconstruction loss component of the objective function), which
we found worked better for the baseline model before adopting this change for these
experiments.

We train 5 VAE models, one using each of the 4 baseline data representations, as
well as one using the proposed Flexible Grid representation. We are interested here in
both the perceptual qualities of model outputs (how good do they sound?) as well as in
the types of gestures that are present in generated music (do they capture the diversity
in gestures, generating drumrolls, flams, and so on?).

As one way of exploring differences with regard to perceptual quality, we conduct
an online listening survey with 11 expert drummers, asking each participant to pro-
vide pairwise rankings for 15 pairs of generated samples (a total of 165 trials), with
pairs drawn randomly from a pool of 128 samples from each model. In choosing their
subjective preference for each pair, participants are informed that all samples have been
generated by machine learning models, but they are not told anything about the dif-
ferences between groups or about the specific focus of the study. Before running the
survey with our participants, in preliminary comparisons by our research team, we
found that two of the baselines (Fixed-Grid(32) and Fixed-Grid(64)), had a noticeably
higher proportion of audible artifacts, so we chose to focus our survey resources on the
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remaining two baselines (Fixed-Grid(16) and Event-Based) to obtain a larger sample
for the most important comparisons. While the survey aims to capture overall sub-
jective differences between outputs from each model, we do not ask participants about
more specific differences in order to avoid introducing biases by directing them to listen
for particular details (like the presence or absence of drumrolls).

Reconstruction with VAE
In this experiment, we measure the onset-level reconstruction performance of VAE
models trained on each representation, reporting F1-scores. Because a VAE may add or
drop notes in reconstruction (it is responsible here for joint generation of both the drum
pattern and its expressive timing and dynamics), the alignment between original and
reconstructed notes is not known. Given a note nsi from a sequence s in the test set and
a reconstructed sequence r generated by a VAE, we define nsi as having been correctly
reconstructed if any note nrj of the same category (e.g. snare drum) is present in r and
appears within 20ms of the original note nsi. We choose this tolerance of 20ms based on
an approximate upper bound of the temporal resolution of human listeners’ ability to
discriminate sounds, which has been shown to vary from as little as 2ms in some cases
to about 20ms in others [36, 37]. Each reconstructed note nrj is only allowed to match
one note in the original sequence, to avoid rewarding models that average or quantize
note timings. To estimate the best alignment between s and r, we use dynamic time
warping for each drum instrument, to match snare drums in s with snare drums in r,
and so on.

For this evaluation (in which we are not constrained by a limited number of human
listeners to make judgements), we include a second model architecture to broaden the
scope of our comparisons: in addition to the Recurrent VAE used for the generation
experiment in Section 5.4, we also train a Convolutional VAE using each data rep-
resentation (except for Event-Based, which requires a network capable of processing
variable-length inputs). Here, we replace the recurrent networks with convolutional
encoders and decoders based on the DCGAN architecture [120], adjusting the num-
bers of convolutional filters so that each model has approximately the same number of
parameters.

Classification
In our final modeling experiment, we compare the different data representations for
two classification tasks given a 2-measure sequence: the 10-way classification task of
predicting the identity of the drummer, and the 18-way task of predicting a genre as
labeled in the Groove MIDI Dataset. We use an MLP neural network model with a
single hidden layer for this experiment, again fixing the model architecture and varying
the data representation. The hypothesis here is that the features defined by the different
ways of representing the same data may be more or less discriminative for categorizing
music by performer or genre; for example, drummers may play the same pattern but
express it through different stylistic gestures in their playing.
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5.5 Results and Discussion

Analysis of skipped notes
Table 5.2 displays the total numbers and percentages of notes that are dropped when
we convert from MIDI to each data representation and back, without doing anything
else. Fixed-Grid(16) drops 6.94% of the events in the dataset, which gives a sense of
how much detail is lost in existing models using the representation from chapter 2.
Increasing the grid resolution in Fixed-Grid(32) and Fixed-Grid(64) cuts down this
number significantly to 2.85% and 0.92% respectively. The Event-Based representation
does much better according to this measurement, only causing distortion in time for
0.1% of the drum hits.

We also find that 58% of the 2-measure sequences used in our modeling experi-
ments have at least one drum hit that is dropped when using the Fixed-Grid(16) rep-
resentation. This means that for 42% of our datapoints, Fixed-Grid(16) is sufficient for
encoding all the data.

Representation Total Notes Skipped Percent of Notes Skipped Size
Fixed-Grid(16) 24038 6.94% 32⇥ 9⇥ 3
Fixed-Grid(32) 9875 2.85% 64⇥ 9⇥ 3
Fixed-Grid(64) 3210 0.92% 128⇥ 9⇥ 3
Event-Based 348 0.10% X ⇥ 168
Flexible Grid 0 0 32⇥ 30⇥ 3

Table 5.2: Statistics of the counts and percentages of events in the Groove MIDI Dataset training
data that would be quantized or dropped by different data representations, before any model-
ing takes place. Variable length sequences in the Event-Based representation are between 4 and
300 tokens long.

Music generation with VAE
Figure 5.4 shows the results of the listening survey conducted with drummers. Three
data representations (Flexible Grid, Fixed-Grid(16), and Event-Based) were each com-
pared against each other; we show the head-to-head results aggregated across all par-
ticipants for each comparison.

Results show that both grid-based representations were preferred when compared
against the Event-Based one (about 70% of the time). This accords with previous results
demonstrating the benefits of beat and tempo-relative representations in music gener-
ation [107]. The most likely explanation here, which we experienced when piloting the
survey ourselves, is that it can be jarring to listen to short drum loops that do not keep
at least a relatively consistent beat; many of the samples generated by the Event-Based
model exhibit this tendency, whereas the clips from the other two models usually do
not. One potential confounding factor that could work against the Event-Based model
in this comparison is that it is responsible for learning about tempo; we control for
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Figure 5.4: Results of a blind head-to-head listening survey. Eleven drummers each participated
in 15 trials for this survey, each of them choosing between pairs of two-measure drum loops
generated by VAE’s trained on each of three data representations.

61



Figure 5.5: VAE Reconstruction (F1 scores per onset), plotted against sequences with increas-
ingly more drumrolls and fast gestures. Data are aggregated such that the leftmost point on the
line includes all drum sequences, the next point includes all drum sequences that have at least
one event captured in the secondary matrix S, and so on.

this factor, however, by converting all sequences to the same tempo (120 BPM) before
applying any other pre-processing.

In the third comparison, comparing Flexible Grid with the Fixed-Grid(16) base-
line, we do not find a significant difference between the two groups (p = 0.34). Here,
the differences between the two models are subtler; the main difference is that Flexi-
ble Grid is capable of generating a wider variety of gestures like drumrolls and flams
(Event-Based also offers this capability, but has other drawbacks). In the context of this
survey, where drummers were asked to listen to 2-measure loops without any musical
context, these gestures, which appear in some samples but not others, did not strongly
influence listeners in their choices. Taken together, however, that the Flexible Grid
model can generate a more diverse set of musical gestures, while at the same time re-
maining comparable to Fixed-Grid(16) and preferable to Event-Based in this survey,
offers evidence to support Flexible Grids as having combined advantages from each of
the two baselines.

Reconstruction with VAE
Figure 5.5 shows the F1-scores for reconstructing sequences in the test set using VAE
models trained on each data representation. Each model is trained once and then evalu-
ated across different groupings of the test data. Because not all drumming in the dataset
contains the same distribution of gestures, to tease apart differences between represen-
tations, we stratify our evaluations here by the number of events that do not fit into
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the baseline Fixed-Grid(16) matrix (and so would be dropped in the VAE’s input). If
we include the 42% of 2-measure sequences that are fully captured by this baseline, we
can see that in the LSTM setting, Fixed-Grid(16) performs best according to this met-
ric, with an F1-score of 0.638, compared to 0.620 from FlexibleGrid. As we increase
the the proportion of sequences with fast gestures in the evaluation, however, Flexi-
bleGrid overtakes the baseline here when considering only sequences with 9 or more
secondary events. In the CNN setting, however, FlexibleGrid performs best across the
whole distribution.

These results demonstrate how the impact of the events captured by each data repre-
sentation are passed on to models trained using each one. Even though Fixed-Grid(32),
Fixed-Grid(64), and Event-Based all encode more notes than Fixed-Grid(16) (as shown
in Table 5.2), the corresponding models are not able to learn as well, so the reconstruc-
tion metrics are lower.

Classification
Table 5.3 summarizes the results of models trained to classify drummer identities and
musical genres using each data representation. We find that while performance for
Genre ID is fairly consistent across representations, FlexibleGrid performs better for
classifying drummer identities, reaching an accuracy of 0.683, more than 3 absolute
points better than the next best model at 0.650. This result suggests that encoding ex-
pressive music using a Flexible Grid captures some information about the gestures that
each drummer uses which can help to discriminate between the different players.

Representation Drummer Classification Accuracy Genre Classification Accuracy
Fixed-Grid(16) 0.634 ±0.027 0.547 ±0.026
Fixed-Grid(32) 0.650 ±0.026 0.544 ±0.026
Fixed-Grid(64) 0.615 ±0.026 0.519 ±0.026

Event-based N/A N/A
Flexible Grid 0.683 ±0.024 0.540 ±0.027

Table 5.3: Accuracy Scores Classifying Drummer Identity with an MLP neural network, with
95% bootstrap confidence intervals. The Event-Based representation is excluded here because
the variable-length representation does not enable modeling with a feed-forward classification
model.

5.6 Conclusions
Whenever researchers or technology designers work with musical data, we need to
pay close attention to the representations we use when converting real world data into
formats suitable for computational modeling. Every model that treats music as data
must choose some representation, and there is a long history of systems and models
using different data representations, which we categorize and summarize in Section 5.2.
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These choices of data representation are made at an early stage in the series of decisions
that shape how music technology is built, designed, deployed, and ultimately put into
the hands of creators, and small decisions here can have a large impact down the road.

Previous research suggests that the ways in which creators actually find uses for
machine learning-based tools often diverges from the intentions of technology design-
ers [106, 102], and questions around how these underlying data representations will
ultimately matter to music creators [73] may not be thoroughly answered in the near fu-
ture. Still, as applications based on machine learning become more integrated into the
real world creative processes of music producers, composers, and performers of dif-
ferent backgrounds and levels, we can expect that low level choices of representation
certainly will matter.

This chapter takes a close look at the relative strengths and weaknesses of differ-
ent approaches to representing expressive percussion data. We find that Fixed-Grid
approaches used in the past have not been able to capture all the rich details of multi-
scale musical gestures, while Event-Based representations are often more difficult to
train and interact with; in response, we propose Flexible Grid data representations as
a balance between these two endpoints. We find that when used for music generation,
models trained on Flexible Grids are able to generate music of similar perceptual qual-
ity to Fixed-Grids, while at the same time incorporating details of the expressive drum-
ming gestures captured by Event-Based representations. As more datasets and applica-
tions are developed around expressive music data (automatic transcription from audio
to MIDI offers one path forward), we hope that the underlying motivations and design
choices of the data representations explored here will be beneficial in a range of other
musical settings.
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Chapter 6

The Stories Behind the Sounds: Finding
Meaning in Creative Musical
Interactions with AI1

Abstract
Through a series of three studies, this chapter probes the experiences of musicians,
producers, and composers as they attempt to introduce machine learning into their cre-
ative processes. In chapters 2 through 5, I covered a range of approaches to making
music with machine learning. The algorithms, models, and tools discussed along the
way are motivated by the needs of particular groups of potential software users, who
we can characterize in one way or another based on who we think they are. In design-
ing for these users, I (and others in the field) typically focus on coming up with new
technology to fit into existing creative processes. But what happens when we move
beyond imaginary personas and into the real world? How do real-world interactions
between people and AI music systems play out?2 In this chapter, I start by taking a step
back from specific musical problems like beat-making or orchestration, instead focus-
ing on the experiences of musicians or listeners when we introduce machine learning
into creative processes.

My approach toward the studies in this chapter acknowledges that every creative
process is different. Some people write music with an instrument, some write with a
computer, some use pen and paper; sometimes we create to meet a deadline, sometimes
we create because we feel inspired or emotional; sometimes we create alone, sometimes
we work together. We all change from moment to moment and year to year as we
go through different experiences and face different situations. Might our needs and
experiences in working with musical AI be similarly individualized?

1The material is this chapter draws on work done in collaboration with Noura Howell, Wesley Deng,
Julia Park, Yangyang Yang, Carmine-Emanuele Cella, David Bamman, and Kimiko Ryokai.

2I emphasize the term AI in this chapter, rather than the term machine learning, in order to better
reflect the norms of the communities of people working with these technologies as part of their creative
practices.
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In part because of the always-changing contexts in which people create music and
art, studying human interactions with AI in situated creative environments is hard.
Controlled studies “in the lab” might separate creators from their usual processes in
ways that color their experiences, making it difficult to isolate the effects of new AI
technology [106]. Participants brought in to try out prototypes or learn how to use AI-
based creative tools for the first time might find their learning curves to be steep; it can
take a long time to start to understand how AI works or how to use it. And finally,
participants might not feel very invested in the outcomes of their (often unfamiliar)
interactions with AI. The research in this chapter begins with the following question:
what are experiences and interactions like for people who have a reason to be emotionally
invested in music created with AI? I approach this question from different angles in each
of the sections that follow:

• Section 6.1 uses first-person design research methods to probe the experiences of
a group of people (who are not necessarily musicians) listening to individually
customized music that uses samples and stories from meaningful moments in
their own lives.

• Section 6.2 describes my own firsthand experience producing a song together
with a group of 4 people that ended up as the winning entry submitted to the
2021 AI Song Contest, an international contest exploring the potential uses of AI
for songwriting.

• Section 6.3 builds on my findings from 6.1 and 6.2 through case studies with two
musicians, one professional and one amateur, working with AI to manipulate
sounds from their lives in order to create musical materials (new samples, loops,
or digital instruments) to compose with.

6.1 Listening to AI Music: Perspectives on Sampling and
Remixing with Personally Meanginful Sounds

6.1.1 Introduction
What personally meaningful sounds do we cherish in life? Loved ones’ giggles, or
unique creaks of the door in a childhood home. Energetic yelling at the neighborhood
market, or the timbre of a beloved instrument. Ambient environmental sounds, the
voices of loved ones, and other sounds from our varied everyday lives may intrigue,
energize, or calm us. Sound can make us appreciate what we have or reflect on what
we have lost. Such ”personal sounds” are ubiquitous and rich with emotional meaning,
yet they are fleeting and ephemeral. How might we keep and savor these sounds?

For musicians, one way to hold onto personally meaningful sounds is to reuse them
as creative material through sampling and remixing. Artists and producers use samples
to convey all kinds of emotions, from the pain and anger of Pharrell Williams sam-
pling police brutality protests [121] to the lighthearted nostalgia of singer Billie Eilish
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and producer Finneas sampling the sound of crosswalk signals from a trip together to
Australia [122].

Reinterpreting recognizable and meaningful source material can offer an immediate
point of connection that serves to ground a new composition in a particular time, place,
or emotion [123]. Because of the way in which they bring familiar and recognizable ele-
ments into otherwise unfamiliar music, sampling and remixing present a promising en-
try point from which to explore, with the participants in this study, the very unfamiliar
experience of interacting musically with AI. By establishing an underlying connection
between AI-generated music and specific sounds or memories that are already mean-
ingful to the listener, sampling offers a way to raise the emotional stakes for research
participants who might not otherwise approach AI-generated music as focused and ac-
tive listeners. At the same time, the process of collecting and sharing personal sound
collections to be remixed using AI is itself an opportunity to surface design implications
for creative human-AI interaction; much like musicians might guide drum generation
models by tapping rhythms along to a click track, participants here can guide model
outputs through the choice of samples that they input.

Focusing on emotional experiences with sound, this study asks: How might it feel
to collect, share, remix, and appreciate emotionally meaningful sounds from our lives?
What would a remix of personal audio recordings sound like, how might such a remix
be created, what musical decisions would this entail, and how might such remixes be
experienced by the people whose sounds were modified? What parts of the process
could be delegated to AI, and what parts could not?

6.1.2 Study Design
Today’s methods for creating music with AI are not yet at the point where they can
automatically generate entire compositions that listeners are likely to be interested in.
A few services like Amper [124] and Jukedeck [125] use AI to generate background
music for use in videos, podcasts, or social media, but there is little evidence to suggest
that listeners find this generated music interesting or meaningful outside of those func-
tional contexts. As I argue throughout this dissertation, the potentially more promising
applications of AI toward music production and creation involve significant human
interaction.

For this study, rather than working within the limitations of current AI systems
or building an entirely automated system for generating customized music based on
samples, I instead explore a speculative future in which AI is already able to automati-
cally compose customized music for participants. I take inspiration from Wizard of Oz
prototypes, in which a human plays the role of a machine while interacting with an un-
suspecting human participant [126]. Because of the vulnerability involved in sharing
emotionally sensitive stories and audio source material, this study does not employ any
deception; instead, to encourage honesty and openness, I employ first-person research
methods, serving as one of five participants myself along with four other co-authors.

To set up this scenario, I play the role of the AI (drawing on my own experience
working as a composer for clients in film and advertising). I create and deliver cus-
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tomized remixes to participants using samples they provide, while asking participants
at dedicated moments through the process to reflect on how they would feel if they
were interacting with an AI system as their remixer rather than with me. Together
with four other researchers with diverse cultural and professional backgrounds, I study
the design space of collecting, sharing, remixing, and reinterpreting personal sounds,
critically probing how listeners might experience handing their personal sounds to an
algorithm to be remixed. This study contributes: (1) several diverse perspectives envi-
sioning a human-centered future for musical human-AI collaboration, and (2) nuanced
experiential insights on personal sound remix design to open a broader design space
for emotional meaning-making, reflection, and remembrance.

6.1.3 Related Work
Personalized Music and Sound Generation with AI

This study is motivated by potential futures imagined by two approaches to research
in machine learning and HCI. The first of these looks at AI-generated content from the
listener’s perspective; e.g., full-length songs composed by OpenAI’s Jukebox [1], auto-
matically generated sound effects for films [127], or music for video games [128]. The
second approach (to which earlier chapters in this dissertation subscribe) engages with
AI from the creator’s perspective as another tool in a digital toolbox [129, 73, 130]. Both
of these strands of research are moving in recent years toward increasingly personal-
ized, customized content. For listeners, this could be individually tailored jazz impro-
visations created by Bebopnet [131]. For creators, this could take the form of flexible AI
systems that condition their outputs on different kinds of user guidance, as discussed
in Chapter 4. The growing scope of personalized sound creation with AI motivates
my interest in probing the perceptions of both listeners and creators by studying a sce-
nario with higher emotional stakes, using sounds sampled directly from meaningful
moments in listeners’ lives.

Design Research using Sound for Reflection and Remembrance

Design research has explored remembrance and personal meaning-making with vari-
ous collections of personal data [132, 133, 134, 135, 136]. Ryokai et al. explore captur-
ing, cherishing, and reflecting on laughter sounds from everyday life with tangible and
visual designs [137, 136, 138]. Olo Radio [139] and Olly [140] allow users to explore
their personal archives of music listened to via streaming services. FamilySong shares
songs across distance for internationally distributed families [141]. The Affective Di-
ary [142, 143] is an early example of the now many designs that use biodata to prompt
emotional reflection, sometimes with sound (e.g., [144, 145]). As voice recognition and
sound event detection (e.g., from Amazon [146] or Google [147]) make always-on au-
dio recording more prevalent, this work anticipates growing personal audio archives
and explores how design might support engagement with the evocative potential of
personal sound recordings. In contrast to ubiquitous computing’s typical emphasis on
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efficiency [148], these designs invite slow, emotional, reflective engagements with per-
sonal data [149, 150], with careful attention to emotional experiences of reflection and
remembrance with personal data. This chapter takes inspiration from these reflective
approaches in similarly centering emotional experiences.

Human-AI Collaboration

Beyond the specific context of music creation, user acceptance of input from AI more
generally often depends on a number factors, including the nature of the AI’s task
[151, 152], various notions of interpretability [153], and users’ mental models of how AI
works [154, 155]. Adoption of AI is often resisted by both domain experts and general
users in high stakes scenarios like medical diagnosis [156, 157, 158] or financial risk
assessment [159]. Although AI music generation is usually not considered a high stakes
scenario, this study aims to make the stakes higher than they have been in the past
through the intentional use of personally meaningful and potentially sensitive sound
samples, inviting engagement with tensions that might otherwise have not yet risen to
the surface.

Emotions and Subjectivity in HCI

This study takes a subjective, emotional approach in exploring human interactions with
AI. Within disciplines like HCI and AI, emotional experience is often denigrated as
an inferior way of knowing, perpetuating an emphasis on rationality and objectivity.
This emphasis is problematic because what counts as rational and objective often reifies
colonial, gendered hierarchies that (intentionally or not) delineate Western white men
as civilized, rational, and objective, and everyone else as too uncivilized, irrational,
and emotional to generate knowledge. Within HCI, Haraway’s foundational work on
situated knowledge [160], Bardzell’s agenda for Feminist HCI [161], and D’Ignazio and
Klein’s book on data feminism [162] have all argued for the importance of situated,
emotional, embodied ways of knowing.

6.1.4 Process
Four colleagues and I chose to study ourselves through first-person research with a
four-step process:

1. Collecting: The five of us each selected 3-5 sound recordings of “life-defining”
moments, which entailed either finding and choosing an audio recording, or re-
flecting on the absence of a desired recording (because many of us do not keep
audio collections).

2. Sharing: We listened to the sounds as a group before explaining their personal,
emotional significance to each other.

69



Figure 6.1: Study process: 1. Collecting personal sounds, 2. Sharing the sounds and the stories
behind them, 3. Remixing the sounds (with a human musician standing in place of a speculative
AI remixer), 4. Listening to the remixes with the group.

3. Remixing: I modified and arranged the sounds into new musical or soundscape
”remixes” for each participant, including myself. Each remix for ”Author A” used
sounds only from ”Author A.”

4. Reinterpreting: We each listened to our respective remixes individually, then
listened to them as a group, and finally shared our emotional responses to the
remixes with the group. As described in Findings and Discussion, these remixes
presented sonic, artistic, and emotional reinterpretations of the original sound
recordings and their personal significance, with sometimes pleasing, sometimes
upsetting, and often surprising results. At dedicated checkpoints throughout our
process, we individually logged our emotional experiences, and during meetings
we helped one another articulate and further reflect on the emotional meaning of
the sounds and remixes. These journal entries and resulting meeting transcrip-
tions were qualitatively analyzed for emergent themes [163].

Engaging first-person methods enabled direct, firsthand experience exploring emo-
tionally sensitive territory. Kumi described the sound of her firstborn’s first breaths and
wished she could have had an audio recording of this; June shared a recording of her
dog shortly before he passed; Natalie’s sounds touched complicated memories of a per-
son in her life. While it would have been possible to hold a similar study with external
participants by soliciting their recordings and presenting them with remixes, we chose
not to do this in part because we wanted richer firsthand knowledge of what turned
out to be surprisingly sensitive experiences. Moreover, rather than asking participants
to undertake vulnerable emotional work in an unfamiliar setting (affective demands on
research participants have been rightfully critiqued in HCI [164, 165]), our familiarity
with each other, together with shared authorship in this study, made this engagement
feel safer and more equitable.

Team Background

In accordance with the reflexivity of first person methods, we described our profes-
sional and cultural backgrounds alongside the personal sounds we shared. Pseudonyms
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are used for the co-authors other than myself.

• Jon is a PhD student in the U.S. researching AI and HCI applied to music. His
background includes training in music production as well as experience playing
music as an independent artist and contributing composition and sound design to
films and ads. Jon shared a recording of himself playing guitar in high school and
another recording of a performance from his West African drumming class, which
was a formative experience in shaping his thinking about music and sound.

• Kumi is a university professor in the field of HCI. She grew up in Japan but spent
more than half of her life in the US. She is married and has two young children.
Kumi shared a sound of her children with their grandmother giggling and singing
when they were together prior to COVID-19 pandemic.

• Natalie grew up attending 12 different schools in 5 U.S. states; her sound selec-
tions often reflected nostalgia for distant places and times. While navigating fre-
quent changes, a consistent thread has been taking clarinet lessons for many years
and practicing often. She also uses field recordings for making music as a hobby.
She shared sounds of playing clarinet, of someone she knows playing a familiar
song, crickets in the South, and the train in a city where she formerly lived.

• June is a graduate student studying emerging technology design in the U.S. Her
background is a combination of architectural design, engineering, and product
design. She shared the sounds of barks and whines of her terminally ill dog greet-
ing her with unbridled joy when she came home one day, clicks and clacks of her
favorite pastime, competitive video gaming, and the creak of a door opening to
indicate that her partner was done with his work for the day.

• Howard is an aspiring researcher in HCI and AI. He grew up in China and moved
to the U.S. five years ago pursuing a career as an academic researcher. Being busy
with the curriculum, he flies back to his home country only once or twice a year
visiting his family and friends. He shared sounds of his cousin performing an
imperfect piece of piano in front of the entire family during the Chinese Tradi-
tional Spring festival, clips from his high school graduation ceremony, and a jazz
band performing in a cafe where he spent a lot of time with his friends before the
pandemic.

Remixing Process

Drawing from my own professional musical experiences, I approached remixing for
this study as I would when collaborating with another artist or a client: First, I in-
terviewed the ”sound owner” - the person who had shared their personal sounds -
to learn the story behind the sound and get a general sense of their aesthetic tastes.
Next, I chose an artistic direction, including decisions about length, timbre, mood, and
whether to deliver a short sound-snippet or a longer piece of music. This included
finding one or two ”reference tracks” for inspiration. In an iterative process, I listened
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closely to the personal sound recordings, looking for moments that stood out because
they either captured an intended feeling or because they had unique and memorable
sonic qualities. Finally, I put together the remixes by transforming and combining those
fragments. The technical steps involved in these transformations ranged from simply
adding effects like reverb, echo, or a filter, to building full musical arrangements by
organizing, repeating, and mixing sounds into a larger piece. Each participant received
a customized set of 5-7 sounds made using their materials, starting with simple trans-
formations and ending with full pieces of music around 1 minute long.

6.1.5 Findings
Searching for personal sounds as a reflective process

From the perspective of the ”recipient” of a personal remix, selecting personally mean-
ingful sounds to be remixed was a journey in and of itself. Instead of going out to record
new sounds, most of us first reflected on what ”personally meaningful sounds” might
be for us; this led us to look for sounds from our past. In the process, the act of focusing
on sounds (as opposed to images or videos) challenged us to search our memories in a
different way than we are used to. Most of us ended up thinking of sounds associated
with particular times and places in our lives, like a childhood music recital, the birth of
a child, or the sound of crickets chirping outside during summer in a childhood home.
When we did have recordings tied to major life events, we felt grateful. For example,
June had intentionally recorded the a video of her dog’s happy footsteps shortly before
he passed away as a keepsake; she extracted the audio from this video.

Some sounds were difficult or impossible to obtain. For Kumi, the sound of her
newborn’s first breath came to mind, a sound vivid in memory yet one for which she
has no recording. When asked to reflect on how she felt about not having the recording,
Kumi responded, ”I have mixed feelings. Ultimately, I am OK with not having the recording
of my baby’s first breath. I still clearly remember just how viscerally precious that sound was to
me. Even if I had an audio recording of it, I am not sure if the audio file would have captured
the heartfelt aspects because it was such a high-pitched yet super quiet kind of sound. But at the
same time, not having the recording of the breath makes me think about how I might go about
choosing to record certain precious sounds in my life in the future, or really try to pay attention
to the quality of the sounds I experience because I may not get to hear it again.”

The seemingly simple exercise of collecting ”meaningful sounds” in our lives made
us reflect on how we remember events. For some, the prompt to gather recordings
invited renewed attention to the sounds of everyday life and appreciative listening to
sounds that are typically ignored. June shared the sound of the door from her partner’s
office as he opened it. ”I like the sound because I know that’s when I could leave my computer,
go out, and chat with him.” After finishing this exercise, Howard was inspired to start a
practice of deliberately collecting potentially meaningful sounds from his daily life,
which to him now feels similar to his practice of taking photos: ”When I’m chatting with
my family, especially those who I video chat with less frequently, I will now sometimes open my
voice memo app and record part of the conversation.”
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Stories give significance to sounds

As a group, we first shared our personal sounds without explaining them in order to
probe the group’s initial reactions to the audio recordings themselves. Most of us found
ourselves trying to guess the context for each sound: was it water, footsteps, was it
outdoors? The sounds alone did not prompt much emotional engagement for listeners
at first. After learning the context and personal significance behind a sound, however,
our listening experiences often changed dramatically, with the sounds seeming to ”come
to life”.

For me, this group listening exercise felt like a unique way to get to know each other
better. I wrote: “Hearing others’ sounds was a connecting experience. I tried to make sense
of what I was listening to. I imagined what the sounds were about, and I pictured the space

where the recordings were happening. I came up with my own version of what the story

might be. After hearing the stories behind the sounds, I felt like I was getting to know the

person and see the world from their perspective. I was engaged in listening to the stories
more than I might have been otherwise - I wanted to know what it was, why they chose that

sound.”
Sharing stories along with our sounds also changed the way that some of us felt

about the act of listening itself. I wrote: “This was different from my previous experiences of
focused group listening with musicians in a workshop or a class. That kind of listening can be
overly technical and analytical sometimes, which distracts from getting to the more important
matter of understanding how a sound makes us feel. With this group, everybody had a unique
perspective on what they were listening for and sharing, not in a technical way, but in terms of
the feeling. I was surprised, in a good way, by the variety of things that people listen for.”

For most of us, in our roles both as ”sound owners” and as listeners, the backstories
felt equally or more important than the sounds themselves. We were not aware of this
though until the sounds and stories were revealed to us in this order. This suggests that
emotional connections between sounds and stories (real or imagined) can play a more
influential role than we would expect.

Remixes Open Personal Stories for Reinterpretation

June spent about 30 minutes explaining to me the significance behind the recording
of her dog, Romie. After hearing the remix I created for her, she found herself feeling
happy because the remix seemed to embody her dog’s ”goofy” personality, turning what
was a sad clip into a joyous one. June had initially found it hard to listen to the original
recording that she shared because it reminded her of her loss. The remix, on the other
hand, felt more ”listenable” to her, because it offered a new way to revisit memories of
Romie.

In contrast, Natalie had a negative first reaction to her remix, which included a
sample of someone in her life playing a familiar song. “When I first heard Jon’s remix,
I felt annoyed and disappointed but not upset. It felt like the remix made sense musically, but
missed the point emotionally. The remix seemed to emphasize the song itself... the musical
style was trampling my own. It also made me realize that I hadn’t explained the [connection]
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between me and the person playing the song, so how could Jon have known?”
Natalie’s perspective on the remix she received was also shaped by the group dy-

namics, the other listeners, and the other remixes she heard afterwards: “I only felt upset
after June shared her remix with the group. Although the sounds of her puppy’s last days had
been poignant and sad, the remix found a sensitive, respectful way to cherish the good of that
moment, and felt to me like a commemorative celebration of her puppy’s life. Then as the group

listened to my remix, I held back tears. Having such a strong reaction seems a bit silly in
hindsight, but in the moment, I was struck by June’s positive experience with her sound and
wished my remix could have been a positive experience for me.” Even though the remix
itself was hers to keep, Natalie’s experience of listening to it together with the group for
the first time remained ephemeral - this ”first listen” was a one time opportunity that
couldn’t be repeated again with the same piece of music. Natalie’s experience speaks
to the power and impact of hearing sounds for the first time as well as to the strong
effect that social environments can have on the way we experience music.

Importance of Trust

Sound owners often felt vulnerable when sharing sounds with the group. Entering the
meeting to share the story behind the clip of her dog, June felt apprehensive about how
I (in my role as remixer) might reinterpret her story. She wrote, ”Would he completely
miss the meaning of the clip to me? Or would I gain a new level of euphoria from listening
to his work?” During the meeting, despite feeling anxious, she remembers speaking
fast, desperately trying to cram as many details as possible about her dog into the call.
She felt she needed me to understand why her dog was so special and important, and
why the clip simultaneously ”broke” and ”lifted” her. She worried that if I didn’t see
the whole picture, it might cheapen the memory and devalue the bond between her
and her dog. There was something powerful about using sounds to share something
precious to her because a verbal explanation was not enough.

June began to feel more at ease when I showed empathy and made it clear that I, in
my role as the remixer, was listening to her. She felt that I was invested in ”doing the clip
justice.” For June, it was frightening to ”relinquish ownership of the sound.” She describes,
”I went into the call knowing that the expert was skilled in this area, and once I realized he was
an empathetic guy, I felt much more trust than I would have with someone driven by only their
artistic ego.”

After listening to her personal remix, June wrote: ”I suddenly broke out into a big smile
because the music felt like the artist had tried to embody the feeling of the friendship between
Romie and me, as if he really cared – he tried to interpret what I had shared with him. And
the fact that someone listened so attentively and cared at all – this forced me to examine the
clip as a celebratory experience rather than a solemn one.” Even though the remix presented
an emotional interpretation that didn’t quite match how June initially felt about the
recording of her dog, a sense of trust allowed her to appreciate the new interpretation
instead of being left feeling misunderstood.

Natalie, on the other hand, had not been given as much space to explain her per-
sonal samples to me in detail; she didn’t go through the same trust-building process

74



that June did to reassure her that her remixer would care about her perspective. This
contributed to her negative initial reaction to her remix. For Natalie, discussing the
remix with the group in a supportive environment after this first listen marked a turn-
ing point. “At this point, I felt a flood of gratitude and joy. I had shared my story and negative
reaction with the group. Jon had listened to me and explained his thinking making the remix,
and I was struck by how much thought and sensitivity he had put into it. Even if it missed the
mark for me in terms of the sound itself, his thoughtful care felt like such a gift. I felt compelled to
send a thank you email after the group meeting.” While my remix missed the mark for Na-
talie, hearing about my process of making the remix and learning how I had interpreted
her samples shaped her next listen into something different. Natalie wrote afterwards:
”During those few weeks [collecting and sharing sounds], I had been feeling very nostalgic for
times gone by and places I couldn’t return to. Hearing the sounds from different aspects of

my life stitched together into the remix provided a sort of synthesis and healing.” Af-
ter learning more about the intentions behind the remix, Natalie interpreted the music
very differently; this time it left her with a positive emotional reaction.

From my perspective playing the role of remixer, the need for trust came with a
sense of personal responsibility. After remixing the personal sounds for all five mem-
bers of the group including myself, I wrote: ”I found the whole process to be a really power-
ful composition exercise. Even though I have some experience playing this role through collabo-
rating on projects with other musicians or artists, I felt a heightened sense of responsibility

toward the sound owners here. Rather than thinking more broadly about who the audience for
each piece might be, I was focused on the one person who shared the original sounds, because
the emotional stakes were so much higher for that person. I did think a bit about whether and
how other listeners in the group would respond - but for that secondary audience, I was less
concerned with their emotional responses. Because of these high emotional stakes, I spent more
of my composition time trying to capture the stories at a high level and less time executing
the details of any individual piece than I might have otherwise. While this composition process
was engaging for me, it was also challenging. In particular, when my understanding of the story
behind a certain sound was less thorough, I felt like I was making guesses and leaving things to
chance - giving myself the opportunity for a round of revisions would have been a nice addition
to the process.”

6.1.6 Discussion
Perspectives on Delegating Creative Work to AI

Is it possible to trust an algorithm with remixing our personal material, with reinter-
preting our precious personal stories? Lustig et al. highlight the increasing role of
”Algorithmic authority” in society to ”interpret, decide, and manage” [166] compli-
cated situations that arise throughout everyday life. Howell et al. found that, when
faced with a data-driven algorithmic interpretation of their own feelings, participants
sometimes granted the display a concerning degree of authority, ”trusting” it more than
their own felt sense [167]. What are the benefits and risks of trusting or not trusting an
algorithm to work in emotionally sensitive spaces?
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Kumi’s Perspective

Kumi is open to having an AI-based system “surprise” her once in a while with sounds
from her life, much like the way Apple iPhoto or Google Photos provides “On This
Day” (time based) or “This Place” (location based) memories automatically selected
from the images and videos on a phone: “When I see these automatically generated ‘mem-
ories’ on my phone, I am not expecting them to be perfect or even getting it right. I don’t expect
AI to ‘understand’ my life. But it is more about treating them like a gift of opportunity to
reflect on things that would otherwise go unnoticed.” For Kumi, engaging in this exercise
of attending to personal sounds made her realize “just how little we pay attention to the
sonic qualities of our lived lives.” Kumi explains that “Currently, there isn’t any system that
suggests to us, ‘Here’s a personal remix of sonic experience based on where you were or who you
were with. It may be imperfect and we might ignore it at first, but once in a while, there might
be an opportunity for us to say, ‘Hey, I appreciate this sound because I would not have noticed
it otherwise, given the myriad of things going on.’” The AI generated remix of personal
sounds might also be experienced much like the way we interact with traditional radio
stations. “If it ends up playing something that I do not like, I would simply switch the channel.
With a human artist, we might be too polite to tell them I don’t like what you made for me, but
with a non-human AI musician, we might be more open to, or even empowered to speak up what
we like or not like, and what we hope to see next, and be open to multiple iterations.”

Howard’s Perspective

Howard envisions a cloud-based system that could provide him with a palette of sounds
that might be interesting to him to remix on his own. This could be based on all the
sounds he deliberately records from different apps and devices. Howard would like
to be informed about the specific model the AI musician might use and the dataset the
model was trained on, possibly through documenting methods like Model Cards [168]
and Datasheets for Datasets [169]. With a sufficient level of transparency, Howard may
be able to imagine having AI involved in an entire music creation pipeline.

Natalie’s Perspective

Natalie believes it would be extremely difficult to provide a positive emotional experi-
ence with AI. Even with emotion-tagging audio, even with genre-matching to produce
something in a style favored by the listener, and even with AI-generated music, inter-
personal trust and relational care are what made the process meaningful for Natalie.
Rather than attempting to use AI to generate music instead of musicians, AI can help
in other ways. Adding human-AI collaborative features to existing digital audio work-
stations (DAWs) can provide greater creative possibilities for musicians to work with
while remaining sensitive to emotional nuances. AI can help narrow the search space
while leaving final decisions for humans, musician and listener. AI might even help
listeners find musicians based on musical or emotional preferences, or other character-
istics. For Natalie, rather than attempting to use AI to supplant the already precarious
labor of musicians, it seems more equitable and just to instead use AI to help provide
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paid gigs for musicians, in the process enabling more non-musicians to engage the ex-
pressive potential of remixing personal sounds.

My Perspective

For me, coming out of this study, I saw the potential for human-AI co-creation with
personal sounds as a tool for creative inspiration: ”Hearing something that is uniquely
yours suddenly take shape in a more fully realized form than you knew was possible - that
can be inspirational and encouraging.” I imagined a future where AI sometimes serves
the purpose of emphasizing sounds worth listening to (even if the AI often misses the
mark). At the same time though, after seeing firsthand examples of the surprisingly
powerful emotional impact that personalizing and remixing sound can have, I started
to picture a scarier future in which AI-generated music is deployed in a manipulative
way - for example, to play on consumers’ emotions in order to encourage them to spend
money.

Privacy and ownership

Through the process of handing over life-defining sounds (whether to a human or an
AI) to be remixed and re-contextualized, this study offers a look into privacy consid-
erations that can arise when designing personalized sound and music. While work in
media studies, musicology, and law has examined ethics, cultural practices, and legal
implications of sampling and remixing in music (e.g. [170, 171, 172]), the sampling dis-
cussed in this literature usually takes place between one artist and one sound owner
(e.g., Public Enemy sampling James Brown). Personalized music created with the help
of AI, however, opens the door to the possibility of sampling on a much larger scale,
drawing from any individual’s sounds that have been recorded and made available.

Considering a future in which some form of sampling can be automated raised
questions about what constitutes ethical use of sounds recorded in everyday life. Sounds
are all around us, able to be recorded, but ownership can be unclear. Most sound own-
ers felt uncomfortable with the idea of sharing precious sounds outside the research
group without permission–and yet, some of the personal sounds shared within the
group were recorded with others present or even in public spaces. What if a recording
captured by one person contains another person’s precious moment?

Consent, intention, and sensitivity to cultural histories emerged as common themes
when reflecting on the experience of allowing our sounds to be remixed. I felt un-
comfortable with the idea of sampling one of the sounds I had shared with the group,
because I knew that a person whose voice was captured in that clip would not want to
be remixed: ”It feels wrong to change this recording from its original form. I know he would
disapprove.” Natalie shared having experienced a similar feeling while walking with a
friend who expressed wanting to record the sound of people singing during a baptism
in a river as they passed by - ”You can’t use that!” Kumi noticed one particular segment
in my remix for her in which the sounds of her Japanese family were changed to sound
different from their original cultural context. She felt surprised (but in her case, not un-
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comfortable), describing the sounds as ”Church like! Western European, unexpected and
really different from what it is!”

6.1.7 Conclusions
This study contributed first-person design research exploring a process of collecting,
remixing, sharing, and reinterpreting personal sounds. We found that while person-
ally meaningful sounds were expressive emotional materials to work with, they also
presented chances for misunderstanding and discomfort. Interpersonal trust and com-
munication of stories behind sounds played an important role in shaping experiences
with these sensitive materials. These findings contributed to the approach that I went
on to take in the studies on human-AI co-creation presented in Section 6.2 and 6.3,
in which I served as a mediator between musicians and AI while facilitating musical
collaboration.

6.2 Making a Pop Song with AI

AI Song Contest 2021
The AI Song Contest is an international event, which teams from around in the world
can enter by submitting a 4 minute song created using AI in some part of the process.
The second edition of this contest was held in 2021: 38 teams participated, with winners
chosen through a combination of an online popular vote and a jury of 8 musicians and
AI experts headlined by singer Imogen Heap. Songs were judged based on both their
quality and on their process, with particular emphasis on how they made creative use
of AI.

My approach to and experience in making music using AI for this contest was
shaped significantly by the study presented in Section 6.1; I completed that study in
February 2021 and began organizing a group to participate in the contest in March
2021. Here, I built on ideas related to ”Personal Sounds”, but this time with a focus on
a group of musicians rather than listeners. As co-creators of a song, each participant
on my team played a direct role in the song creation process, as opposed to passively
allowing someone else to use their materials.

The rest of this section contains an expanded version of the “Process Document”
that I wrote and submitted to the contest’s jury, detailing how my collaborators and
I created the song ”Listen to your Body Choir,” which was eventually chosen as the
winning entry for the 2021 contest.3 The song can be streamed at the link in the footnote
below. 4

3https://www.aisongcontest.com/blog/ai-song-contest-2021-winner
4https://soundcloud.com/user-703675253/listen-to-your-body-choir
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6.2.1 Team and Roles
Team Members

• Jon Gillick is a researcher working at the intersection of Artificial Intelligence,
Human Computer Interaction, and Music. He has a background in both music
production and computer science.

• Max Savage is an audio and video producer with over a decade of experience
in creative production. He produces, mixes, and masters music for a variety of
artists and is the go-to producer for a number of singer-songwriters and bands
that he works with regularly.

• Matt Sims holds a PhD in English Literature and researches how artificial intelli-
gence can be used to understand and explore the role of narrative across different
genres and mediums.

• Brodie Jenkins is a recording artist, singer, and songwriter.

Team Formation

The inception of this team began when I, having worked on AI music research for
the last few years (after spending the preceding years working in music production),
wanted to bring things full circle by seeing if it would be possible to connect my re-
search more closely and personally with my music creation practice, which brings me a
lot of joy. I recruited Max, a former music-school colleague, and Matt, a research collab-
orator who also shares a passion for music production. Finally, Max recruited Brodie to
round out the band as lead singer.

None of us knew quite what to expect, but everybody jumped in with an open
mind, a sense of humor, and a piqued curiosity. Max and Brodie were excited at the
opportunity to work on a strange, unique artistic project; both had seen bits of AI-
generated art popping up in the media from time to time, but were not very familiar
with the details of AI. Max was also intrigued at the prospect of learning about some
new tools and plugins in the process. I felt a bit uncertain about what I had just talked
the group into doing, but I was excited at the chance to work with some talented and
creative people.

Our Roles and the Role of AI

We assembled a team with skills and backgrounds that we felt would be complemen-
tary: A producer to craft the overall structure of the track (Max), a lead singer (Brodie),
a producer with expertise on AI tools for music generation (Jon), and an expert on nat-
ural language processing and narrative (Matt). Each member used their unique skill
set to focus on a specific aspect of the song creation process, but there was also constant
communication, coordination, and input between the team members to ensure that we
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maintained a unifying vision and that our individual expertise didn’t produce a frag-
mented aesthetic. We set up weekly zoom calls, a shared Dropbox folder, and tons of
email chains to share what we each were coming up with. We initially wanted our
roles to be less specialized, but technical and logistical challenges made this difficult.
In particular, the AI tools and interfaces were hard to use without expertise. Max spent
a lot of effort trying to get one AI tool (Magenta Studio) to work within Ableton Live,
but found it difficult to understand. To make the most of our time and our individual
skills, we ended up with a process where Matt generated and curated lyrics (and im-
ages for artwork), I worked with AI tools to create audio and midi samples and loops,
Brodie recorded vocals, and Max arranged and mixed together all the different “puzzle
pieces”.

Interestingly, when we came together after the song was finished, we realized that
during the process, perhaps because of our different roles, we hadn’t all been viewing
the AI’s role in the collaboration in the same way. Matt saw our process as a back and
forth collaboration between the group and the AI: “Much like the call and response
style repetitions that occur in the chorus of our song (the human voice being mirrored
by the machine-like one), a similar dynamic took place with the AI collaboration. How-
ever, in this case it was reversed. The model would output multiple verses and cho-
ruses, and we would choose the ones we found most compelling, feeding these back
into the model to generate new variations and expansions. Step by step, we found the
shape of our song in this back and forth dynamic.” Max, however, viewed it another
way, saying: “I don’t feel like the AI was a collaborator. I feel like the AI was the artist
in this one. And maybe it’s just because I produce artists that that’s the approach I
took... The AI said ok, this is my take in the booth, this is the best I can do, I don’t really
know how to play guitar or anything, but here’s my idea... The AI wrote the melody
and the lyrics... and then we kind of took the pieces and produced a song, but tried
to leave the AI’s soul in the song without producing it out.” I, on the other hand, felt
at the time that we were the real artists, rather than the AI: “From my position, I feel
like there’s so much of each of our souls in the song. Because if we had given those
AI pieces to somebody else, the thing that came out of it would have been completely
different.”

6.2.2 Creative Process
Choosing a Concept and Artistic Direction

In our first conversations, we discussed the concept for our song. Given our collective
uncertainty about what the AI would do, we wanted to establish a clear story and direc-
tion that would remain the foundation, regardless of the chaos that was to come. Early
on, we settled on building a song that would gradually change, over the course of 4
minutes, from delicate and intimate “music for human ears” into “music for computers
to listen to”. We decided to begin the first verse with the most organic, intimate human
sounds and instruments we could come up with, and then watch what happened as
we filtered those sounds through the lens of AI, continually feeding back into itself. We
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hoped that eventually, much like when the wheel of a car spins so fast that it projects
the illusion of turning backwards, something would emerge from this cycle that would
be beautiful to our human ears. Though we diverged from this vision, ending up with
a more iterative feedback loop between us and AI, many of the choices we made at this
stage made it into the final track. The idea for recruiting Brodie to sing came out of
the idea to start with an intimate, human arrangement. Max said: “Brodie has a very
emotive, human voice. If I’m thinking of AI, it would be the opposite of Brodie’s voice.” The
vocoder effect on the vocals plays out this push and pull throughout the track, coming
together with Brodie’s natural voice at times, and singing call and response at 2:08. We
also chose the piano sound at the very start of the song (which comes back at the end
at 3:12) for its warmth and intimacy - you can hear the creaking sounds of the piano
pedals as well as the breathing and rustling sounds of the pianist on the bench.

In parallel with our vision for the song’s sound and structure, we took inspiration
from the song “Daisy Bell” (composed by Harry Dacre in 1892), which was the first
song to be sung by a computer (the IBM 7094) in 1961. “Daisy Bell” captures some of
the sweetness and intimacy that we wanted to go for, and it felt symbolic of the strange
juxtaposition between human and machine that we needed to be able to embrace in
order to write this song. We went on to use “Daisy Bell” as the initial “seed” for both
the lyrics (generated by GPT-2 [173]) and the vocal melodies (generated by Magenta
Studio’s Continue plugin [75]). In addition, Brodie recorded an A capella version of
“Daisy Bell”, which I used to train SampleRNN [174] models - these were ultimately
used to generate many of the samples used throughout the track.

Assembling AI Puzzle Pieces: Lyrics and Melodies

To generate lyrics, we used a GPT-2 model that had been fine-tuned on a large dataset
of song lyrics. We seeded the generation process with the first line from the chorus of
“Daisy Bell” (“Daisy, Daisy, give me your answer, do”), and then iteratively selected
lyrics we found compelling from the output to re-seed the generation process. Since
this model let us condition on year, we used the following years for each successive
generation step: 1961 (the year an IBM 7094 first sang these same lyrics), 1984, and
2019 (the most recent year of lyrics that the model was trained on). There were some
instances in which the generated lyrics seemed so rich and apt that we had to double
check they weren’t copied from the original lyrics in the training set (fortunately they
weren’t). We did have to censor our AI lyricist at times to keep it from veering in
directions that made us uncomfortable.

Despite our expectations, the lyric generation turned out to be one of the smoothest
and most important AI contributions. As soon as the rest of the group saw the line “Go
on, listen to your body choir”(1:04), we knew that was going to be the chorus of the
song. Max says: “Initially I was thinking the AI lyricist would be a very small contribution,
and then in the end it ended up being the core of the whole song.” Brodie adds: “I thought
the AI lyrics were fascinating and loved the way they strung together words in ways I would
never have imagined. It was challenging to match the AI words to the AI melody - kind of like
a brain puzzle trying to match the word syncopations and phrasing to the melody in a way that
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felt right to me. My brain was tired at the end of recording, but it was a fun challenge!”
As we did with the lyrics, all of the vocal melodies were generated by asking an

AI to “continue” the melody from “Daisy Bell”, in this case using Magenta Studio’s
Continue plugin. Because of this choice, our song ended up in the same key as “Daisy
Bell”, although we changed the tempo and time signature. The verse melodies that
come in at 0:01 and at 1:36, as well as the chorus melodies at 1:04 and 2:09 were all
created by stitching together sections, usually in pieces lasting about 1 measure, of
several AI generated melody takes. Brodie stayed faithful to these generated melodies
throughout - the one point when she takes a bit of liberty with the AI melody is in the
section at 2:40, as the natural human voice seems to take back control from the AI. We
snuck in one other AI-generated melody into the piano line at the very end of the track
(3:45). This was created by a Music Transformer [18] model “continuing” Max’s piano
playing.

More Puzzle Pieces: Beats, Samples, and Feedback Loops Between Humans and AI

While we let the AI lead the way in terms of the lyrics and melody, for the rest of
the music creation and production process, we primarily focused on using AI to make
sounds, rhythms, and textures that we otherwise would never have created. Our goal
was to see if we could lean on AI here for sound design and to create a unique palette
that wouldn’t sound like anything else. We did this in several forms. First, we trained
a version of a GrooVAE [6] model for generating drum loops with a variety of different
swing and syncopation feels, interpolating between different loops to produce some-
thing that was irregular and surprising. This beat first comes in at 0:32 and again at
1:36. We also turned this beat into the bassline (1:36), which we made by copying the
generated kick drum pattern to our bass track, and then moving the MIDI notes to fit
with the chord progression without changing their initial timing.

In addition to the beat, which served as one of the first inspirations for the feel of the
track along with the AI-generated lyrics and melody, we trained SampleRNN models
on a 30-second recording of Brodie singing “Daisy Bell”. Because SampleRNN requires
much more than 30 seconds of audio to train, we built a dataset of about an hour by
making a large variety of pitch-shift and time-stretch adjustments to those 30 seconds.
The end result was a model that sounded like it was trying desperately to sing like
Brodie, but it was really grasping. We generated, curated, and warped a large number
of samples from this SampleRNN to create the palette for the rest of our song. The
percussion sounds at 0:32 are all made from these samples, as are the wobbly, vocal-
like bits that come in at the same time and persist throughout. The chords that come in
at 1:04 are also made from these samples: this model had a tendency to land on one note
and sound like it was screaming ‘eeee’ for about 15 seconds, but in the mix, this pad
part ended up actually sounding very smooth and warm. Once we had recorded the
vocals actually used in the song and composed more parts around that, we re-trained
this model on of our work-in-progress stems (which was easier with more material) to
create another round of SampleRNN samples for the rest of the song.
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6.2.3 Takeaways and Reflections
Strange, Beautiful, Eerie

After we finished producing the song (but before the contest was judged), I interviewed
my three collaborators and wrote reflections on my own experience making the song.
A common thread was a feeling of surprise about how strange the process of creating
the song was, paired with positive feelings about both the final song itself and the fun
process. Brodie said: “I love how it turned out and how the organic and AI merge together
in this song. It’s strange and beautiful and a little eerie. I think my favorite part was the wild
lyrics that came out of this and how fun they were to sing.” Max added: “That was weird. It
was a weird project. It was almost like writing a song where my left arm was a cybernetic arm
with extra abilities, and my right arm, I wasn’t allowed to use.”

Learning to Work with AI and Adapting to Challenges

After investing many hours trying hard to work with the AI tools we had chosen, both
Max and I found that using SampleRNN in particular was harder than expected. I
found that training models took a long time and that it took a lot of trial and error to
find the right seed audio to prime the trained model to do something interesting: “Even
having done this kind of thing before, it turned out to be so hard to get much at all out of the
models.” Max was struck by how inhuman the AI model was in the way it perceived
audio: “I think I just underestimated the difference between listenable music for humans and
the way a machine interprets sound. I know as an audio engineer, the difference between how you
hear someone speak versus when you hear it coming through a microphone - you’re like, what’s
all that extra sound? That’s already there but your ear tunes that out. But the microphone just
says, I’ll take anything, lets get it all! It was interesting seeing all the struggle it took to get
anything out of the AI but a screaming ‘eeee’ sound.”

Despite these struggles, however, all four group members felt like the process even-
tually led us to a places that we were happy with, ultimately finding unique sounds,
melodies, and lyrics that we liked. Brodie felt like using AI prevented her from over-
analyzing or second-guessing her lyrical and melodic choices: “I think the melodies and
lyrics the AI came up with were so unique and something I would never have done on my own,
so I loved how it kind of broke open my creative box a little. I also tend to spend lots of time
agonizing over words or melody, and it was freeing to just go with what the AI created and
enjoy adding my organic voice and emotion onto it.” I felt similarly about using drum beats
made with AI, writing: ”Normally I’ll go down a rabbit hole, thinking I have to move this
hi-hat here or there, that it will make so much difference.”

Max felt like using AI forced him to flip the process that he normally uses when
making music on the computer: “If we had written it ourselves, it would have been more
loop-based, and we would have been thinking, how do I make this interesting? And this was the
opposite direction, where the question is how to make this into a song, because it’s too interesting.
Because the rhythms were so strange, we didn’t have to worry about adding in all these fills or
stuff like that. It just kind of kept going, which is pretty cool.” After having been through
this process once, he sees it becoming a normal part of his composition process in the
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future: “As a producer, sometimes you bring in a guitarist, sometimes you bring in a trumpet
player, sometimes you bring in a drummer, and sometimes you bring in an AI.. The AI does this
kind of thing.. They’re pretty crazy when they go in the vocal booth, but it’s pretty cool.”

6.3 Perspectives on AI-Generated Musical Materials: Case
Studies with Two Musicians

6.3.1 Introduction
This section explores case studies with two musicians from different backgrounds, cap-
turing their experiences through the process of working with AI to create customized
materials for use in new compositions of their own. Building on Sections 6.1 and 6.2, I
explored how, by intentionally gathering their own Collections of material to use as in-
put to AI, and by working with me serving as an intermediary between them and var-
ious AI systems, musicians without a working knowledge of machine learning might
still be able to experience meaningful or inspirational creative interactions with AI.

Beyond Prompting: Collections as Inputs for Creative Interactions with AI

Generally, users can interact creatively with machine learning models either by (1) pro-
viding a conditioning input or a ”prompt” to a pretrained model, or (2) curating one’s
own training dataset. Developing intuition about what makes a good prompt or a good
training dataset, or how to use a model in the first place, however, might be difficult for
artists who don’t have much experience with AI [175]. This study aims to probe what
deeper and more personalized musical interactions with AI might be like without re-
quiring participating musicians to become expert AI users or AI engineers themselves.

With the aim of surfacing early design directions that might better facilitate creative
interactions with AI for musicians and artists, I started with a basic concept for a user
interaction: the participant (a musician) was asked to send off a personally curated
Collection of sounds, and they received back customized music composition materials
(samples, loops, and digital instruments) put together with the help of AI. These mate-
rials were delivered back to the user within a custom template inside a DAW (Digital
Audio Workstation), to facilitate easy exploration and to fit within their existing pro-
cesses. Curating collections of music samples for a project is a common practice already
for some musicians or producers; several platforms like Splice and Reason sell ”packs”
of samples created by a range of different artists and sound designers. Figure 6.2 shows
a mockup of this simple starting point for a user interface.
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Figure 6.2: Mockup of a web interface demonstrating the look of a platform for creators to
upload sounds to be used as inspiration for AI-generated materials.

6.3.2 Study Design
Being the Recording Engineer: Mediating Interactions Between Artists and AI

This study aimed to allow participants to (1) focus on curating their Collection and (2) to
give them a chance to play around with AI-generated materials created based on their
Collection. To keep participants from needing to worry about what the AI itself would
be doing, details about what happened between upload time and download time were
kept minimal - participants were just told that based on their Collection, I would be
sending them a customized music template made using AI.

In order to facilitate this study for the participants, I took on the role of manag-
ing the engineering tasks involved in working with the currently available range of
AI tools for creating music, including data pre-processing, training new models, and
running pre-trained models. Similar to the way in which recording or mixing engi-
neers with a working knowledge of studio gear often mediate the experiences of artists
when they go into recording studios (so that expertise in audio engineering does not
need to be a prerequisite for every musician that wants to record a song), my experi-
ence in operating AI technology allowed me to take care of some overhead in order to
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facilitate interactions between the participants and AI. While AI literacy may eventu-
ally become commonplace among artists, today’s average artist or musician is unlike
to have a working knowledge of how to use it [176].

It is important to mention that in my role as the one responsible for operating the AI
technology, I also needed to play an artistic role to some extent, for example by choosing
which model to apply to which sounds or by filtering out less promising AI-generated
outputs. The recording engineer analogy still applies here - successful audio engineers
are often highly valued by artists because of their taste in making decisions about how
to apply the gear in the studio, such as choosing a microphone that fits well with a
particular singer’s voice [177]. Together with the two musicians who participated, I
followed a three-step process:

1. Collecting Sounds: Each participant spent a period of a week or two looking for
sounds that were meaningful to them and that they were interested in using as
source material for creating something new during the course of this study. They
shared their audio files with me along with short descriptions explaining why
they chose each one.

2. Creating a Customized Music Template with AI Generated Materials: Using
the sounds that they provided to me, I created a set of musical materials for each
participant using several machine learning models. The materials consisted of
samples, loops, and digital instruments, and were delivered to the participants as
a file within their preferred Digital Audio Workstation.

3. Composing: Using the materials provided in their custom AI template, each par-
ticipant created a sketch for a new composition of their own and shared it with
me.

After each step of the process, I asked the participants about their experiences and
perspectives through semi-structured interviews. The rest of this section reports on the
two musicians who worked with me in this way. The names used in this section are
pseudonyms.

6.3.3 Case Study 1: Getting Back into Making Music
Ralph’s Musical Background and Motivation

Ralph is in his 50’s and has several decades of musical experience in various roles as
a musician, mix engineer, and arranger. He played bass, drums, or keyboards in a
number of bands, and he worked as a sound engineer for more than 10 years, recording
albums and working as a front-of-house engineer for over 300 shows. In bands, Ralph
often functioned as the arranger, and he developed as a composer through writing
music with the bands he was part of. For the last 20 years, however, he has been less
directly involved in creating music himself, although he works creating new products
for audio companies. Recently, Ralph has become more interested in making music
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again through collaborating with his kids, and in particular his 11 year old son who is
learning to make music using the Groovepad and GarageBand apps for the iPad.

Ralph’s Sound Collection

For his Collection, Ralph chose sounds based on their emotional content. He sent a total
of 14 audio files, along with a sentence describing each of them. Ralph chose a few
fragments of pieces of music that were important to him (either songs from other artists
that influenced him strongly, or recordings that he had made in the past), and he also
included recordings of his parents’ and his children’s voices, either from voicemails or
pulled from videos. ”I collected sounds that had high emotional value for me. It included
music I listened to... songs that were extremely important for my musical development... I
basically picked song segments, or sounds that were emotionally really important... these were
all super important for my life, including obviously my kids.”

Putting Together Ralph’s AI Music Materials

I created Ralph a customized template in GarageBand, populated with musical mate-
rials based on his Collection, asking him to play around with it and to try to sketch out
an idea for a new song using some of the elements in there.

For the sounds he chose that were snippets of existing songs, I tried to use AI tools
to take inspiration from the more memorable aspects of those snippets. For example,
Ralph sent me a few seconds from two different Kraftwerk songs, explaining: ”Even
though Kraftwerk was not a pop band, they were extremely good at simple melodies, and this
one was the best example. It triggered in me the focus on ear work music composition.” In
response, I used a MusicVAE model [26] to generate several ”interpolations”, asking the
model to generate a range of melodies that were somewhere ”between” the melodies
from Ralph’s influences. He also sent me the first few seconds from another song called
”Take Me Up”, explaining: ”This is the beginning of a song which was critical in my mid-20s,
where I went on a beach vacation with friends on the Canary Islands, and projected my feelings
very deeply into some of the dominant songs during that time.” To capture something of the
timbre of this song, I use a source separation model to extract the synthesizer sound,
which I imported into a sampler to be playable as in instrument in GarageBand.

I treated the non-musical files that Ralph sent me as part of his Collection (like
his children’s voices) differently. For these sounds, I wanted to find musicality in
them while still respecting Ralph’s desire not to transform those personally meaning-
ful sounds into something that he wouldn’t recognize. I implemented this approach
by finding moments from the recordings of voices that happened to have a consistent
enough rhythm to turn into a loop, adding these loops into Ralph’s GarageBand file.

Findings

Ralph’s experience was shaped largely by how clear the connections were between
what he had sent me and the samples and instruments that I sent back to him. Ralph
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Figure 6.3: Two tracks from Ralph’s customized Garageband File

had chosen specific sounds from specific memories, and before working with the ma-
terials I sent him, he asked for clarification, wanting to be able to tell more clearly how
the sounds and instruments that I sent back to him had been related to the ones he
sent me. In response, I reorganized his GarageBand file, adding in his original sounds
together with the new AI-generated material to provide context. Figure 6.3 shows two
tracks from Ralph’s template, with a melody he provided from the Kraftwerk song
”Das Model” shown in blue, and new melodies generated based on that melody shown
alongside it in red. I used the ”Track Notes” feature (which many applications like
GarageBand offer) to summarize the series of steps used to create the material in each
track. Figure 6.4 shows a screenshot of those notes.

After taking some time to compose a sketch of a new song using his GarageBand
template, Ralph felt that the melodies, samples, or other materials that he wanted to use
the most were the ones that were most connected to his original audio files. In his piece,
he featured the generated melodies based on Kraftwerk and his other influences, a loop
containing his kids voices, and he also added a few other instruments and sounds from
the library that comes with GarageBand.

He also used some of his original samples without the modifications I made. One
sound he included was the sample of a car door closing from the beginning of Kraftwerk’s
song ”Autobahn”, which I had turned into a playable drum kit for him by lowering the
pitch and adding effects. ”If you transform it, very soon you can’t recognize the origin any-
more, and I wanted to have the origin in there. So that’s why I felt I wanted to have the original
sample somewhere. Even if it’s just the beginning of the song where you have the originals.. and
then you vary it so that it becomes the instrument. I think making this progression clear within
the song would have been a goal that I would want to have.”

For Ralph, the idea of transforming the sounds with AI shaped the structure of the
song he ended up wanted to make in the end: ”I wanted to create a song where even
the extraction process itself becomes clear, otherwise I would have to explain it in text or in
interviews why this is so important... ideally I would have explained the origins of these sounds
within the song itself versus just knowing this is a really important song to me because it
consists of all these sounds.”

While Ralph found some parts of this exercise confusing, he ultimately ended up
liking the song that he made, listening to it multiple times and even playing it for his
son in the car. Ralph’s experience highlights a theme that also came up in Section
6.1 - when working with samples that have stories attached to them, preserving that
story was important. Telling a new story through the sounds and instruments created
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Figure 6.4: Notes shown in context within the GarageBand file indicating the sequence of trans-
formations to create the material

by AI was interesting, but for Ralph, he preferred to make it clear where that story’s
origin was by showing the transformation from his original sample to the AI-generated
sample as it happened through the course of his song.

6.3.4 Case Study 2: Going Deeper with Sound Design
Alvaro’s Musical Background and Motivation

Alvaro is in his 20s and works as a professional musician, producer, and sound de-
signer. He was interested in participating in this study because he saw the potential of
AI for creating new materials in his sound design process. He has professional experi-
ence designing sample packs for other music producers, and he had also recently taken
a six-week course for musicians learning how to use AI for music and sound.

Alvaro’s Sound Collection

Rather than choosing sounds primarily based on memories like Ralph did, Alvaro came
up with his Collection based on his recent work in sound design and music production.
He sent me a set of 10 audio files that were about 30 seconds long on average. He
said: ”These are a combination of processed field recordings through Cecilia 5 and stuff I put
together with my modular with a bit of post-processing in Ableton. I would say they are a
good representation of where I am aesthetically and emotionally in regards to sounds and sonic
textures.” Alvaro’s sounds included two drum beats as well as several highly processed
field recordings from places he had been, including the sound of a crowd and the sound
of his washing machine. In Alvaro’s description of the sounds he chose, he shared less
with me about the places they had been recorded, instead telling me about the timbres
and textures. Some of the original sources, like the washing machine, were difficult for
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me to recognize when he sent them to me, because he had done a lot of postprocessing
to turn the sounds into interesting, abstract rhythmic textures.

Putting Together Alvaro’s AI Music Materials

Based on his interests as a sound designer, as well as the nature of the sounds he pro-
vided, which were rich and detailed in texture, I decided to train a SampleRNN [174]
model (a generative model of raw audio) for him in order to create a range of variations
of his sounds that would not have been possible to produce using his usual music pro-
duction tools. Because of Alvaro’s interest in experimentation with timbre, he seemed
to be looking for new kinds of sounds that he had never heard before. Deep learning
models like SampleRNN usually produce imperfections and artifacts that make their
outputs sound different from their source material.

In order to get enough training data to reasonably train this model (the implemen-
tation that I used suggests using at least 1 hour of audio), I needed to first apply a large
amount of data augmentation to his audio samples, which I did by changing the pitch
and timing. After generating a large number of new samples for Alvaro, I listened
through, choosing what I thought were some of the more unique and surprising audio
outputs. I put these samples together for Alvaro in a file within Ableton Live (the mu-
sic software he uses), and I played the samples for him one by one over a video call as
he listened to them for the first time.

Findings

Alvaro was quick to imagine different possibilities of what he might do with his cus-
tomized materials - e.g. ”That was a pad or chord sound, definitely.” He compared these
sounds to what he might normally get in a professional sample pack, highlighting that
while sample packs are highly organized and tagged with information like musical
tempo and key, these samples were much more unpredictable. He liked that there were
”artifacts” and ”glitches” in the sounds that made them unique. ”With this, for me it’s cool
to just get like a snippet of sound and you can kind of take it to wherever you want. You can
just pitch it up or down, accommodate it to whatever pitch or tempo, stretch it.” Listening to
the sounds, Alvaro imagined himself and the AI as both being chefs, coming up with
ingredients to cook with together.

Alvaro was enthusiastic about the sound samples he received, and he was interested
in learning more about how I made them. While Alvaro had actually learned about
SampleRNN once before, when he attended a workshop on using AI for music and
sound design, he did not find it especially useful or interesting at the time, because
it was slow, needing hours to train. At the workshop, he had also not tried curating
his own personal Collection of audio to train the model. This time, however, when I
trained the model for him using his own Collection, he found the results produced by
the model to be very exciting. ”its almost like sampling an old record, despite it being an
AI... ”It becomes like an extension of myself, and it comes up with stuff I could have come up
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with but with its own twist, so I feel like its still aesthetically connected, but it’s like a remix of
myself, so it’s like looking at myself in the mirror.”

After receiving his AI music materials, Alvaro composed a sketch for a new track
using only the samples I had sent him (generated by SampleRNN) as source material.
He spent an hour composing this sketch, finding that it was engaging material to work
with and also that after going through the entire process once, he now had new ideas
for sounds to use for his next Collection.

6.3.5 Conclusions
In this study, I explored possibilities for a collaborative creative process between an
artist and an AI Music Engineer with two musicians participating, Ralph and Alvaro.
My findings suggest that although access to AI technology holds potential for creators
looking for new ways to produce music or design sounds, the usability of currently
available tools is a major roadblock that prevents people like Ralph and Alvaro from
being able to see much of that potential by themselves. While faster models and clearer
user interfaces might allow musicians to get more use out of machine learning, access
to training and educational resources on machine learning for artists also appears to
be an important piece of the puzzle for artists like Alvaro who have an interest in the
technology. For artists who are just getting started with machine learning or who have
less interest in developing their own expertise, this study also points to the potential
for collaboration with an expert in AI and machine learning (an ”AI Music Engineer”),
who might be able to help guide the artist through the landscape of models or methods
are available to try, and give advice about which might be the right tool for the job in a
given situation.
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“The 2011 signal separation evaluation campaign (sisec2011):-audio source sepa-
ration,” in International Conference on Latent Variable Analysis and Signal Separation,
pp. 414–422, Springer, 2012.

[45] Y. Yaslan and Z. Cataltepe, “Audio music genre classification using different clas-
sifiers and feature selection methods,” in 18th International Conference on Pattern
Recognition (ICPR’06), vol. 2, pp. 573–576, IEEE, 2006.

[46] K. Choi, G. Fazekas, and M. Sandler, “Automatic tagging using deep convolu-
tional neural networks,” In Proceedings of the 18th International Society for Music
Information Retrieval Conference, 2017.

[47] A. Eronen and A. Klapuri, “Musical instrument recognition using cepstral coeffi-
cients and temporal features,” in 2000 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100), vol. 2, pp. II753–
II756, IEEE, 2000.

[48] E. Humphrey, S. Durand, and B. McFee, “Openmic-2018: an open dataset for
multiple instrument recognition,” in Proceedings of the 19th International Society for
Music Information Retrieval Conference, 2018.

[49] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon, C. Raffel, J. Engel, S. Oore,
and D. Eck, “Onsets and frames: Dual-objective piano transcription,” In Proceed-
ings of the 19th International Society for Music Information Retrieval Conference, 2018.

[50] C. Southall, R. Stables, and J. Hockman, “Automatic drum transcription using
bi-directional recurrent neural networks.,” in Proceedings of the 17th International
Society for Music Information Retrieval Conference, pp. 591–597, 2016.

[51] G. Carpentier, G. Assayag, and E. Saint-James, “Solving the musical orchestra-
tion problem using multiobjective constrained optimization with a genetic local
search approach,” Journal of Heuristics, vol. 16, no. 5, pp. 681–714, 2010.

95



[52] J. Reiss and Ø. Brandtsegg, “Applications of cross-adaptive audio effects: auto-
matic mixing, live performance and everything in between,” Frontiers in Digital
Humanities, vol. 5, p. 17, 2018.

[53] B. De Man and J. D. Reiss, “A semantic approach to autonomous mixing,” Journal
on the Art of Record Production (JARP), 2013.

[54] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million song
dataset,” In Proceedings of the 12th International Society for Music Information Re-
trieval Conference, pp. 591––596, 2011.

[55] A. Owens and A. A. Efros, “Audio-visual scene analysis with self-supervised
multisensory features,” in Proceedings of the European Conference on Computer Vi-
sion (ECCV), pp. 631–648, 2018.

[56] Z.-C. Fan, Y.-L. Lai, and J.-S. R. Jang, “Svsgan: Singing voice separation via gen-
erative adversarial network,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 726–730, IEEE, 2018.

[57] A. Antoine and E. Miranda, “A perceptually orientated approach for automatic
classification of timbre content of orchestral excerpts,” The Journal of the Acoustical
Society of America, vol. 141, no. 5, pp. 3723–3723, 2017.

[58] M. Caetano, A. Zacharakis, I. Barbancho, and L. J. Tardón, “Leveraging diversity
in computer-aided musical orchestration with an artificial immune system for
multi-modal optimization,” Swarm and Evolutionary Computation, 2019.

[59] S. McAdams, “Perspectives on the contribution of timbre to musical structure,”
Computer Music Journal, vol. 23, no. 3, pp. 85–102, 1999.

[60] S. McAdams, “Timbre as a structuring force in music,” in Proceedings of Meetings
on Acoustics ICA2013, vol. 19, p. 035050, ASA, 2013.

[61] A. Mehrabi, K. Choi, S. Dixon, and M. Sandler, “Similarity measures for vocal-
based drum sample retrieval using deep convolutional auto-encoders,” in 2018
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 356–360, IEEE, 2018.

[62] C.-E. Cella and P. Esling, “Open-source modular toolbox for computer-aided or-
chestration,” in Timbre conference, 2018.

[63] G. Carpentier, D. Tardieu, J. Harvey, G. Assayag, and E. Saint-James, “Predict-
ing timbre features of instrument sound combinations: application to automatic
orchestration,” Journal of New Music Research, vol. 39, no. 1, pp. 47–61, 2010.
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