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ABSTRACT OF THE DISSERTATION

Building Reliable Software for Persistent Memory

by

Lu Zhang

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2019

Professor Steven Swanson, Chair

Persistent memory (PMEM) technologies preserve data across power cycles and provide

performance comparable to DRAM. In emerging computer systems, PMEM will operate on the

main memory bus, becoming byte-addressable and cache-coherent. One key feature enabled by

persistent memory is to allow software directly accessing durable data using the CPU’s load/store

instructions, even from the user-space.

However, building reliable software for persistent memory faces new challenges from

two aspects: crash consistency and fault tolerance. Maintaining crash consistency requires the

ability to recover data integrity in the event of system crashes. Using load/store instructions

to access durable data introduces a new programming paradigm, that is prone to new types of

xiii



programming errors. Fault tolerance involves detecting and recovering from persistent memory

errors, including memory media errors and scribbles from software bugs. With direct access, file

systems and user-space applications have to explicitly manage these errors, instead of relying on

convenient functions from lower I/O stacks.

We identify unique challenges in improving reliability for PMEM-based software and

propose solutions. The thesis first introduces NOVA-Fortis, a fault-tolerant PMEM file system

incorporating replication, checksums, and parity for protecting the file system’s metadata and

the user’s file data. NOVA-Fortis is both fast and resilient in the face of corruption due to media

errors and software bugs.

NOVA-Fortis only protects file data via the read() and write() system calls. When an

application memory-maps a PMEM file, NOVA-Fortis has to disable file data protection because

mmap() leaves the file system unaware of updates made to the file. For protecting memory-

mapped PMEM data, we present Pangolin, a fault-tolerant persistent object library to protect an

application’s objects from persistent memory errors.

Writing programs to ensure crash consistency in PMEM remains challenging. Recovery

bugs arise as a new type of programming error, preventing a post-crash PMEM file from recovering

to a consistent state. Thus, we design two debugging tools for persistent memory programming:

PmemConjurer and PmemSanitizer. PmemConjurer is a static analyzer using symbolic execution

to find recovery bugs without running a compiled program. PmemSanitizer contains compiler

instrumentation and run-time recovery bug analysis, compensating PmemConjurer with multi-

threading support and store reordering tests.
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Chapter 1

Introduction

Non-volatile memory (NVM) technologies (e.g., battery-backed NVDIMMs [70] and 3D

XPoint [69]) provide data persistence with performance comparable to DRAM. Commercial NVM

products that can operate on the system’s main memory bus alongside DRAMs have debuted1.

We refer to them as non-volatile main memory (NVMM) or persistent memory (PMEM). They

are byte-addressable and cache-coherent. Thus, one key feature of PMEM is to allow software

accessing durable data using CPU’s load/store instructions, even from the user-space, similar

to how software accesses DRAM nowadays. The combination of PMEM and DRAM enables

hybrid memory systems that offer the promise of dramatic increases in storage performance and a

more flexible programming model.

While the performance advantages of PMEM are enticing, for applications dealing with

mission-critical data, a storage system’s reliability is at least as important as performance. Building

reliable software for persistent memory faces new challenges from two aspects: crash consistency

and fault tolerance. Crash consistency is the ability to recover data consistency in the events

of system crashes. Using load/store instructions and cache-line operations to access durable

data and manage persistence introduces a new programming paradigm and that is prone to new

1Intel has released their Optane DC Persistent Memory Modules in April, 2019.
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types of programming errors. Fault tolerance involves detecting and recovering from persistent

memory faults, including media errors and scribbles from software bugs. With direct access using

load/store instructions, file systems and user-space applications have to explicitly manage these

errors, instead of relying on convenient functions from lower I/O stacks. Without enhancing

applications with fault-tolerance capabilities and testing them for crash-consistency bugs, using

persistent memory to store critical data is not reliable.

In this thesis, we investigate software design and debugging techniques that would enhance

the reliability of PMEM-based applications. We first focus on how we should redesign existing

software components (e.g., file systems) and reuse their interfaces to exploit PMEM’s performance

characteristics and accommodate the fault-tolerance challenges it presents. Chapter 2 explains

the key differences between conventional block-based file systems and PMEM file systems from

a reliability perspective. Then, it introduces NOVA-Fortis, a fast and resilient PMEM file system

incorporating replication, checksums, and per-page parity for protecting the file system’s metadata

and the user’s file data.

Besides using a file system interface, persistent memory also enables applications to

operate on durable data directly from the user-space, bypassing the file system. They can achieve

this by memory-mapping (e.g., using mmap() in Linux) a file in a PMEM-enabled file system such

as NOVA-Fortis. Once the operating system creates address mapping, the user-space application

can access the file’s content without going through the file system. This direct-access mode from

user-space is termed DAX. There is a fundamental conflict between DAX-style mmap() and file

system-based fault tolerance: By design, DAX-mmap() leaves the file system unaware of updates

made to the file, making it impossible for the file system to update the protection data for the file.

NOVA-Fortis’ solution is to disable file data protection while the file is mapped and restore it

afterward. This provides well-defined protection guarantees but leaves file data unprotected when

it is memory-mapped. Moving fault-tolerance to user-space programming libraries solves this

problem, but presents challenges since it requires integrating fault tolerance into persistent object

2



libraries that manage potentially millions of small, heterogeneous objects.

To provide fault tolerance for future DAX-style, object-oriented applications, Chapter 3

presents Pangolin, a persistent object library that uses a combination of metadata replication,

per-object checksums, parity, and micro-buffering to protect an application’s objects from both

media errors and corruption due to software bugs. Pangolin presents programming interfaces

similar to libpmemobj, a persistent object library maintained by Intel, and automatically enables

fault-tolerance features with its function calls. Compared to libpmemobj, performance is similar,

and Pangolin provides stronger protection, online recovery, and greatly reduced storage overhead

(1% instead of 100%).

Writing programs to ensure crash consistency in PMEM remains challenging. We de-

fine recovery bugs as PMEM-specific programming errors that may cause unrecoverable data

inconsistency after a crash. Developing PMEM applications without recovery bugs requires

programmers to carefully reason about when and in what order data becomes persistent during

the program execution, explicitly insert cache-line flushing and memory ordering instructions

at proper locations in the source code, and implement recovery methods to restore an PMEM

image to a consistent state after a crash. Moreover, it also demands special memory management

mechanisms (e.g., atomic, crash-consistent memory allocation) and transaction algorithms that

are unique to PMEM programming. Adding the required functionality introduces pervasive

changes to existing programming practices, and the subtleties involved open the door to a wide

range of recovery bugs.

These challenges illustrate the need for effective recovery bug detecting tools. However,

most of existing PMEM debugging tools, such as PMemCheck [45], PMReorder [81], and

PMTest [60], share two major limitations: 1) lack of static analysis and 2) poor multi-threading

support. Without static analysis, tools must rely on instrumenting a program and running dynamic

analysis on a finite set of test cases. Therefore, the instrumentation effort and test case quality

significantly limit the testing coverage. Moreover, existing tools often require programmers to

3



manually annotate the source code with testing constructs, steepening the learning curve, reducing

code readability and maintainability, and reducing portability. Finally, current PMEM debugging

tools [45, 60, 81] provide little or no support for inter-thread bug analysis. PMemCheck and

PMReorder extend Valgrind [76], which serializes all threads with an emulated CPU, and does

not consider interactions between threads. PMTest also lacks inter-thread analyses.

Chapter 4 describes PmemConjurer and PmemSanitizer to overcome the limitations of

existing PMEM debugging tools. PmemConjurer is a static analyzer that employs symbolic

execution to explore a program’s control flow graph and search for recovery bugs. To support

inter-thread analysis, PmemSanitizer provides compiler instrumentation that automatically injects

dynamic diagnosis code into the program. An instrumented program will execute natively

with threading, while PmemSanitizer’s runtime library performs inter-thread analysis and store-

reordering tests. The tools can detect many reproduced bugs in the PMDK2 repository, and they

also discover eight unknown bugs in the example programs of PMDK, a non-trivial amount given

the limited availability of real-life persistent memory prgrams. The PMDK maintainers have

accepted all of our patches to fix them.

Finally, Chapter 5 concludes the thesis by summarizing the three projects and highlighting

their roles in real-life development of PMEM-based applications.
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Chapter 2

The NOVA-Fortis File System

Integrating NVMMs into computer systems presents a host of interesting challenges. The

most pressing of these focus on how we should redesign existing software components (e.g., file

systems) to accommodate and exploit the different performance characteristics, interfaces, and

semantics that NVMMs provide.

Several groups have proposed new file systems [13, 104, 22] designed specifically for

NVMMs and several Windows and Linux file systems now include at least rudimentary support

for them [35, 63, 64]. These file systems provide significant performance gains for data access

and support “direct access” (or DAX-style) mmap() that allows applications to access a file’s

contents directly using load and store instructions, a likely “killer app” for NVMMs.

Despite these NVMM-centric performance improvements, none of these file systems

provide the data protection features necessary to detect and correct media errors, protect against

data corruption due to misbehaving code, or perform consistent backups of the NVMM’s contents.

File system stacks in wide use (e.g., ext4 running atop LVM, Btrfs, and ZFS) provide some or

all of these capabilities for block-based storage. If users are to trust NVMM file systems with

critical data, they will need these features as well.

From a reliability perspective, there are four key differences between conventional block-
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based file systems and NVMM file systems.

First, the memory controller reports persistent memory media errors as non-maskable

interrupts rather than error codes from a block driver. Further, the granularity of errors is smaller

(e.g., a cache line) and varies depending on the memory device.

Second, persistent memory file systems must support DAX-style memory mapping that

maps persistent memory pages directly into the application’s address space. DAX is the fastest

way to access persistent memory since it eliminates all operating and file system code from the

access path. However, it means a file’s contents can change without the file system’s knowledge,

something that is not possible in a block-based file system.

Third, the entire file system resides in the kernel’s address space, vastly increasing

vulnerability to “scribbles” – errant stores from misbehaving kernel code.

Fourth, NVMMs are vastly faster than block-based storage devices. This means that the

trade-offs block-based file systems make between reliability and performance need a thorough

re-evaluation.

We explore the impact of these differences on file system reliability mechanisms by build-

ing NOVA-Fortis, an NVMM file system that adds fault-tolerance to NOVA [104] by incorporating

replication, checksums, and RAID-style parity protection.

In applying these techniques to an NVMM file system, we have developed the principle of

caveat DAXor (“let the DAXer beware”): Applications that use DAX-style mmap() must accept

responsibility for protecting their data’s integrity and consistency.

Protecting and guaranteeing consistency for DAX mmap()’d data is complex and chal-

lenging. The file system cannot fix that and should not try. Instead, the file system should

studiously avoid imposing any performance overhead on DAX-style access, except when abso-

lutely necessary. For data that is not mapped, the file system should retain responsibility for data

integrity.

Caveat DAXor has two important consequences for NOVA-Fortis’ design. The first applies
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to most other NVMM file systems: To maximize performance, applications are responsible for

enforcing ordering on stores to mapped data to ensure consistency in the face of system failure.

The second consequence arises because NOVA-Fortis uses parity to protect file data from

corruption. Keeping error correction information up-to-date for mapped data would require

interposing on every store, imposing a significant performance overhead. Instead, NOVA-Fortis

requires applications to take responsibility for data protection of data while it is mapped and

restores parity protection when the memory is unmapped.

We quantify the performance and storage overhead of NOVA-Fortis’ fault-tolerance

mechanisms and these design decisions and evaluate their effectiveness at preventing corruption

of both file system metadata and file data.

This chapter makes the following contributions:

1. We identify the unique challenges that the caveat DAXor principle presents to building a

fault-tolerant NVMM file systems.

2. We describe a fast replication algorithm called Tick-Tock for NVMM data structures that

combines atomic update with error detection and recovery.

3. We adapt state-of-the-art techniques for data protection to work in NOVA-Fortis and to

accommodate DAX-style mmap().

4. We quantify NOVA-Fortis’ vulnerability to scribbles and develop techniques to reduce this

vulnerability.

5. We quantify the performance and storage overheads of NOVA-Fortis’ data protection

mechanisms.

We find that the extra storage NOVA-Fortis needs to provide fault-tolerance consumes

14.8% of file system space and reduces application-level performance by between 2% and

38% compared to NOVA. NOVA-Fortis outperforms DAX-aware file systems without reliability
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features by 1.5× on average. It outperforms reliable, block-based file systems running on NVMM

by 3× on average.

To describe NOVA-Fortis, we start by providing a brief primer on NVMM’s implications

for system designers, existing NVMM file systems, key issues in file system reliability, and

the NOVA filesystem (Section 2.1). Then, we describe NOVA-Fortis’ (meta)data protection

mechanisms in 2.2. Section 2.3 evaluates these mechanisms, and Section 2.4 presents our

conclusions.

2.1 Background

NOVA-Fortis targets memory systems that include emerging non-volatile memory tech-

nologies along with DRAM. This section first provides a brief survey of NVMM technologies

and the opportunities and challenges they present. Then we describe recent work on NVMM file

systems and discuss key issues in file system reliability. Finally, we provide a brief primer on

NOVA.

2.1.1 Non-volatile Memory Technologies

Modern server platforms have support NVMM in form of NVDIMMs [70, 39] and the

Linux kernel includes low-level drivers for identifying physical address regions that are non-

volatile, etc. NVDIMMs are commercially available from several vendors in form of DRAM

DIMMs that can store their contents to an on-board flash-memory chip in case of power failure

with the help of super-capacitors.

NVDIMMs that dispense with flash and battery backup are expected to appear in systems

soon. Phase change memory (PCM) [57, 84], resistive RAM (ReRAM) [25, 98], and 3D XPoint

memory technology [69] are denser than DRAM, and may enable very large, non-volatile main

memories. Their latencies are longer than DRAM, however, making it unlikely that they will
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fully replace DRAM as main memory. Other technologies, such as spin-torque transfer RAM

(STT-RAM) [51] are faster, but less dense and may find other roles in future systems (e.g., as

non-volatile caches [110]). These technologies are all under active development and knowledge

about their reliability and performance is evolving rapidly.

The 3D XPoint memory technology has already appeared [43]. In addition, all major

memory manufacturers have candidate technologies that could compete with 3D XPoint. Conse-

quently, we expect hybrid volatile/non-volatile memory hierarchies to become common in large

systems.

Allowing programmers to build useful data structures with NVMMs requires CPUs to

make guarantees about when stores become persistent that programmers can use to guarantee

consistency after a system crash [6, 2]. Without these guarantees it is impossible to build data

structures in NVMM that are reliable in the face of power failures [103, 12, 102].

NVMM-aware systems provide some form of persist barrier that allows programmers to

ensure that earlier stores become persistent before later stores. Researchers have proposed several

different kinds of persist barriers [13, 78, 53].

For example, under x86 a persist barrier comprises a clflush or clwb [41] instruction

to force cache lines into the system’s “persistence domain” and a conventional memory fence

to enforce ordering. Once a store reaches the persistence domain, the system guarantees it will

reach NVMM, even in the case of crash. NOVA-Fortis and other NVMM file systems assume

that these or similar instructions are available.

2.1.2 NVMM File Systems and DAX

Several groups have designed NVMM file systems [13, 21, 22, 63, 104] that address the

unique challenges that NVMMs’ performance and byte-addressible interface present. One of

these, NOVA, is the basis for NOVA-Fortis, and we describe it in more detail in Section 2.1.4.

NVMMs’ low latencies make software efficiency much more important than in block-
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based storage devices [7, 9].

NVMM-aware CPUs provide a load/store interface with atomic 8-byte operations rather

than a block-based interface with block- or sector-based atomicity. NVMM file systems can use

these atomic updates to implement features such as complex atomic data and metadata updates,

but doing so requires different data structures and algorithms than block-based file systems have

employed.

Since NVMMs reside on the processor’s memory bus, applications should be able to

access them directly via loads and stores. NVMM file systems provide this ability via direct

access (or “DAX”). DAX allows read and write system calls to bypass the page cache and access

NVMM directly. DAX mmap() maps the NVMM physical pages that hold a file directly into an

application’s address space, so the application can access and modify file data with loads and

stores and use persist barriers to enforce ordering constraints. File systems for both Windows [35]

and Linux [63, 64] support DAX mmap().

DAX mmap() is a likely “killer app” for NVMMs since it gives applications the fastest

possible access to stored data and allows them to build complex, persistent, pointer-based data

structures. The typical usage model would have the application create a large file in an NVMM

file system, use mmap() to map it into its own address space, and then rely on a userspace

library [12, 103, 82] to manage it.

Building persistent data structures that are robust in the face of system and application

failures is a difficult programming challenge and the first inspiration for the caveat DAXor princi-

ple. Building data structures in NVMM requires the application (or library) to take responsibility

for allocating and freeing persistent memory and avoiding a host of new bugs that can arise in

memory systems that combine persistent and transient state [12].

Applications are also responsible for enforcing ordering relationships between stores

to ensure that the application can recover from an unexpected system failure. Conventional

mmap()-based applications use msync() for this purpose. msync() works with DAX mmap(),
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but it is expensive, non-atomic, and only operates on pages. Persist barriers are much faster than

msync() and better-suited to building complex data structures, but they are more difficult to use

correctly.

2.1.3 File System Consistency and Reliability

Apart from their core function of storing and retrieving data, file systems also provide

facilities to protect the data they hold from corruption due to system failures, media errors, and

software bugs (both in the file system and elsewhere).

File systems have devised a variety of different techniques to guarantee system-wide

consistency of file system data structures, including journaling [100, 22], copy-on-write [8, 86, 13]

and log-structuring [87, 88].

Highly-reliable file systems like ZFS [8] and Btrfs [86] provide two key features to protect

data and metadata: The ability to take snapshots of the file system (to facilitate backups) and set

of mechanisms to detect and recover from data corruption due to media errors and other causes.

Existing DAX file systems provide neither of these features, limiting their usefulness

in mission-critical applications. Below, we discuss the importance of each feature and existing

approaches.

Data Corruption

File systems are subject to a wide array of data corruption mechanisms including media

errors that cause storage media to return incorrect values and software errors that store incorrect

data to the media. Data corruption and software errors in the storage stack have been thoroughly

studied for hard disks [91, 5, 90], SSDs [68, 75] and DRAM-based memories [92, 97]. The

results of DRAM-based studies apply to DRAM-based NVDIMMs, but there have been no

(publicly-available) studies of error behaviors in emerging NVMM technologies.

Storage devices use error-correcting codes (ECC) to protect against media errors. Errors
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that ECC detects but cannot correct result in uncorrectable media errors. For block-based storage,

these errors appear as read or write failures from the storage driver. Intel NVMM-based systems

report these media errors via an unmaskable machine-check exception (MCE) (see Section 2.2.1).

Software errors can also cause data corruption. If the file system is buggy, it may write

data in the wrong place or fail to write at all. Other code in the kernel can corrupt file system data

by “scribbling” [54] on file system data structures or data buffers.

Scribbles are an especially critical problem for NVMM file systems, since the NVMM is

mapped into the kernel’s address space. As a result, all of file system’s data and metadata are

always vulnerable to scribbles.

We discuss other prior work on file system reliability as it relates to NOVA-Fortis in

Section 2.2.8.

2.1.4 The NOVA File System

NOVA-Fortis is based on the NOVA NVMM file system [104]. NOVA’s initial design

focused on two goals: Fully exposing the performance that NVMMs offer and providing very

strong consistency guarantees – all operations in NOVA are atomic. Below, we describe the

features of NOVA that are most relevant to our description of NOVA-Fortis.

Each inode in a NOVA file system has a private log that records changes to the inode.

Figure 2.1 illustrates the relationship between an inode, its log, and file data. NOVA stores the log

as a linked list of 4 KB NVMM pages, so logs are non-contiguous. To perform a file operation

that affects a single inode, NOVA appends a log entry to the log and updates the pointer to the

log’s tail using an atomic, 64-bit store.

For writes, NOVA uses copy-on-write, allocating new pages for the written data. The log

entry for a write holds pointers to the newly written pages, atomically replacing them in the file.

NOVA immediately reclaims the resulting stale pages.

For complex file operations that involve multiple inodes (e.g., moving a file between
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File pages:
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0~4kInode log:
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Stale Live
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Log entry type:

File page state:

Figure 2.1: NOVA inode log structure - A NOVA inode log records changes to the inode (e.g.,
the mode change and two file write operations shown above). NOVA stores file data outside the
log.

directories), NOVA uses small, fixed-size journals (one per core) to store new tail pointers for all

the inodes and update them atomically.

NOVA periodically performs garbage collection on the inode logs by scanning and

compacting the log. Since the logs do not contain file data, they are shorter and garbage collection

is less critical than in a conventional log-structured file system.

To maximize concurrency, NOVA uses per-CPU structures in DRAM to allocate NVMM

pages and inodes. It also caches inode metadata in DRAM to minimize accesses to NVMM

(which is projected to be slower than DRAM), and uses one DRAM-based radix tree per file to

map file offsets to NVMM pages.

NOVA divides the allocatable NVMM into multiple regions, one region per CPU core. A

per-core allocator manages each of the regions, minimizing contention during memory allocation.

After a system crash, NOVA must scan all the logs to rebuild the memory allocator state.

Since, there are many logs, NOVA aggressively parallelizes the scan. Recovering a 50 GB NOVA

file system takes just over 1/10th of a second [104].
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Figure 2.2: NOVA-Fortis space layout - NOVA-Fortis’ per-core allocators satisfy requests for
primary and replica storage from different directions. They also store data pages and their
checksum and parity pages separately.

2.2 Handling Data Corruption in NOVA-Fortis

Like all storage media, NVMM is subject to data and metadata corruption from media

failures and software bugs. To prevent, detect, and recover from data corruption, NOVA-Fortis

relies on the capabilities of the system hardware and operating system as well as its own error

detection and recovery mechanisms.

This section describes the interfaces that NOVA-Fortis expects from the memory system

hardware and the OS and how it leverages them to detect and recover from corruption. We also

discuss a technique that prevents data corruption in many cases and NOVA-Fortis’ ability to

trade reliability for performance. Finally, we discuss NOVA-Fortis’ protection mechanisms in the

context of recent work on file system reliability.

2.2.1 Detecting and Correcting Media Errors

NOVA-Fortis detects NVMM media errors with the same mechanisms that processors

provide to detect DRAM errors. The details of these mechanisms determine how NOVA-Fortis

and other NVMM file systems can protect themselves from media errors.

This section describes the interface that recent Linux kernels (e.g., Linux 4.10) and Intel
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processors provide via the PMEM low-level NVDIMM driver. Porting NOVA-Fortis to other

architectures or operating systems may require NOVA-Fortis to adopt a different approach to

error detection.

NOVA-Fortis assumes the memory system provides ECC for NVMM that is similar to

(or perhaps stronger than) the single-error-correction/double-error-detection (SEC-DED) scheme

that conventional DRAM uses. We assume the controller transparently corrects correctable errors,

and silently returns invalid data for undetectable errors.

For detectable but uncorrectable errors, Intel’s Machine Check Architecture (MCA) [40]

raises a machine check exception (MCE) in response to uncorrectable memory errors. After the

exception, MCA registers hold information that allows the OS to identify the memory address

and instruction responsible for the exception.

The default response to an MCE in the kernel is a kernel panic. However, recent Linux

kernels include a version of memcpy(), called memcpy mcsafe(), that returns an error to the

caller instead of crashing in response to memory-error-induced MCEs, and allows the kernel

software to recover from the exception. NOVA-Fortis always uses this function when reading

from NVMM and checks its return code to detect uncorrectable media errors. Intel processors do

not provide a mechanism for detecting store failures, and the memory controller transparently

maps around faulty cells. In rare cases (e.g., an MCE occurring during a page fault), MCEs are

not recoverable, and a kernel panic is inevitable.

When the processor hardware detects an uncorrectable media error, it “poisons” a con-

tiguous region of physical addresses. The size of this region is the poison radius (PR) of a media

error. We assume PRs are a power of two in size and aligned to that size. Loads to poisoned

addresses cause an MCE, and all the data in the PR is lost. The poisoned status of a PR persists

across system failures and the PMEM driver collects a list of poisoned PRs at boot. On Intel

processors the poison radius is 64 bytes (one cache line), but after boot, Linux reports poisoned

regions at 512-byte granularity, so NOVA-Fortis uses 512-byte.
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We also assume that NVMM platforms will allow system software to clear a poisoned PR

to make the address range usable again. Intel processors provide this capability via the “Clear

Uncorrectable Error” command that is part of the Advanced Configuration and Power Interface

(ACPI) specification [101].

2.2.2 Tick-Tock Metadata Protection

NOVA-Fortis protects its metadata by keeping two copies of each structure – a primary

and a replica – and adding a CRC32 checksum to both.

To update a metadata structure, NOVA-Fortis first copies the contents of the data structure

into the primary (the tick), and issues a persist barrier to ensure that data is written to NVMM.

Then it does the same for the replica (the tock). This scheme ensures that, at any moment, at least

one of the two copies is correctly updated and has a consistent checksum.

To reliably access a metadata structure NOVA-Fortis copies the primary and replica into

DRAM buffers using memcpy mcsafe() to detect media errors. If it finds none, it verifies the

checksums for both copies. If it detects that one copy is corrupt due to a media error or checksum

mismatch, it restores it by copying the other. If both copies are error free but not identical, the

system failed between the tick and tock phases of a previous update, and NOVA-Fortis copies the

primary to the replica, effectively completing the interrupted update. If both copies are corrupt,

the metadata is lost, and NOVA-Fortis returns an error.

2.2.3 Protecting File Data

NOVA-Fortis adopts RAID-4 parity protection and checksums to protect file data and it

includes features to maximize protection for files that applications access data via DAX-style

mmap().

RAID Parity and Checksums. NOVA-Fortis treats each 4 KB file page as a stripe,
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and divides it into PR-sized (or larger) stripe segments, or strips.

NOVA-Fortis stores a parity strip for each file page in a reserved region of NVMM. It

also stores two copies of a CRC32 checksum for each data strip in separate reserved regions.

Figure 2.2 shows the checksum and parity layouts in the NVMM.

When NOVA-Fortis performs a read, it first copies each strip of data into DRAM using

memcpy mcsafe(), and calculates its checksum. If this checksum matches either stored copy of

the checksum, NOVA-Fortis concludes the file data is correct and updates the mismatched copy

of the checksum if needed.

If neither of the checksums match the read data or a media error occurs, NOVA-Fortis

attempts to restore the strip using RAID-4 parity, and uses the strip’s checksum to determine

if the recovery succeeded. If no other strip in the page is corrupt, recovery will succeed and

NOVA-Fortis restores the target strip and its checksums. If more than one strip is corrupt, the file

page is lost and the read fails.

Writes and atomic parity updates are simple since NOVA-Fortis uses copy-on-write for

data: For each file page write, NOVA-Fortis allocates new pages, populates them with the written

data, computes the checksums and parity, and finally commits the write with an atomic log

appending operation.

Caveat DAXor: Protecting DAX-mmap’d Data. By design, DAX-style mmap() lets

application modify file data without involving the file system, so it is impossible for NOVA-Fortis

to keep the checksums and parity for read/write mapped pages up-to-date. Instead, NOVA-Fortis

follows the caveat DAXor principle and provides the following guarantee: The checksums and

parity for data pages are up-to-date at all times, except when those pages are mapped read/write

into an application’s address space.

We believe this is the strongest guarantee that NOVA-Fortis can provide on current

hardware, and it raises several challenges. First users that use DAX-mmap() take on responsibility

for detecting and recovering from both media errors (which appear as SIGBUS in user space)
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Figure 2.3: Scribble size and metadata bytes at risk - Replicating metadata pages and taking
care to allocate the replicas separately improves resilience to scribbles.

and scribbles. This is an interesting challenge but beyond the scope of this chapter. Second,

NOVA-Fortis must be able to tell when a data page’s checksums and parity should match the data

it contains and when they might not.

To accomplish this, when a portion a file is mmap()’d, NOVA-Fortis records this fact

in the file’s log, signifying that the checksums and parity for the affected pages are no longer

valid. NOVA-Fortis only recomputes the checksums and parity for dirty pages on msync() and

munmap(). On munmap(), it adds a log entry that restores protection for these pages when the

last mapping for the page is removed. If the system crashes while pages are mapped, the recovery

process will identify these pages while scanning the logs, recompute checksums and parity, and

add a log entry to mark them as valid.

Design Decisions and Alternatives. Using RAID parity and checksums to protect file

data is similar to the approach that ZFS [8] and IRON ext3 [83] take, but we store parity for each

page rather than one parity page per file [83], and we maintain per-strip checksums instead of a

single checksum for a whole stripe [8].

NOVA-Fortis chooses RAID-4 over RAID-5 because RAID-5 intermingles parity and

data and would make DAX mmap() impossible since parity bits would end up in the application’s

address space.
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Alternately, NOVA-Fortis could rely on RAIM [65], Chipkill [38], or other advanced

ECC mechanisms to protect file data. These techniques would improve reliability, but they are

not universally available and cannot protect against scribbles.

2.2.4 Minimizing Vulnerability to Scribbles

Scribbles pose significant risk to NOVA-Fortis’ data and metadata, since a scribble can

impact large, continuous regions of memory. We are not aware of any systematic study of the

prevalence of these errors, but scribbles, lost, and misdirected writes are well-known culprits for

file system corruption [54, 109, 26]. In practice, we expect that smaller scribbles are more likely

than larger ones, in part since the bugs that result in larger scribbles would be more severe and

more likely to be found and fixed.

To quantify the risk that these errors pose, we define bytes-at-risk (BAR) for a scribble as

the number of bytes it may render irretrievable.

NOVA-Fortis packs log entries in to log pages, and it must scan the page to recognize

each entry. Without protection, losing a single byte can corrupt a whole page. For replicated log

pages, a scribble that spans both copies of a byte will corrupt the page. To measure the BAR for a

scribble of size N we measure the number of pages each possible N-byte scribble would destroy

in an aged NOVA-Fortis file system.

Figure 2.3 shows the maximum and average metadata BAR for a 64 GB NOVA-Fortis

file system with four protection schemes for metadata: “no replication” does not replicate

metadata; “simple replication” allocates the primary and replicas naively and tends to allocate

lower addresses before higher address, so the primary and replica are often close; “two-way

replication” separates the primary and replica by preferring low addresses for the primary and

high addresses for the replica; and “dead-zone replication” extends “two-way” by enforcing a

1 MB “dead zone” between the primary and replica. The dead zone can store file data but not

metadata. The more separation the allocator provides, the less likely a scribble will corrupt a pair
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of mirrored metadata pages. Figure 2.2 shows an example of NOVA-Fortis two-way allocator

with dead zone separation. For each pair of mirrored pages, the dead zone forbids the primary

and replica from becoming too close, but data pages can reside between them.

To stress the allocator’s ability to place the primary and replica far apart, we aged the

file system by spawning multiple, multi-threaded, Filebench workloads. When each workload

finishes, we remove about half of its files, and then restart the workload. We continue until the

file system is 99% full.

The data show that even for the smallest 1-byte scribble, the unprotected version will lose

up to a whole page (4 KB) of metadata and an average of 0.06 pages. With simple replication,

scribbles smaller than 4 KB have zero BAR. Under simple replication, an 8 KB scribble can

corrupt up to 4 KB, but affects only 0.04 pages on average.

Two-way replication tries to allocate the primary and replica farther apart, and it reduces

the average bytes at risk with an 8 KB scribble to 2.9×10–5 pages, but the worst case remains

the same because the allocator’s options are limited when space is scarce.

Enforcing the dead zone further improves protection: A 1 MB dead zone can eliminate

metadata corruption for scribbles smaller than 1 MB. The dead zone size is configurable, so

NOVA-Fortis can increase the 1 MB threshold for scribble vulnerability if larger scribbles are a

concern.

Scribbles also place data pages at risk. Since NOVA-Fortis stores the strips of data pages

contiguously, scribbles that are larger than the strip size may causes data loss, but smaller scribbles

do not. NOVA-Fortis could tolerate larger scribbles to data pages by interleaving strips from

different pages, but this would disallow DAX-style mmap(). Increasing the strip size can also

improve scribble tolerance, but at the cost of increased storage overhead for the parity strip.
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2.2.5 Preventing Scribbles

The mechanisms described above let NOVA-Fortis detect and recover from data corruption.

NOVA-Fortis can borrow a technique from WAFL [54] and PMFS [22] to prevent scribbles by

marking all of NVMM as read-only and then clearing Intel’s WriteProtect Enable (WP) bit to

disable all write protection when NOVA-Fortis needs to modify NVMM. Clearing and re-setting

the bit takes ∼400 ns on our systems.

The WP approach only protects against scribbles from other kernel code. It cannot prevent

NOVA-Fortis from corrupting its own data by performing “misdirected writes,” a common source

of data corruption in file systems [3].

2.2.6 Relaxing Data and Metadata Protection

Many existing file systems can trade off reliability for improved performance (e.g., the

data journaling option in Ext4). NOVA-Fortis can do the same: It provides a relaxed mode that

relaxes atomicity constraints on file data and metadata.

In relaxed mode, write operations modify existing data directly rather than using copy-

on-write, and metadata operations modify the most recent log entry for an inode directly rather

than appending a new entry. Relaxed mode guarantees metadata atomicity by journaling the

modified pieces of metadata. These changes improve performance and we evaluate their impact

in Section 2.3.

2.2.7 Protecting DRAM Data Structures

Corruption of DRAM data structures can result in file system corruption [19, 109], and

NOVA-Fortis protects most of its critical DRAM data structures with checksums. Most DRAM

structures that NOVA-Fortis does not protect are short lived (e.g., the DRAM copies we create

of metadata structures) or are not written back to NVMM. However, the allocator state is and
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exception and it is vulnerable to corruption. The allocator protects the address and length of each

free region with checksums, but it does not protect the pointers that make up the red-black tree

that holds them, since we use the kernel’s generic red-black tree implementation.

2.2.8 Related and Future Work

Below, we describe proposed “best practices” for file system design and how NOVA-Fortis

addresses them. Then, we describe areas of potential improvement for NOVA-Fortis.

Is NOVA-Fortis Ferrous?

InteRnally cONistent (IRON) file systems [83] provide a set of principles to that lead to

improved reliability. We designed NOVA-Fortis to embody these principles:

Check error codes. Uncorrectable ECC errors are the only errors that the NVMM

memory system delivers to software (i.e., via MCEs). NOVA-Fortis uses memcpy mcsafe() for

all NVMM loads and triggers recovery if it detects an MCE. NOVA-Fortis also interacts with the

PMEM driver that provides low-level management of NVDIMMs. For these calls, we check and

respond to error codes appropriately.

Report errors and limit the scope of failures. NOVA-Fortis reports all unrecoverable

errors as EIO rather than calling panic().

Use redundancy for integrity checks and distribute redundancy information. NOVA-

Fortis’ tick-tock replication scheme stores the checksum for each replica with the replica, but it is

careful to allocate the primary and replica copies far from one another. Likewise, NOVA-Fortis

stores the parity and checksum information for data pages separately from the pages themselves.

Type-aware fault injection. For testing, we built a NOVA-Fortis-specific error injec-

tion tool that can corrupt data and metadata structures in specific, targeted ways, allowing us to

test NOVA-Fortis’ detection and recovery mechanisms.
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Figure 2.4: File operation latency - NOVA-Fortis’ basic file operations are faster than competing
file systems except in cases where the other file system provides weaker consistency guarantees
and/or data protection.

Areas for Improvement

There are several additional steps NOVA-Fortis could take to further improve reliability.

We do not expect any of them to have a large impact on performance or storage overheads.

Sector or block failures in disks are not randomly distributed [4], and errors in NVMM

are also likely to exhibit complex patterns of locality [67, 97]. For instance, an NVMM chip may

suffer from a faulty bank, row, or column, leading to a non-uniform error distribution. Or, an

entire NVDIMM may fail.

NOVA-Fortis’ allocator actively separates the primary and replica copies of metadata

structures to eliminate logical locality, but it does not account for how the memory system maps

physical addresses onto the physical memory. A layout-aware allocator could, for instance, ensure

that replicas reside in different banks or different NVDIMMs.

NOVA-Fortis cannot keep running after an unrecoverable MCE (since they cause a

panic()), but it could recover any corrupted data during recovery. The PMEM driver provides a

list of poisoned PRs on boot, and NOVA-Fortis can use this information to locate and recover

corrupted file data during mount. Without this step, NOVA-Fortis will still detect poisoned

metadata, since reading from a poisoned PR results in a recoverable MCE, and NOVA-Fortis
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Figure 2.5: NOVA-Fortis random read/write bandwidth on NVDIMM-N - Read bandwidth
is similar across all the file systems except Btrfs, and NOVA-Fortis’ reliability mechanisms
reduces its throughput by between 14% and 19%.

reads all metadata during recovery. Poisoned file data, however, could accumulate over multiple

unrecoverable MCEs, increasing the chances of data loss.

Finally, NOVA-Fortis does not scrub data or metadata. PMEM detects media errors on

reboot, but if a NOVA-Fortis file system ran continuously for a long time, undetected media errors

could accumulate. Undetected scribbles to data and metadata can accumulate during normal

operation and across reboots.

2.3 Performance Trade-offs

NOVA-Fortis’ reliability features improve its resilience but also incur overhead in terms

of performance and storage space. This section quantifies these overheads and explores the

trade-offs they allow.
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Metadata Protection Data Protection Write Protection

Figure 2.6: NOVA-Fortis latencies for NVDIMM-N - Protecting file data is usually more
expensive than protecting metadata because the cost of computing checksums and parity for
data scales with access size.

2.3.1 Experimental Setup

We implemented NOVA-Fortis for Linux 4.10, and use the Intel Persistent Memory

Emulation Platform (PMEP) [22] to emulate different types of NVMM and study their effects

on NVMM file systems. PMEP supports configurable latencies and bandwidth for the emulated

NVMM, and emulates clwb instruction with microcode. In our tests we configure the PMEP with

32 GB of DRAM and 64 GB of NVMM, and choose two configurations for PMEP’s memory

emulation system: We use the same read latency and bandwidth as DRAM to emulate fast

NVDIMM-N [89], and set read latency to 300 ns and reduce the write bandwidth to 1/8th of

DRAM to emulate slower PCM. For both configurations we set clwb instruction latency to 40 ns.

We compare NOVA-Fortis against five other file systems. Ext4-DAX, xfs-DAX and PMFS

are the three DAX-enabled file systems. None of them provides strong consistency guarantees

(i.e., they do not guarantee that all operations are atomic), while NOVA does provide these

guarantees. To compare to a file system with stronger guarantees, we also compare to ext4 in

data journaling mode (ext4-dataj) and Btrfs running on the NVMM-based block device. Ext4 and

xfs keep checksums for metadata, but they do not provide any recovery mechanisms for NVMM
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media errors or protection against stray writes.

2.3.2 Performance Impacts

To understand the impact of NOVA-Fortis’ reliability mechanisms, we begin by measuring

the performance of individual mechanisms and basic file operations. Then we measure their

impact on application-level performance.

We compare several version of NOVA-Fortis: We start with our baseline, NOVA, and

add metadata protection (“MP”), data protection (“DP”), and write protection (“WP”). “Relaxed

mode” weakens consistency guarantees to improve performance and provides no data protection

(Section 2.2.6).

2.3.3 Microbenchmarks

We evaluate basic file system operations: create, 4 KB append, 4 KB write, 512 B

write, and 4 KB read. Figure 2.4 measures the latency for these operations with NVDIMM-N

configuration. Data for PCM has similar trends.

Create is a metadata-only operation. NOVA is 1.9× to 5× faster than the existing file

systems, and adding metadata protection increases the latency by 47% compared to the baseline.

Append affects metadata and data updates. Adding metadata and data protection increase the

latency by 36% and 100%, respectively, and write protection increases the latency by an additional

22%. NOVA-Fortis with full protection (i.e., “w/ MP+DP+WP”) is 59% slower than NOVA.

For overwrite, NOVA-Fortis performs copy-on-write for file data to provide data atomicity

guarantees, and the latency is close to that of append. For 512 B overwrite, NOVA-Fortis has

longer latency than other DAX file systems since its requires reading and writing 4 KB. Full

protection increases the latency by 2.2×. Relaxed mode is 3.8× faster than NOVA since it

performs in-place updates. For read operations, data protection adds 70% overhead because it
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Table 2.1: Application benchmarks

Application Data size Notes
Filebench-fileserver 64 GB R/W ratio: 1:2
Filebench-varmail 32 GB R/W ratio: 1:1
Filebench-webproxy 32 GB R/W ratio: 5:1
Filebench-webserver 32 GB R/W ratio: 10:1
RocksDB 8 GB db bench’s overwrite test
MongoDB 10 GB YCSB’s 50/50-read/write
Exim 4 GB Mail server
SQLite 400 MB Insert operation
TPC-C 26 GB The ’Payment’ query

verifies the data checksum before returning to the user.

Figure 2.6 breaks down the latency for NOVA-Fortis and its reliability mechanisms. For

create, inode allocation and appending to the log combine to consume 48% of latency, due

to inode/log replication and checksum calculation. For 4 KB append and overwrite, data

protection has almost the same latency as memory copy (memcpy nocache), and it accounts for

31% of the total latency in 512 B overwrite.

Figure 2.5 shows FIO [1] measurements for the multi-threaded read/write bandwidth

of the file systems. For writes, NOVA-Fortis’ relaxed mode achieves the highest bandwidth.

With sixteen threads, metadata protection reduces NOVA-Fortis bandwidth by 24% compared

to the baseline, data protection reduces throughtput by 37%, and enabling all of NOVA-Fortis’

protection features reduces bandwidth by 66%. For reads, all the file systems scale well except

Btrfs, while NOVA-Fortis data protection incurs 14% overhead on 16 threads, due to checksum

verification.

2.3.4 Macrobenchmarks

We use nine application-level workloads to evaluate NOVA-Fortis: Four Filebench [99]

workloads (fileserver, varmail, webproxy, and webserver), two key-value stores (RocksDB [24]

and MongoDB [71]), the Exim email server [23], SQLite [96], and TPC-C running on Shore-
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Figure 2.7: Application performance on NOVA-Fortis - Reliability overheads and the benefits
of relaxed mode have less impact on applications than microbenchmarks (Figures 2.4 and 2.5).

MT [50]. Fileserver, varmail, webproxy and Exim are metadata-intensive workloads, while other

workloads are data-intensive. Table 2.1 summarizes the workloads.

Figure 2.7 measures their performance on our five comparison file systems and several

NOVA-Fortis configurations, normalized to the NOVA throughput on NVDIMM-N. NOVA-Fortis

outperforms xfs-DAX and ext4-DAX by between 3% and 4.4×. PMFS shows similar performance

to NOVA on data-intensive workloads, but NOVA-Fortis outperforms it by a wide margin (up

to 350×) on metadata-intensive workloads. Btrfs provides reliability features similar to NOVA-

Fortis’, but it is slower: NOVA-Fortis with all its protection features enabled outperforms it

by between 26% and 42×. NOVA-Fortis achieves larger improvement on metadata-intensive

workloads, such as varmail and Exim.

Adding metadata protection reduces performance by between 0 and 9% and using the WP

bit costs an additional 0.1% to 13.4%. Enabling all protection features reduces performance by

between 2% and 38%, with write-intensive workloads seeing the larger drops. The figure also

shows that the performance benefits of giving up atomicity in file operations (“Relaxed mode”)
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are modest – no more than 6.4%.

RocksDB sees the biggest performance loss with NOVA-Fortis with all protections

enabled because it issues many non-page-aligned writes that result in extra reads, writes, and

checksum calculation during copy-on-write. Relaxed mode avoids these overheads, so it improves

performance for RocksDB more than for other workloads.

For the PCM configuration, fileserver, webserver and Rocks-DB show the largest perfor-

mance drop compared to NVDIMM-N. Fileserver and RocksDB are write-intensive and saturate

PCM’s write bandwidth. Webserver is read-intensive and PCM’s read latency limits performance.

Btrfs outperforms other DAX file systems on Rocks-DB because this workload does not call

fsync frequently, allowing it to leverage the page cache.

Compared to other file systems, NOVA-Fortis is more sensitive to NVMM performance,

because it has lower software overhead and reveals the underlying NVMM performance more

directly. Overall, NOVA outperforms other DAX file systems by 1.75× on average, and adding

full protection reduces performance by 12% on average compared to NOVA.

2.3.5 NVMM Storage Utilization

Protecting data integrity introduces storage overheads. Figure 2.8 shows the breakdown of

space among (meta)data structures in an aged, 64 GB NOVA-Fortis file system. Overall, NOVA-

Fortis devotes 14.8% of storage space to improving reliability. Of this, metadata redundancy

accounts for 2.1% and data redundancy occupies 12.7%.

2.4 Conclusion

We have used NOVA-Fortis to explore the unique challenges that improving NVMM

file system reliability presents. The solutions that NOVA-Fortis implements provide protection

against media errors and corruption due to software errors.
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File parity: 11.1%

File data: 82.4%

File checksum: 1.56%

Replica log: 2.0%

Replica inode: 0.1%

Unused: 0.75%

Primary inode: 0.1%

Primary log: 2.0%

Figure 2.8: NVMM storage utilization - Extra storage required for reliability is highlighted
to the right. Protecting data is more expensive that protecting metadata, consuming 12.7% of
storage compared to just 2.1% for metadata.

The extra storage required to implement these changes is modest, but their performance

impact is significant for some applications. In particular, the cost of checking and maintaining

checksums and parity for file data incurs a steep cost for both reads and writes, despite our use of

very fast (XOR parity) and hardware accelerated (CRC) mechanisms. Providing atomicity for

unaligned writes is also a performance bottleneck.

These costs suggest that NVMM file systems should provide users with a range of

protection options that trade off performance against the level of protection and consistency. For

instance, NOVA-Fortis can selectively disable checksum based file data protection and the write

protection mechanism. Relaxed mode disables copy-on-write.

Making these policy decisions rationally is currently difficult due to a lack of two pieces

of information. First, the rate of uncorrectable media errors in emerging NVMM technologies is

not publicly known. Second, the frequency and size of scribbles has not been studied in detail.

Without a better understanding in these areas, it is hard to determine whether the costs of these

techniques are worth the benefits they provide.

Despite these uncertainties, NOVA-Fortis demonstrates that NVMM file system can
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provide strong reliability guarantees while providing high performance and supporting DAX-style

mmap(). It also makes a clear case for developing special file systems and reliability mechanisms

for NVMM rather than blithely adapting existing schemes: The challenges NVMMs presents are

different, different solutions are appropriate, and the systems built with these differences in mind

can be very fast and highly reliable.

Acknowledgments

This chapter contains material from “NOVA-Fortis: A Fault-Tolerant Non-Volatile Main

Memory File System,” by Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,

Amit Borase, Tamires Brito da Silva, Andy Rudoff and Steven Swanson, which has appeared in

the Proceedings of the 26th ACM Symposium on Operating Systems Principles. The dissertation

author is one of the two the primary contributors and second author of this paper. The materials

are copyright c©2017 by Association for Computing Machinery.

32



Chapter 3

The Pangolin Library

A key feature of NVMM is support for direct access, or DAX, that lets applications

perform loads and stores directly to a file that resides in NVMM. DAX offers the lowest-possible

storage access latency and enables programmers to craft complex, customized data structures

for specific applications. To support this model, researchers and industry have proposed various

persistent object systems [12, 103, 82, 59, 36, 66, 48, 14].

Building persistent data structures presents a host of challenges, particularly in the area of

crash consistency and fault tolerance. Systems that use NVMM must preserve crash-consistency

in the presence of volatile caches, out-of-order execution, software bugs, and system failures.

To address these challenges, many groups have proposed crash-consistency solutions based

on hardware [74, 85, 73, 77], file systems [13, 22, 104, 105], user-space data structures and

libraries [107, 93, 12, 103, 82, 36, 14], and languages [79, 18].

Fault tolerance has received less attention but is equally important: To be viable as an

enterprise-ready storage medium, persistent data structures must include protection from data

corruption. Intel processors report uncorrectable memory media errors via a machine-check

exception and the kernel forwards it to user-space as a SIGBUS signal. To our knowledge, Xu et

al. [105] were the first to design an NVMM file system that detects and attempts to recover from
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these errors. Among programming libraries, only libpmemobj provides any support for fault

tolerance, but it incurs 100% space overhead, only protects against media errors (not software

“scribbles”), and cannot recover corrupted data without taking the object store offline.

Xu et al. also highlighted a fundamental conflict between DAX-mmap() and file system-

based fault tolerance: By design, DAX-mmap() leaves the file system unaware of updates made to

the file, making it impossible for the file system to update the redundancy data for the file. Their

solution is to disable file data protection while the file is mapped and restore it afterward. This

provides well-defined protection guarantees but leaves file data unprotected when it is in use.

Moving fault-tolerance to user-space NVMM libraries solves this problem, but presents

challenges since it requires integrating fault tolerance into persistent object libraries that manage

potentially millions of small, heterogeneous objects.

To satisfy the competing requirements placed on NVMM-based, DAX-mapped object

store, a fault-tolerant persistent object library should provide at least the following characteristics:

1. Crash-consistency. The library should provide the means to ensure consistency in the face

of both system failures and data corruption.

2. Protection against media and software errors. Both types of errors are real threats to

data stored to NVMM, so the library should provide protection against both.

3. Low storage overhead. NVMM is expensive, so minimizing storage overhead of fault

tolerance is important.

4. Online recovery. For good availability, detection and recovery must proceed without

taking the persistent object store offline.

5. High performance. Speed is a key benefit of NVMM. If fault-tolerance incurs a large

performance penalty, NVMM will be much less attractive.
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6. Support for diverse objects. A persistent object system must support objects of size

ranging from a few cache lines to many megabytes.

This chapter describes Pangolin, the first persistent object library to satisfy all these

criteria. Pangolin uses a combination of parity, replication, and object-level checksums to provide

space-efficient, high-performance fault tolerance for complex NVMM data structures. Pangolin

also introduces a new technique for accessing NVMM called micro-buffering that simplifies

transactions and protects NVMM data structures from programming errors.

We evaluate Pangolin using a suite of benchmarks and compare it to libpmemobj, a

persistent object library that offers a simple replication mode for fault tolerance. Compared to

libpmemobj, performance is similar, and Pangolin provides stronger protection, online recovery,

and greatly reduced storage overhead (1% instead of 100%).

The rest of this chapter is organized as follows: Section 3.1 provides a primer on NVMM

programming and NVMM error handling in Linux. Section 3.2 describes how Pangolin organizes

data, manages transactions, and detects and repairs errors. Section 3.3 presents our evaluations.

Section 3.4 and Section 3.5 discusses other design options and related works, respectively. Finally,

Section 3.6 concludes.

3.1 Background

Pangolin lets programmers build fault-tolerant, crash-consistent data structures in NVMM.

This section first introduces NVMM and the DAX mechanism applications use to gain direct

access to persistent data. Then, we describe the NVMM error handling mechanisms that Intel

processors and Linux provide. Finally, we provide a brief primer on NVMM programming using

libpmemobj [82], the library on which Pangolin is based.
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3.1.1 Non-volatile Main Memory and DAX

Several technologies are poised to make NVMM common in computer systems. 3D

XPoint [69] is the closest to wide deployment. Phase change memory (PCM), resistive RAM

(ReRAM), and spin-torque transfer RAM (STT-RAM) are also under active development by

memory manufacturers. Flash-backed DRAM is already available and in wide use. Linux and

Windows both have support for accessing NVMM and using it as storage media.

The performance and cost parameters of NVMM lie between DRAM and SSD. Its write

latency is longer than DRAM, but it will cost less per bit. From the storage perspective, NVMM

is faster but more expensive than SSD.

The most efficient way to access NVMM is via direct access (DAX) [42] memory mapping

(i.e., DAX-mmap()). To use DAX-mmap(), applications map pages of a file in an NVMM-aware

file system into their address space, so the application can access persistent data from the user-

space using load and store instructions, without the file system intervening.

3.1.2 Handling NVMM Media Errors

To recover from data corruption, Pangolin relies on error detection and media management

facilities that the processor and operating system provide together. Below, we describe these

facilities available on Intel and Linux platforms. Windows provides similar mechanisms.

Hardware Error Correction. Memory controllers for commercially available NVMMs

(i.e., battery-backed DRAM and 3D XPoint) implement error-correction code (ECC) in hardware

to detect and correct media errors when they can, and they report uncorrectable (but detectable)

errors with a machine check exception (MCE) [41] that the operating system can catch and

attempt to handle.

Pangolin provides a layer of protection in addition to the ECC hardware provides, but it

does not require hardware ECC. Pangolin uses checksums to detect errors that hardware cannot
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detect. This mechanism also catches software bugs (which are invisible to hardware ECC). ECC

does, however, improve performance by transparently handling many media errors.

Regardless of the ECC algorithm hardware provides, field studies of DRAM and SSDs [92,

37, 97, 90, 68, 75] have shown that detectable but uncorrectable media errors occur frequently

enough to warrant additional software protection. Furthermore, file systems [109, 105, 54] apply

checksums to their data structures to protect against scribbles.

Repairing Errors. When the hardware detects an uncorrectable error, the Linux kernel

marks the region surrounding the failed load as “poisoned,” and future loads from the region

will fail with a bus error. Pangolin assumes an error poisons a 4 KB page since Linux currently

manages memory failures at page granularity.

If a running application causes an MCE (by loading from a poisoned page), the kernel

sends it a SIGBUS and the application can extract the affected address from the data structure

describing the signal.

The software can repair the poisoned page by writing new data to the region. In response,

the operating system and NVDIMM firmware work together to remap the poisoned addresses to

functioning memory cells. The details of this process are part of the Advanced Configuration and

Power Interface (ACPI) [101] for NVDIMMs.

Recent kernel patches [15, 16, 17, 62] and NVMM library [82] provide utilities for user-

space applications to restore lost data by re-writing affected pages with recovered contents (if

available).

3.1.3 NVMM Programming

In this section, we describe libpmemobj’s programming model. Libpmemobj is a well-

supported, open-source C library for programming with DAX-mapped NVMM. It provides

facilities for memory management and software transactions that let applications build a persistent

object store. Pangolin’s interface and implementation are based on libpmemobj from PMDK.
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Figure 3.1: DAX-mapped NVMM as an object store - Libpmemobj divides the mapped space
into zones and chunks for memory management.

Linux exposes NVMM to the user-space as memory-mapped files (Figure 3.1). Libpmemobj

(and Pangolin) refer to the mapped file as a pool of persistent objects. Each pool spans a continu-

ous range of virtual addresses.

1 PMEMobjpool *pool = pmemobj_open("/dax/pool");

2 ...

3 struct node *n = pmemobj_direct(node_oid);

4 n->val = value;

5 pmemobj_persist(pool , &n->val, 8);

6 ...

7 TX_BEGIN(pool) {

8 n = pmemobj_direct(node_oid);

9 pmemobj_tx_add_range(node_oid , 0, sizeof(*n));

10 n->next = pmemobj_tx_alloc (...);

11 } TX_ONABORT {

12 /* handling transaction aborts */

13 } TX_END

14 ...

15 pmemobj_close(pool);

Listing 3.1: A libpmemobj program - First modify a node value in a linked list, and later

allocate and link a new node from the pool.

38



Within a pool, libpmemobj reserves a metadata region that contains information such

as the pool’s identification (64-bit UUID) and the offset to a “root object” from which all other

live objects are reachable. Next, is an area reserved for transaction logs. Libpmemobj uses redo

logging for its metadata updates and undo logging for application object updates. Transaction logs

reside in one of two locations depending on their sizes. Small log entries live in the provisioned

“Log” region, as shown in Figure 3.1. Large ones overflow into the “Heap” storage area.

The rest of the pool is the persistent heap. Libpmemobj’s NVMM allocator (a persistent

variant of malloc/free) manages it. The allocator divides the heap’s space into several “zones”

as shown in Figure 3.1. A zone contains metadata and a sequence of “chunks.” The allocator

divides up a chunk for small objects and coalesces adjacent chunks for large objects. By default,

a zone is 16 GB, and a chunk is 256 KB.

Listing 3.1 presents an example to highlight the key concepts of NVMM programming.

The code performs two independent operations on a persistent linked list: one is to modify a

node’s value, and another is to allocate and link a new node.

This example demonstrates two styles of crash-consistent NVMM programming: atomic-

style (lines 3-5) for a simple modification that is 8 bytes or smaller, and transactional-style (lines

7-13) for arbitrary-sized NVMM updates.

Building data structures in NVMM using libpmemobj (or any other persistent object

library) differs from conventional DRAM programming in several ways:

Memory Allocation. Libpmemobj provides crash-consistent NVMM allocation and

deallocation functions: pmemobj tx alloc/pmemobj tx free. They let the programmer specify

object type and size to allocate and prevent orphaned regions in the case of poorly-time crashes.

Addressing Scheme. Persistent pointers within a pool must remain valid regardless of

at what virtual address the pool resides. Libpmemobj uses a PMEMoid data structure to address an

object within a pool. It consists of a 64-bit file ID and a 64-bit byte offset relative to the start of

the file. The pmemobj direct() function translates a PMEMoid into a native pointer for use in
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load or store instructions.

Failure-atomic Updates. Modern x86 CPUs only guarantee that 8-byte, aligned

stores atomically update NVMM [44]. If applications need larger atomic updates, they must

manually construct software transactions. Libpmemobj provides undo log-based transactions. The

application executes stores to NVMM between the TX BEGIN and TX END macros, and snapshots

(pmemobj tx add range) a range of object data before modifying it in-place.

Persistence Ordering. Intel CPUs provide cache flush/write-back (e.g., CLFLUSH(OPT)

and CLWB) and memory ordering (e.g., SFENCE) instructions to make guarantees about when stores

become persistent. In Listing 3.1, the pmemobj persist function and TX macros integrate these

instructions to flush modified object ranges.

Libpmemobj supports a replicated mode that requires a replica pool, doubling the storage

the object store requires. Libpmemobj applies updates to both pools to keep them synchronized.

Replicated libpmemobj can detect and recover from media errors only when the object

store is offline, and it cannot detect or recover from data corruption caused by errant stores to

NVMM – so-called “scribbles,” that might result from a buffer overrun or dereferencing a wild

pointer.

3.2 Pangolin Design

Pangolin allows programmers to build complex, crash-consistent persistent data structures

that are also robust in the face of media errors and software “scribbles” that corrupt data. Pangolin

satisfies all of the criteria listed in the introduction of this chapter. This section describes its

architecture and highlights the key challenges that Pangolin addresses to meet those requirements.

In particular, Pangolin provides the following features unseen in prior works.

• It provides fast, space-efficient recovery from media errors and scribbles.
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Figure 3.2: Data protection scheme in Pangolin - Pangolin protects pool metadata (PM), zone
metadata (ZM), and chunk metadata (CM).

• It uses checksums to protect object integrity and supports incremental checksum updates.

• It integrates parity and checksum updates into an NVMM transaction system.

• It periodically scrubs data to identify corruption.

• It detects and recovers from media errors and scribbles online.

Pangolin guarantees that it can recover from the loss of any single 4 KB page of data in a

pool. In many cases, it can recover from the concurrent loss of multiple pages.

We begin by describing how Pangolin organizes data to protect user objects, library

metadata, and transaction logs using a combination of parity, replication, and checksums. Next,

we describe micro-buffers and explain how they allow Pangolin to preserve a simple programming

interface and protect against software scribbles. Then, we explain how Pangolin detects and

prevents NVMM corruption and elaborate on Pangolin’s transaction implementation with support

for efficient, concurrent updates of object parity. Finally, we discuss how Pangolin restores data

integrity after corruption and crashes.
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3.2.1 Pangolin’s Data Organization

Pangolin uses replication for its internal metadata and RAID-style parity for user objects

to provide redundancy for corruption recovery. The MCE mechanism described in Section 3.1.2

and object checksums in Pangolin detect corruption.

Pangolin views a zone’s chunks as a two-dimensional array as shown in the middle of

Figure 3.2. Each chunk row contains multiple, contiguous chunks and the chunks “wrap around”

so that the last chunk of a row and the first chunk of the next are adjacent. Pangolin reserves the

last chunk row for parity.

In our description of Pangolin, we define a page column as a one page-wide, aligned

column that cuts across the rows of a zone. A range column is similar, but can be arbitrarily wide

(no more than a chunk row’s size).

Initializing a parity-coded NVMM pool requires zeroing out all the bytes in the file. This

is a one-time overhead when creating a pool file and does not affect run-time performance. We

report this latency in Section 3.3.

To detect corruption in user objects, Pangolin adds a 32-bit checksum to the object’s

header. The header also contains the object’s size (64-bit) and type (32-bit). The compiler

determines type values according to user-defined object types. Pangolin inherits this design from

libpmemobj and changes the type identifier from 64-bit to 32-bit for the checksum.

Pangolin’s object placement is independent of chunk and row boundaries. Objects can be

anywhere within a zone, and they can be of any size (up to the zone size).

In addition to user objects, the library maintains metadata for the pool, zones, and chunks,

including allocation bitmaps. Pangolin checksums these data structures to detect corruption and

replicates the pool’s and zones’ metadata for fault tolerance. These structures are small (less than

0.1% for pools larger than 1 GB), so replicating them is not expensive. Pangolin uses zone parity

to support recovery of chunk metadata.

Pangolin checksums transaction logs and replicates them for redundancy. It treats log
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Table 3.1: The Pangolin API - Pangolin’s interface mirrors libpmemobj’s except that Pangolin
does not allow direct writing to NVMM.

Function Semantics

pgl tx begin()/commit()/end(), etc. Control the lifetime of a Pangolin transaction.
pgl tx alloc()/free() Allocate or deallocate an NVMM object.
pgl tx open(PMEMoid oid, ...) Create a thread-local micro-buffer for an NVMM object. Verify (and restore)

the object integrity, and return a pointer to the micro-buffered user object.
pgl tx add range(PMEMoid oid, ...) Invoke pgl tx open and then mark a range of the object that will be modified.
pgl get(PMEMoid oid) Get access to an object, either directly in NVMM or in its micro-buffer,

depending on the transaction context. By default, it does not verify the checksum.

pgl open(PMEMoid oid, ...) Create a micro-buffer for an NVMM object without a transaction. Check the
object integrity, and return a pointer to the micro-buffered user object.

pgl commit(void *uobj) Automatically start a transaction and commit the modified user object in a
micro-buffer to NVMM.

entries in zone storage as zeros during parity calculations. This prevents parity update contention

between log entries and user objects (see Section 3.2.5).

Fault Tolerance Guarantees. Pangolin can tolerate a single 4 KB media error any-

where in the pool, regardless of whether it is a data page or a parity page. Based on the bad page’s

address Pangolin can locate its page column and restore its data using other healthy pages.

Faults affecting two pages of the same page column may cause data loss if the corrupted

ranges overlap. If an application demands more robust fault tolerance, it can increase the chunk

row size, reducing the number of rows and, consequently, the likelihood that two corrupt pages

overlap.

Pangolin can recover from scribbles (contiguous overwrites caused by software errors)

on NVMM data up to a chunk-row size. By default, Pangolin uses 100 chunk rows, and parity

consumes ∼1% of a pool’s size (e.g., 1 GB for a 100 GB pool).

3.2.2 Micro-buffering for NVMM Objects

Pangolin introduces micro-buffering to hide the complexity of updating checksums and

parity when modifying NVMM objects. Adding checksums to objects and protecting them

with parity makes updates more complex, since all three – object data, checksum, and parity –
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must change at once to preserve consistency. This challenge is especially acute for the atomic

programming model as shown in Listing 3.1 (line 3-5) because a single 8-byte NVMM write

cannot host all these updates.

Micro-buffering creates a shadow copy of an NVMM object in DRAM, which separates

an object’s transient and persistent versions (Figure 3.2). In Listing 3.2, pgl open creates a

micro-buffer for the node object by allocating a DRAM buffer and copying the node’s data from

NVMM. It also verifies the object’s checksum and performs corruption recovery if necessary.

The application can modify the micro-buffered object without concern for its checksum,

parity, and crash-consistency because changes exist only in the micro-buffer. When the updates

finish, pgl commit starts a transaction that atomically updates the NVMM object, its checksum,

and parity (described below). Compared to line 3-5 of Listing 3.1, Pangolin retains the simple,

atomic-style programming model for modifying a single NVMM object, and it supports updates

within an object beyond 8 bytes.

Each micro-buffer’s header contains information such as its NVMM address, modified

ranges, and status flags (e.g., allocated or modified). We elaborate on Pangolin’s programming

interface and how to construct complex transactions with micro-buffering in Section 3.2.4.

1 struct node *n = pgl_open(node_oid);

2 n->val = value;

3 pgl_commit(pool , n);

Listing 3.2: A Pangolin transaction for a single-object.

Another important consideration for micro-buffering is to prevent misbehaving software

from corrupting NVMM. If an application’s code can directly write to NVMM, as libpmemobj

allows to, software bugs such as buffer overflows and using dangling pointers can easily cause

NVMM corruption. Conventional debugging tools for memory safety, such as Valgrind [76] and

AddressSanitizer [94], insert inaccessible bytes between objects as “redzones” to trap illegal

accesses. This approach fails to work for directly accessed NVMM objects because once they
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are allocated, there is no guarantee for spacing between them, and thus, redzones may land on a

nearby, accessible object. One viable approach to using these tools is to let the NVMM allocator

insert redzones. However, the presence of redzone bytes will pollute the pool and may exacerbate

fragmentation.

Using micro-buffers isolates transient writes from persistent data, and since micro-buffers

are dynamically allocated using malloc(), they are compatible with existing memory debugging

tools. Without using debugging tools, Pangolin also protects micro-buffers by inserting a 64-bit

“canary” word in each micro-buffer’s header and checks its integrity before writing back to

NVMM. On transaction commit, if Pangolin detects a canary mismatch, it aborts the transaction

to avoid propagating the corruption to NVMM. Pangolin uses checksums to detect corruptions

that may bypass the canary protection.

3.2.3 Detecting NVMM Corruption

Pangolin uses three mechanisms to detect NVMM corruption. First, it installs a handler

for SIGBUS (see Section 3.1.2) that fires when the Linux kernel receives an MCE. A signal handler

has access to the address the offending load accessed, and Pangolin can determine what kind

of data (i.e., metadata or a user object) lives there and recover appropriately. This mechanism

detects media failures, but it cannot discover corrupted data caused by software “scribbles.”

To detect scribbles, Pangolin verifies the integrity of user objects using their checksums.

Verifying checksums on every access can be expensive. To limit this cost, by default Pangolin only

verifies checksums during micro-buffer creation before any object is modified in a transaction.

This keeps Pangolin from recalculating a new checksum based on corrupt data. For read-only

objects that are accessed by pgl get without micro-buffering, by default Pangolin does not verify

checksums. To protect them, Pangolin provides two alternative operation modes: “Scrub” mode

runs a scrubbing thread that verifies and restores the whole pool’s data integrity when a preset

number of transactions have completed, and “Conservative” mode verifies the checksum for every
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object access (including pgl get). We evaluate the impact of different checksum verification

policies in Section 3.3.

Finally, Linux keeps track of known bad pages of NVMM across reboots. When opening

a pool or during its scrubbing, Pangolin can extract this information and recover the data in the

reported pages (not currently implemented).

3.2.4 Fault-Tolerant Transactions

Failure-atomic transactions are central to Pangolin’s interface, and they must include

verification of data integrity and updates to the checksums and parity data that protect objects.

Table 3.1 summarizes Pangolin’s core functions.

Pangolin supports arbitrary-sized transactions and we have made similar APIs and macros

as libpmemobj’s. The program in Listing 3.1 can be easily transformed to Pangolin using

equivalent functions. One subtle difference is in the handling of atomic-style updates, as shown

in Listing 3.2.

In Pangolin, each thread can execute one transaction or nested transactions (same as

libpmemobj). Concurrent transactions can execute if each one is associated with a different

thread. Currently, Pangolin does not allow concurrent transactions to modify the same NVMM

object. Concurrently modifying a shared object may cause data inconsistency if one transaction

has to abort. Libpmemobj has the same limitation [45].

Each transaction manages its own micro-buffers using a thread-local hashmap [58],

indexed by an NVMM object’s PMEMoid. Therefore, in a transaction, calling pgl tx open for

the same object either creates or retrieves its micro-buffer. Multiple micro-buffers opened in one

transaction form a linked list as shown in Figure 3.2. Micro-buffers for one transaction are not

visible in other transactions, providing isolation.

If a transaction modifies an object, Pangolin copies it to a micro-buffer, performs the

changes there, and then propagates the changes to NVMM during commit. Since changes occur
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in DRAM (which does not require undo information), Pangolin implements redo logging.

At transaction commit, Pangolin recomputes the checksums for modified micro-buffers,

creates and replicates redo log entries for the modified parts of the micro-buffers and writes

these ranges back to NVMM objects. Then, it updates the affected parity bits (see Section 3.2.5)

and marks the transaction committed. Finally, Pangolin garbage-collects its logs and closes

thread-local micro-buffers.

If a transaction aborts, either due to unrecoverable data corruption or other run-time errors,

Pangolin discards the transaction’s micro-buffers without touching NVMM.

A transaction can also allocate and deallocate objects. Pangolin uses redo logging to

record NVMM allocation and free operations, just as libpmemobj does.

For read-only workloads, repeatedly creating micro-buffers and verifying object check-

sums can be very expensive. Therefore, Pangolin provides pgl get to gain direct access to an

NVMM object without verifying the object’s checksum. The application can verify an object’s

integrity manually as needed or rely on Pangolin’s periodic scrubbing mechanism. Inside a

transaction context, pgl get returns a pointer to the object’s micro-buffer to preserve isolation.

3.2.5 Parity and Checksum Updates

Objects in different rows can share the same range of parity, and we say these objects

overlap. Object overlap leads to a challenge for updating the shared parity because updates

from different transactions must serialize but naively locking the whole parity region sacrifices

scalability.

For instance, using ObjA and ObjC in Figure 3.2, suppose two different transactions

modify them, replacing A with A′ and C with C′, respectively. After both transactions update

P, the parity should have the value P′ = A′⊕C′⊕D⊕E regardless of how the two transaction

commits interleave.

Pangolin uses a combination of two techniques that exploit the commutativity of XOR
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and fine-grained locking to preserve correctness and scalability.

Atomic parity updates. The first approach uses the atomic XOR instruction (analo-

gous to an atomic increment) that modern CPUs provide to perform incremental parity updates

for changes to each overlapping object.

In our example, we can compute two parity patches: ∆A = A⊕A′, ∆C = C⊕C′ and then

rewrite P′ as P⊕∆A⊕∆C. Since XOR commutes and is a bit-wise operation, the two threads can

perform their updates without synchronization.

Hybrid parity updates. Atomic XOR is slower than normal or vectorized XOR. For

small updates, the latency difference between them is not significant, and Pangolin prefers atomic

XOR instructions to update parity without the need for locks. But for large parity updates, atomic

XOR can be inefficient. Therefore, Pangolin’s hybrid parity scheme switches to vectorized XOR

for large transfers.

To coordinate large and small parity updates, Pangolin uses parity range-locks, that work

similarly as reader/writer locks (or shared mutex): Small writes take shared ownership of a range

lock and update parity with atomic XOR instructions. Large updates using vectorized XORs take

exclusive ownership of a range-lock, and only one thread can modify parity in a locked range. If

one update involves multiple range-locks, serialization happens on a per-range-lock basis.

The managed size of a parity range-lock depends on the performance trade-off between

Pangolin’s parity mode and libpmemobj’s replication mode. We discuss this in Section 3.3.

Pangolin refreshes an object’s checksum in its micro-buffer before updating parity, and it

considers the checksum field as one of the modified ranges of the object. Checksums like CRC32

requires recomputing the checksum using the whole object. This can become costly with large

objects. Thus, Pangolin uses Adler32 [54], a checksum that allows incremental updates, to make

the cost of updating an object’s checksum proportional to the size of the modified range rather

than the object size.

We implement Pangolin’s parity and checksum updates using the Intelligent Storage
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Acceleration Library (ISA-L) [46], which leverages SIMD instructions of modern CPUs for these

data-intensive tasks.

Protections for other transaction systems. Other NVMM persistent object systems

could apply Pangolin’s techniques for parity and checksum updates. For example, consider an

undo logging (as opposed to Pangolin’s redo logging) system that first stores a “snapshot” copy of

an object in the log before modifying the original in-place. In this case, the system could compute

a parity patch using the XOR result between the logged data (old) and the object’s data (new).

Then, it can apply the parity patch using the hybrid method we described in this section.

3.2.6 Recovering from Faults

In this section, we discuss how Pangolin recovers data integrity from both NVMM

corruption and system crashes.

Corruption recovery. Pangolin uses the same algorithm to recover from errors regard-

less of how it detects them (i.e., via SIGBUS or a checksum mismatch).

The first step is to pause the current thread’s transaction, and to wait until all other

outstanding transactions have completed. Meanwhile, Pangolin prevents the initialization of new

transactions by setting the pool’s “freeze” flag. This is necessary because, during transaction

committing, parity data may be inconsistent.

Once the pool is frozen, Pangolin uses the parity bits and the corresponding parts of each

row in the page column to recover the missing data.

Pangolin preserves crash-consistency during repair by making persistent records of the

bad pages under recovery. Recovery is idempotent, so it can simply re-execute after a crash.

Pangolin’s current implementation only allows one thread to perform any online corruption

recovery, and if the thread is executing a transaction, online recovery only works if the thread

has not started committing. If two threads encounter faults simultaneously, Pangolin kills the
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application and performs post-crash recovery (see below) when it restarts. Supporting multi-

threaded online recovery, and allowing it to work when threads have partially written NVMM

is possible, but it requires complex reasoning about how to restore the data and its parity to a

consistent state.

Crash recovery. Pangolin handles recovery from a crash using its redo logs. It must

also protect against the possibility that the crash occurred during a parity update.

To commit a transaction, Pangolin first ensures its redo logs are persistent and replicated,

and then updates the NVMM objects and their parity. If a crash happens before redo logs are

complete, Pangolin discards the redo logs on reboot without touching the objects or parity. If

redo logs exist, Pangolin replays them to update the objects and then recomputes any affected

parity ranges using the data written during replay (which is now known to be correct) and the

data from the other rows.

Pangolin does not log parity updates because it would double the cost of logging. This

does raise the possibility of data loss if a crash occurs during a parity update and a media error

then corrupts data of the same page column before recovery can complete. This scenario requires

the simultaneous loss of two pages in the same page column due to corruption and a crash, which

we expect to be rare.

3.3 Evaluation

In this section, we evaluate Pangolin’s performance and the overheads it incurs by compar-

ing it to normal libpmemobj and its replicated version. We start with our experimental setup and

then consider its storage requirements, latency impact, scalability, application-level performance,

and corruption recovery.
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Figure 3.3: Transaction performance - Each transaction allocates, overwrites, or frees one object
of varying sizes. Pangolin’s latencies are similar to Pmemobj’s.

3.3.1 Evaluation Setup

We perform our evaluation on a dual-socket platform with Intel’s Optane DC Persistent

Memory [47]. The CPUs are 24-core engineering samples of the Cascade Lake generation. Each

socket has 192 GB DDR4 DRAM and 1.5 TB NVMM. We configure the persistent memory

modules in AppDirect mode and run experiments on one socket using its local DRAM and

NVMM. A recent report [49] studying this platform provides more architectural details.

The CPU provides the CLWB instruction for writing-back cache lines to NVMM, non-

temporal store instructions to bypass caches, and the SFENCE instruction to ensure persistence and

memory ordering. It also has atomic XOR and AVX instructions that our parity and checksum

computations use.

The evaluation machine runs Fedora 27 with a Linux kernel version 4.13 built from source

with the NOVA [104] file system. We run experiments with both Ext4-DAX [63] and NOVA, and

applications use mmap() to access NVMM-resident files. The performance is similar on the two

file systems because DAX-mmap() essentially bypasses them.

On our evaluation machine, we found that updating parity with atomic XORs becomes

worse than libpmemobj’s replication mode when the modified parity range is greater than 8 KB,

so we set 8 KB as the threshold to switch between those parity calculation strategies (see
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Table 3.2: Library configurations for evaluation - In the figures, we abbreviate Pangolin as pgl.

Pmemobj libpmemobj baseline from PMDK v1.5
Pangolin Pangolin baseline w/ micro-buffering only
Pangolin-ML Pangolin + metadata and redo log replication
Pangolin-MLP Pangolin-ML + object parity
Pangolin-MLPC Pangolin-MLP + object checksums
Pmemobj-R libpmemobj w/ one replication in another file

Section 3.2.5).

Table 3.2 describes the operation modes for our evaluations. The Pangolin baseline

implements transactions with micro-buffering. It uses buffer canaries to prevent corruption from

affecting NVMM, but it does not have parity or checksum for NVMM data.

We evaluate versions of Pangolin that incrementally add metadata and log replication

(“+ML”), object parity (“+MLP”), and checksums (“+MLPC”). We combine the impact of

metadata updates with log replication because metadata updates are small and cheap in our

evaluation.

Pmemobj-R is the replication mode of libpmemobj that mirrors updates to a replica

pool during transaction commit. Comparing Pangolin-MLP and Pmemobj-R is especially useful

because the two configurations protect against the same types of data corruption: media errors

but not scribbles.

3.3.2 Memory Requirements

We discuss and evaluate Pangolin’s memory requirements for both NVMM and DRAM.

NVMM All our Pangolin experiments use a single pool of 100 GB that contains 6×

16 GB zones. Pangolin replicates all the pool’s metadata in the same file, which occupies a fixed

∼20 MB. The rest of the space is for user objects and their protection data. By default, Pangolin

uses 100 chunk rows, so each zone has about 160 MB parity, and that totally occupies ∼1% of

the pool’s capacity. Pmemobj-R uses a second 100 GB file as the replica, doubling the cost of
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Figure 3.4: Scalability - Concurrent workloads randomly overwrite objects of varying sizes.

NVMM space requirement.

When using parity, Pangolin has to zero out the whole pool to ensure all zones are initially

parity-coded. This takes about 130 seconds. It is a one-time overhead for creating the pool and

excluded from the following evaluations.

DRAM Pangolin uses malloc()’d DRAM to construct micro-buffers. The required

DRAM space is proportional to ongoing transaction sizes. Table 3.3 summarized the transaction

sizes for the evaluated key-value store data structures. Pangolin automatically recycles them on

transaction commits. In our evaluation experiments, micro-buffering never exceeds using 50 MB

of DRAM.
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3.3.3 Transaction Performance

Figure 3.3 illustrates the transaction latencies for three basic operations on an NVMM

object store: object allocation, overwrite, and deallocation. Each transaction operates on one

object, and we vary the size of the object.

For allocation, latency grows with object size for all five configurations, due to constructing

the object and cache line write-back latency. Pangolin incurs 2% - 13% lower latencies than

Pmemobj due to its use of non-temporal stores for write backs. An allocation operation does not

involve object logging, so Pangolin-ML shows performance similar to Pangolin. Pangolin-MLP

adds overhead to update the parity data. It outperforms Pmemobj-R by between 1.2× and 1.9×.

We found this is because updating parity using atomic XORs and CLWBs incurs less latency than

mirroring data in a separate file, as Pmemobj-R does.

Adding checksum (Pangolin-MLPC) incurs less than 7% overhead compared to Pangolin-

MLP. Parity’s impact is larger than checksum’s because updating a parity range demands values

from three parts: the micro-buffer, the NVMM object, and the old parity data, while computing a

checksum only needs data in a DRAM-based micro-buffer. Moreover, Pangolin needs to flush the

modified parity range to persistence, which is the same size as the object. In contrary, updating a

checksum only writes back a single cache line that contains the checksum value.

Overwriting an NVMM object involves transaction logging for crash consistency. Pangolin

and Pmemobj store the same amount of logging data in NVMM, although they use redo logging

and undo logging for this purpose, respectively. Since log entry size is proportional to an object’s

modified size, which is the whole object in this evaluation, this cost grows with the object. With

Pangolin, log replication accounts for between 7% to 25% of the latency. Parity updates consume

between 8% to 27% of the extra latency, depending on object size, and checksum updates account

for less than 5%. Pangolin-MLP’s performance for overwrites is 12% worse than Pmemobj-R for

64 B object updates and is between 1.1× and 1.5× better than Pmemobj-R for objects larger than

64 B.
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Table 3.3: Data structure and transaction sizes - “Insert” and “Remove” show average transaction
sizes for insertions and removals, respectively. “New” and “Mod” indicate average allocated
and modified sizes.

ctree rbtree btree skiplist rtree hashmap
Object size 56 80 304 408 4136 10 M (table), 40 (entry)

Insert
New 56 (1.00) 80 (1.00) 65.9 (0.22) 408 (1.00) 4502 (1.09) 60.9 (1.00)
Mod 127.6 (3.28) 330.2 (5.13) 381.2 (1.47) 33.9 (2.50) 200.0 (5.05) 331.1 (4.21)

Remove
New 0 0 0 0 184.1 (0.05) 10.5 (1×10–5)
Mod 28.0 (0.50) 202.8 (2.65) 268.3 (0.90) 16.9 (0.75) 98.6 (2.52) 254.3 (2.16)

Deallocation transactions only modify metadata, so their latencies do not change much.

3.3.4 Scalability

Figure 4.8 measures Pangolin’s scalability by randomly overwriting existing NVMM

objects and varying the object sizes and the number of concurrent threads.

Pangolin uses reader/writer locks to implement the hybrid parity update scheme described

in Section 3.2.5. The number of rows in a zone and the zone size determine the granularity of

these locks: For a fixed zone size, more rows means fewer columns and fewer parity range-locks.

There is no lock contention in the results because the transactions use atomic XOR

instructions and can execute concurrently (only taking the reader locks). Our configuration with

1% parity (160 MB parity per 16 GB zone) has 20 K range-locks per zone, so the chance of lock

contention is slim even with large updates (more than 8 KB) and many cores.

The graphs also show how each Pangolin’s fault-tolerance mechanisms affect performance.

Pangolin’s throughput is very close to Pmemobj. Pangolin-MLP mostly outperforms Pmemobj-

R for object updates that are 256 B or larger, up to 1.5×. But for 64 B object updates, it

performs worse than Pmemobj-R by between 6% and 25%. This is because when enabling

parity, every Pangolin transaction checks the pool freeze flag (an atomic variable), incurring

synchronization overhead. This overhead is noticeable for short transactions with 64 B objects

but becomes negligible for larger updates. Pangolin-MLPC only performs marginally worse than

Pangolin-MLP.

55



ctree rbtree btree skiplist rtree hashmap
0

100

200

300
KO

ps
/s

1M Inserts

pmemobj pgl pgl-ml pgl-mlp pgl-mlpc pmemobj-r

ctree rbtree btree skiplist rtree hashmap

1M Removes

Figure 3.5: Key-value store performance - Each transaction either inserts or removes one
key-value pair from the data store.

Scaling degrades for all configuration as update size and thread count grow because the

sustainable bandwidth of the persistent memory modules becomes saturated.

3.3.5 Impacts on NVMM Applications

To evaluate Pangolin in more complex applications, we use six data structures included in

the PMDK toolkit: crit-bit tree (ctree), red-black tree (rbtree), btree, skiplist, radix tree (rtree),

and hashmap. They have a wide range of object sizes and use a diverse set of algorithms to insert,

remove, and lookup values. We rewrite these benchmarks with Pangolin’s programming interface

as described in Section 3.2.4.

Table 3.3 summarizes the object and transaction sizes for each workload. The tree

structures and the skiplist have a single type of object, which is the tree or list node. Hashmap

has two kinds of objects. One is the hash table that contains pointers to buckets. The hash table

grows as the application inserts more key-value pairs. Each bucket is a linked list of fixed-sized
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Figure 3.6: Checksum verification impact - Pangolin-MLPC bars are the same as those in
Figure 3.5 for 1M Inserts. The cost of different policies depends strongly on data structures.

entry objects.

Each insertion or removal is a transaction processing a key-value pair. The workloads

involve a mix of object allocations, overwrites, and deallocations. Table 3.3 shows, on average,

the number of bytes and objects (in parentheses) involved in each data structure’s transaction.

Deallocated sizes are not shown because they marginally affect the performance differences (see

Figure 3.3).

An average allocation size (“New” rows in the table) smaller than the object size means

the data structure does not allocate a new object for every insert operation (e.g., btree). The

average modified sizes (“Mod” rows) determine the logging size and affect the performance drop

between Pangolin and Pangolin-ML. Note that a transaction does not necessarily modify (and

log) the whole range of an involved object. The performance difference between Pangolin-ML

and Pangolin-MLP is a consequence of both allocated and modified sizes.

For insert transactions, Pangolin is faster than Pmemobj for ctree and btree, but slower

than Pmemobj for other data structures. This is because the slower applications have relatively

small modified sizes compared to the object sizes, and Pangolin’s data movement from NVMM

to micro-buffers overshadows its advantage for whole-object updates, as shown in Figure 3.3. For

remove transactions, Pangolin is marginally faster than Pmemobj except for the case of skiplist,
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Table 3.4: Vulnerability evaluation - Each row shows object bytes (normalized to Pmemobj)
accessed without checksum verification.

ctree rbtree btree sklist rtree hmap
Pmemobj 1.0 1.0 1.0 1.0 1.0 1.0
Pgl-MLPC 0.92 0.84 0.87 0.96 0.42 0.42
Scrub 100K 0.10 0.09 0.09 0.10 0.04 0.05
Scrub 50K 0.05 0.04 0.05 0.05 0.02 0.02
Conservative 0 0 0 0 0 0

which is also because of the data movement caused by micro-buffering.

Pangolin-MLP’s performance is 95% of Pmemobj-R on average, and it saves orders of

magnitude NVMM space by using parity data as redundancy. Pangolin-MLPC adds scribble

detection and performance drops by between 1.5% to 15% relative to Pangolin-MLP. Adding

object checksums impacts rtree’s transactions the most because the allocated object size is large,

which requires more checksum computing time.

Pangolin does not impact the lookup performance because it performs direct NVMM

reads without constantly verifying object checksums. Pangolin ensures data integrity with its

checksum verification policy, as discussed in Section 3.2.3.

Figure 3.6 illustrates the impact of different strategies for checksum verification. We

compare Pangolin’s default mode (Pangolin-MLPC) with two “Scrub” modes and a “Conservative”

mode. The default mode only verifies checksums for micro-buffered objects. In “Scrub” mode, a

scrubbing thread verifies data integrity of the whole object pool when a preset number (indicated

by legends in Figure 3.6) of transactions have completed. The “Conservative” mode verifies the

checksum for every object access (including those read by pgl get without micro-buffering).

Table 3.4 quantifies the vulnerability using the amount of object data that is accessed

without checksum verification. The data accumulates across all transactions for Pmemobj,

Pangolin-MLPC, and “Conservative” modes. For “Scrub” modes, we count the vulnerable data

between two scrubbing runs. Numbers in Table 3.4 are normalized to Pmemobj, which does not

have any checksum protection for object data.

58



The cost of verifying checksums for every object access depends strongly on the data

structure size and its insertion algorithm. For small objects, such as ctree, rbtree, and hashmap,

the cost is negligible. But for btree, skiplist, and rtree, due to their large object sizes, the cost is

significant. Thus, a scrubbing-based policy could be faster, with more data subject to corruption

between two successive runs.

3.3.6 Error Detection and Correction

Pangolin provides error injection functions to emulate both hardware-uncorrectable

NVMM media errors and hardware-undetectable scribbles.

We initially developed Pangolin using conventional DRAM machines that lack sup-

port for injecting NVMM errors at the hardware level. Therefore, we use mprotect() and

SIGSEGV to emulate NVMM media errors and SIGBUS. When an NVMM file is DAX-mapped,

the injector can randomly choose a page that contains user-allocated objects, erase it, and call

mprotect(PROT NONE) on the page. Later, when the application reads the corrupted page, Pan-

golin intercepts SIGSEGV, changes the page to read/write mode, and restores the page’s data.

The injector function can also randomly corrupt a metadata region or a victim object to emulate

software-induced, scribble errors.

In both test cases, we observe Pangolin can successfully repair a victim page or an object

and resume normal program execution. In our evaluation using a 100 GB pool and 1 GB parity,

we measured 180 µs to repair a page of a page column.

We also intentionally introduce buffer overrun bugs in our applications and observe

that Pangolin can successfully detect them using micro-buffer canaries. The transaction then

aborts to prevent any NVMM corruption. We have also verified Pangolin is compatible with

AddressSanitizer for detecting buffer overrun bugs (when updating a micro-buffered object

exceeds its buffer’s boundary), if both Pangolin and its application code are compiled with

support.
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3.4 Discussion

Persistent memory promises dramatic increases in storage performance. However, it also

complicates data protection and fault tolerance with direct access from the user-space. In this

section, we discuss our anticipated challenges and Pangolin’s limitations.

Hardware vs. software protection. Advanced memory-protection techniques such

as Chipkill and RAIM [65] can provide better reliability than basic ECC at the hardware level.

But whether emerging NVMM modules will adopt these techniques is unclear, and because

they do not understand software-layer semantics, they cannot protect against scribbles caused by

software memory bugs. Implementing parity and checksum in Pangolin is necessary for providing

software-layer protection, but it inevitably sacrifices performance, as shown in our evaluation,

especially when updating parity. If the NVMM controller can perform such data-intensive tasks

with control from the software layer, it can reduce the performance penalty for fault tolerance.

Vulnerability windows. Although Pangolin provides a viable solution for software-

based NVMM fault-tolerance, it only enforces automatic checksum verification with the micro-

buffered access, that is, when using pgl open() or pgl tx open() functions. To preserve

performance for read-only workloads, Pangolin’s pgl get() function gives direct read access

to NVMM objects and does not perform checksum verification. Although Pangolin can still

repair hardware-detected media errors, it cannot discover silent data corruption when using

pgl get(). A time-based NVMM pool scrubbing mechanism can reduce vulnerability windows

with a performance hit.

Online recovery. Being able to repair media errors and corruptions online is critical

to providing high availability for NVMM-based applications. The asynchronous, signal-based

mechanism for notifying a user-space process about NVMM media errors raises great challenges

for online error recovery. Currently, Pangolin only allows one thread to perform any online

corruption recovery, and that thread must not be in the middle of updating any parity data.
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Supporting multi-threaded online recovery, and allowing it to work when the thread has partially

written to NVMM would require complex reasoning about how to restore the data and its parity

to a consistent state, and may require some hardware- or kernel-level support for better error

notification mechanisms.

3.5 Related Work

In this section, we place Pangolin in context relative to previous projects that have explored

how to use NVMM effectively.

Transaction Support. All previous libraries for using NVMMs to build complex

objects rely on transactions for crash consistency. Although we built Pangolin on libpmemobj,

its techniques could be applied to another persistent object system. NV-Heaps [12], Atlas [10],

DCT [52], and libpmemobj [82] provide undo logging for applications to snapshot persistent

objects before making in-place updates. Mnemosyne [103], SoftWrAp [27], and DUDETM [59]

use variations of redo logging. REWIND [11] implements both undo and redo logging for

fine-grained, high-concurrent transactions. Log-structured NVMM [36] makes changes to objects

via append-only logs, and it does not require extra logging for consistency. Romulus [14] uses a

main-back mechanism to implement efficient redo log-based transactions.

None of these systems provide fault tolerance for NVMM errors. We believe they can

adopt Pangolin’s parity and checksum design to improve their resilience to NVMM errors at

low storage overhead. In Section 3.2.5 we described how to apply the hybrid parity updating

scheme to an undo logging-based system. Log-structured and copy-on-write systems can adopt

the techniques in similar ways.

Fault Tolerance. Both Pangolin and libpmemobj’s replication mode protect against

media errors, but Pangolin provides stronger protection and much lower space overhead. Further-

more, libpmemobj can only repair media errors offline, and it does not detect or repair software
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corruption to user objects.

NVMalloc [72] uses checksums to protect metadata. It does not specify whether applica-

tion data is also checksum-protected, and it does not provide any form of redundancy to repair

the corruption. NVMalloc uses mprotect() to protect NVMM pages while they are not mapped

for writing. Pangolin could adopt this technique to prevent an application from scribbling its own

persistent data structures.

The NOVA file system [104, 105] uses parity-based protection for file data. However, it

must disable these features for NVMM pages that are DAX-mapped for writing in user-space,

since the page’s contents can change without the file system’s knowledge, making it impossible

for NOVA to keep the parity information consistent if an application modifies DAX-mapped data.

As a result, Pangolin’s and NOVA’s fault tolerance mechanisms are complementary.

3.6 Conclusion

This work presents Pangolin, a fault-tolerant, DAX-mapped NVMM programming library

for applications to build complex data structures in NVMM. Pangolin uses a novel, space-efficient

layout of data and parity to protect arbitrary-sized NVMM objects combined with per-object

checksums to detect corruption. To maintain high performance, Pangolin uses micro-buffering,

carefully-chosen parity and checksum updating algorithms. As a result, Pangolin provides

stronger protection, better availability, and much lower storage overhead than existing NVMM

programming libraries.
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Chapter 4

PmemConjurer and PmemSanitizer

Although DAX offers fast access to persistent data, ensuring crash consistency of data

stored in directly-mapped NVMM remains challenging. We define recovery bugs as NVMM-

specific programming errors that may cause unrecoverable data inconsistency after a crash.

Developing NVMM applications without recovery bugs requires programmers to carefully reason

about when and in what order data becomes persistent during program execution, explicitly

insert cache-line flushing and memory ordering instructions at proper locations in the source

code, and implement recovery methods to restore an NVMM image to a consistent state after a

crash. Moreover, it also demands special memory management mechanisms (e.g., atomic, crash-

consistent memory allocation) and transaction algorithms that are unique to NVMM programming.

Adding the required functionality introduces pervasive changes to existing programming practices,

and the subtleties involved open the door to a wide range of recovery bugs.

To address these challenges, industry and academia have proposed libraries [12, 14, 18, 36,

48, 59, 66, 82, 103, 108] to facilitate NVMM programming. They typically encapsulate low-level

cache-line operations in convenient library functions, provide NVMM allocators for memory

management, and support transactions to manage arbitrary-sized NVMM updates. Despite hiding

low-level details from programmers, NVMM libraries replace one set of challenges with another
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– using the libraries correctly. Recovery bugs also manifest with inappropriate usage of library

functions. The public commit history for Intel’s Persistent Memory Development Kit (PMDK)

example programs demonstrates how easily even the library designers can misuse them.

These challenges illustrate the need for effective NVMM recovery debugging tools.

However, most of existing NVMM debugging tools, such as PMemCheck [45], PMReorder [81],

and PMTest [60], share two major limitations: 1) lack of static analysis and 2) poor multi-threading

support. Without static analysis, tools must rely on instrumenting an NVMM program and running

dynamic analysis on a finite set of test cases. Therefore, the instrumentation effort and test case

quality significantly limit the testing coverage. Moreover, they often require programmers to

manually annotate the source code with testing constructs, steepening the learning curve, reducing

code readability and maintainability, and reducing portability. Finally, existing NVMM debugging

tools [45, 60, 81] provide little or no support for inter-thread bug analysis. PMemCheck and

PMReorder extend Valgrind [76], which serializes all threads with an emulated CPU, and does not

consider interactions between threads and transactions. PMTest also lacks inter-thread analyses.

To overcome the limitations of existing NVMM debugging tools, we propose PmemCon-

jurer and PmemSanitizer, debugging tools that combine both static and dynamic program analysis

for finding bugs in NVMM applications. PmemConjurer is a static analyzer using symbolic

execution to explore a program’s control flow graph and search for recovery bugs. To support

inter-thread analysis, PmemSanitizer adds compiler instrumentation to inject dynamic diagnosis

code into the program. An instrumented program will execute natively with threading, while

PmemSanitizer’s runtime library performs inter-thread analysis and store-reordering tests. This

chapter makes the following contributions:

1. Introduce static analysis for finding recovery bugs. PmemConjurer is the first tool

applying static analysis to debugging NVMM applications. We extend the Clang Static

Analyzer’s symbolic execution [61] to support recovery bug analysis.
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2. Detect recovery bugs in multi-threaded programs. PmemSanitizer supports multi-

threaded programs by injecting thread-safe analysis code into the target binary and per-

forming runtime inspection.

3. Support online store-reordering testing. PmemSanitizer supports store-reordering tests

to emulate crashes without terminating the running program.

4. Identify new bugs in PMDK examples. We discover eight unknown bugs in the example

programs of PMDK. The maintainers have accepted our patches to fix them.

In the following sections, we first introduce the background on NVMM programming and

program analysis in Section 4.1. Then, Section 4.2 presents the design overview. Section 4.3

and Section 4.4 describe implementation details for static and dynamic analysis, respectively.

Section 4.5 evaluates both tools’ bug-finding ability and runtime performance implications. Sec-

tion 4.6 compares PmemConjurer and PmemSanitizer with related work, and finally, Section 4.7

concludes.

4.1 Background

In this section, we first provide a brief primer on NVMM programming and how recovery

bugs occur. Then, we describe Clang and LLVM’s program analysis frameworks that are relevant

to PmemConjurer and PmemSanitizer.

4.1.1 NVMM Programming

NVMM programming faces challenges from two aspects: 1) a store to NVMM is not

guaranteed persistent due to volatile caches and on-CPU buffers, and 2) the order in which stores

actually update NVMM may not correspond to the program’s store ordering.
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1 struct node { | // PMEMoid is from libpmemobj
2 int in_use; | typedef struct pmemoid {
3 uint64_t key; | uint64_t pool_uuid_lo;
4 char val[128]; | uint64_t off;
5 PMEMoid next; | } PMEMoid;
6 }; |
7 --------------------------------------------------------
8 void insert(PMEMobjpool *pop, uint64_t key, char *val) {
9 PMEMoid head = pmemobj_root(pop, sizeof(struct node));

10 struct node *pnode = pmemobj_direct(head);
11
12 while (pnode ->in_use && !OID_IS_NULL(pnode ->next))
13 pnode = pmemobj_direct(pnode ->next);
14
15 if (pnode ->in_use) {
16 TX_BEGIN(pop) {
17 PMEMoid new_node = pmemobj_tx_alloc(/* args */);
18 TX_ADD_DIRECT(&pnode ->next); // Undo logging
19 pnode ->next = new_node;
20 pnode = pmemobj_direct(new_node);
21 pnode ->in_use = 0; // Initializing the new node
22 pnode ->next = OID_NULL;
23 } TX_END
24 }
25
26 pnode ->key = key;
27 strncpy(pnode ->val, val, 128);
28 pmem_flush(pnode , sizeof(struct node)); // Flush
29 pmem_drain(); // Memory barrier
30 pnode ->in_use = 1;
31 pmem_persist(&pnode ->in_use , 4); // Flush & Barrier
32 }

Figure 4.1: An NVMM programming example - The insert function finds the first unused
node in an NVMM linked list to store a key-value pair.
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Figure 4.1 demonstrates an NVMM programming example using functions from PMDK

to tackle these challenges. The insert function finds the first unused node in an NVMM linked

list to store a key-value pair. If all nodes are in use, it allocates a new node and inserts it to the

tail with a transaction.

PMDK is a collection of multiple libraries. Libpmem provides low-level functions

(named with the pmem prefix) wrapping machine-dependent instructions for cache-line operations.

Libpmemobj functions (with the pmemobj prefix) are higher-level, object-oriented, and support

memory management and transactions. This chapter focuses on libpmem and libpmemobj and

we refer to them collectively as PMDK.

NVMM pointers and objects. Libpmemobj’s programming model uses PMEMoid

instead of a native C-style pointer to refer to persistent objects. A PMEMoid consists of an 8-byte

file UUID and an 8-byte offset that gives its location within a memory-mapped file. The function

pmemobj direct converts a PMEMoid into a void * pointer for direct memory access. An object

type for NVMM (e.g., struct node) is mostly the same as its conventional form, except pointer

fields are PMEMoid type.

Atomic NVMM updates. The insertion logic on lines 26 - 31 uses libpmem functions

for crash consistency. It first ensures a node’s key-value data is persistent by explicitly flushing

updates (line 28) and enforcing memory ordering (line 29). It then atomically sets the in use

flag to validate the node’s data (lines 30 and 31). Since x86 processors guarantee aligned, 8-byte

stores atomically update NVMM [44], a crash between lines 26 - 31 either results in a fully

populated node or an unused one ready for a new key-value pair.

Libpmemobj transactions. Allocating a new node and inserting it to the linked list in-

volves object allocation and modifications more complex than a single 8-byte write. Libpmemobj

provides the transactional interface illustrated in lines 16 - 23. TX BEGIN and TX END macros

wrap library functions to control a transaction’s progression. Inside the transaction, the program
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does not have to invoke flushing or ordering functions explicitly. Instead, it must make calls to

TX ADD DIRECT (or similar ones) to create undo-logs before modifying any existing NVMM data

(line 19). The undo log-based transaction mechanism serves two purposes: 1) flushing logged

(hence modified) ranges on transaction commit, or 2) restoring the logged data if a transaction

aborts or crashes. A newly allocated object (line 17) does not require logging, but a transaction

should initialize it (lines 21 and 22) before it commits. Transactions can nest, and the outer-most

transaction commits all nested ones.

Transactions and threading. Multi-threading interacts with libpmemobj’s transac-

tions in two ways: 1) a transaction spawns and joins concurrent worker threads, or 2) concurrent

worker threads create thread-local transactions. In the first case, a libpmemobj transaction

commits NVMM updates from all threads as a group, and we refer to them as “grouped transac-

tions.” Transactions of the second form are mutually independent, so we call them “independent

transactions.”

Examples of recovery bugs. Considering Figure 4.1 without one or more of the lines

with comments illustrates many potential bugs. Without undo logging (line 18), a crash before the

transaction commit can render the old data of pnode->next unrecoverable. Dropping the flush

or memory barrier on lines 28 and 29 may cause pnode->in use to be true in NVMM before the

key-value pair becomes persistent, mislabeling invalid data as valid. We define more types of

recovery bugs in Section 4.2.

4.1.2 Program Analysis Frameworks in Clang and LLVM

PmemConjurer extends the symbolic execution of the Clang Static Analyzer (CSA) [61]

to find recovery bugs and PmemSanitizer adds an LLVM [56] IR-level instrumentation pass to

inject dynamic analysis code into the target binary. Below, we briefly introduce their operation.

Although many CSA- and LLVM-based debugging tools exist, as far as we know, no prior works
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have applied them detecting NVMM programming bugs.

Clang Static Analyzer. CSA works on a program’s control flow graph (CFG) before

generating LLVM’s intermediate representation (IR). CSA’s core engine uses symbolic execution

to simulate a program’s execution by traversing its CFG and progressively building a graph of

reachable program states. Each node of the graph corresponds to a program point in the source

code and contains information about the simulated program’s state.

CSA implements a region-based memory model [106], and during the simulated execution,

it interprets variables and memory objects as symbolic values or symbolic memory regions. In

Figure 4.1, head represents a variable region of function insert’s stack frame, and it stores

a symbolic value (PMEMoid type) returned by pmemobj root. Each pointer symbol in CSA

corresponds to a memory region of a program’s address space. Taking the address of a stack-

allocated variable (e.g., &head) generates a pointer for a call-stack region, and the return value of

malloc or new represents a heap region. Generally, a pointer returned by a function unknown to

CSA (the case of calling pmemobj direct) represents an unknown region.

Symbolic values may have constraints depending on the execution path. For example,

the value of pnode->in use is unbounded (can be any 32-bit value) before the if statement.

Symbolic execution bifurcates at conditional branches and associates path constraints with

symbolic values. Therefore, the true-path of the if statement constraints pnode->in use to be

non-zero values and the false-path bounds it to zero.

CSA handles loops by iterating a constant number of times (by default 4). For each

iteration, if CSA can deterministically resolve the termination condition, it either continues

within the loop or breaks out accordingly. Otherwise, CSA assumes both paths are possible and

associates path constraints with related symbolic values. For the while loop in Figure 4.1, CSA

analyzes both paths for every iteration because values of pnode->in use and pnode->next are

not statically available.

On top of CSA’s symbolic execution engine, it allows a checker plugin to attach to various
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Table 4.1: Rules that PmemConjurer or PmemSanitizer automatically checks for correct NVMM
programming

Rule Description Statically Checkable
1 A program must partially or fully flush any modified NVMM object. Yes
1a A flush operation’s target must be an NVMM address. Yes
1b The flushed size must be no less than the target’s size (if typed). Yes
2 Code in a libpmemobj transaction must log an object before modifying it. Yes
3 A transaction must initialize newly allocated NVMM objects before commit. Yes
4 A program must not use effectively deallocated NVMM objects. Yes
5 Independent transactions must not log the same object or NVMM range. No
6 Reordering stores in-between memory barriers must not cause unrecoverable inconsistency. No

program points in the source code by implementing callback functions. These program points

can be before or after making a function call, reading or writing a memory location, and at the

exit of a function, etc. A checker’s callback function can implement debugging logic to analyze

the program’s current state. Multiple checkers exist for finding conventional programming errors,

such as null pointer dereferencing and use-after-free.

LLVM instrumentation and dynamic analysis. Before the machine-code generation,

LLVM can instrument a program’s IR for runtime profiling or debugging. An LLVM’s instrumen-

tation pass injects probing functions before or after its interested program statements, and the

linker links instrumented object files with a related runtime analysis library. A widely adopted set

of tools based on this principle is the sanitizer series. For example, AddressSanitizer [94] and

ThreadSanitizer [20] detect out-of-bound memory accesses and data races, respectively. A user

can enable a particular sanitizer tool with compile-time and link-time switches for Clang.

4.2 Design Overview

PmemConjurer extends CSA’s symbolic execution to perform NVMM-specific static

analysis and PmemSanitizer adds a sanitizer-like dynamic debugging tool to complement the

static analyzer with multi-threading support and store-reordering tests. Figure 4.2 illustrates their

components in the compilation flow. They perform program analysis at two independent phases:
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Target.c

AST

Clang
CFG

LLVM IR

...
pmsan_store_probe()
MOV dst1 src1
pmsan_store_probe()
MOV dst2 src2
pmsan_flush_probe()
CLWB dst1 
pmsan_analysis()
SFENCE
...

PmemConjurer Bug Report

Bug Reportexecute

Instrumented binary

recovery-and-check

setenv

PmemSanitizer 
Runtime

PmenSanitizer 
Pass

Linking

Figure 4.2: PmemConjurer and PmemSanitizer design overview

the static analyzer runs on each source file’s control flow graph before LLVM IR generation, and

the dynamic analysis runs when executing an instrumented binary. A user can selectively enable

them either with compile-time switches or runtime environment variables.

In this section, we first describe the programming rules that PmemConjurer or PmemSani-

tizer checks for detecting recovery bugs and then introduce how to use them when developing

NVMM applications.

4.2.1 Automatically-checked NVMM Programming Rules

The rules are based on the NVM programming model [95] and PMDK’s library function

semantics. PmemConjurer or PmemSanitizer detects rule violations and reports them as recovery

bugs. Table 4.1 presents a summary of the rules. In the description below, we refer to lines in

Figure 4.1 to show examples of recovery bugs.

Rule-1: A program must partially or fully flush any modified NVMM object. Out-

side a transaction, a program should explicitly flush modified NVMM ranges at some point (see

below). Otherwise, the updates may still reside in CPU caches. Inside a transaction, we check
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Rule-2 instead of Rule-1 because the transaction mechanism automatically flushes modified

ranges (see Section 4.1.1).

PmemConjurer and PmemSanitizer both track written NVMM regions and check this rule

at memory barriers (e.g., line 29 and 31). Because the static analyzer works on each source file

independently, it also checks this rule when a top-level function (without a caller in the same

source file) returns. PmemSanitizer also checks it when a running program terminates.

The size of the area that needs to be flushed can be challenging for a debugging tool

to infer because we account for transient fields (i.e., non-persistent) in an otherwise-persistent

object. We adopt different strategies for static and dynamic analysis. PmemConjurer assumes any

modified NVMM object should be flushed at least once, despite the offset and size, at the next

verification point. PmemSanitizer adopts a more aggressive strategy: the flushed ranges should

fully cover modified NVMM data. To compensate for possible missed bugs in PmemConjurer,

we define two additional statically checkable rules for flushing: Rule-1a and Rule-1b.

Rule-1a: A flush operation’s target must be an NVMM address. Flushing non-

NVMM address ranges, such as the call stack or malloc’ed memory, does not, in itself, threaten

crash consistency, but it is pointelss and it may indicate a programming error (e.g., if the target of

the call should have been NVMM data). For instance, writing line 28 to pmem flush(&pnode,

..) violates this rule, because it flushes the variable pnode’s stack address rather than its pointed

NVMM location.

Rule-1b: The flushed size must be no less than the target’s size (if typed). When

a flush function’s target is a typed region (lines 28 and 31), we expect the flushed size to be

no smaller than the data type’s size. For instance, a violation occurs if line 28 changes to

pmem flush(pnode, sizeof(pnode)), because the data type that pnode points to is struct

node, but the flushed size is the size of a single pointer.

Rule-2: Code in a libpmemobj transaction must log an object before modifying it.
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Modifying existing NVMM objects without logging may cause unrecoverable data inconsistency

if a crash happens before the transaction commits. Similar to flush checking, PmemConjurer

expects at least logging some field of a modified object, and PmemSanitizer checks if all modified

data has been logged.

Rule-3: A transaction must initialize newly allocated NVMM objects before commit.

Some of libpmemobj’s allocation functions (line 17) do not zero-out the memory block so it

may contain garbage data. When the program allocates an object in a libpmemobj transaction,

PmemConjurer checks for two types of actions before the transaction commits: 1) the transaction

allocates and initializes it using library functions like pmemobj tx zalloc, or 2) the transaction

writes to some field of the object. If neither of the two presents (e.g., removing lines 21 - 22), it

reports a bug.

Rule-4: A program must not use effectively deallocated NVMM objects. Use-after-

free bugs are a common problem, but NVMM complicates their detection within transactions

because deallocation does not take effect until a transaction commits. PmemConjurer models this

deferred behavior and detects accesses to effectively freed objects.

Rule-5: Independent transactions must not log the same object or NVMM range.

Independent transactions are thread-local, and each worker function has its own undo logs.

Allowing two threads to log the same data may compromise data consistency if one transaction

commits its update, while the other fails and reverts the same object to a logged version. This

recovery bug does not always imply a data race, so conventional data racing checkers are not

sufficient.

Rule-6: Reordering stores in-between memory barriers must not cause unrecov-

erable inconsistency. This rule detects missing memory barriers, (e.g., omitting line 29).

Because stores between two memory barriers do not have ordering constraints, a crash may

result in any subset of the stores becoming persistent. Thus, if any subset of the stores causes
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# PmemConjurer - Static analysis
clang --analyze -Xanalyzer -analyzer -checker=pmem src1.c
clang --analyze -Xanalyzer -analyzer -checker=pmem src2.c

# PmemSanitizer - Dynamic analysis
clang src1.c src2.c -O3 -ggdb -fsanitize=pmem -o target
PMSAN_OPTIONS="rcprog=’./recovery -and-check nvmmfile’ reorder=

RevertSingle" ./target nvmmfile

Figure 4.3: Examples using PmemConjurer and PmemSanitizer

unrecoverable inconsistency, a program’s implementation is not crash-consistent. Checking this

rule requires the user to provide a consistency-checking program for PmemSanitizer’s dynamic

analyzer to run for each ordering test case. We explain the details of this testing method in

Section 4.4.

4.2.2 Using PmemConjurer and PmemSanitizer

We design PmemConjurer and PmemSanitizer to be easily adoptable. The target users

are developers using libpmem, libpmemobj, or compiler intrinsics for cache operations. It

automatically checks the programming rules above without need of annotating the source code.

A user can enable the PmemConjurer static analyzer by specifying pmem as the checker

name when invoking Clang Static Analyzer. CSA supports inter-procedural analysis by inlining

callee functions, but currently, it does not support cross-file analysis. Thus, PmemConjurer also

has to analyze each source file independently. We add -fsanitize=pmem to Clang and Clang++

as a compile-time switch for enabling PmemSanitizer’s IR-level instrumentation. The same

switch also works for linking PmemSanitizer’s runtime analysis library.

An PmemSanitizer-instrumented binary checks the PMSAN OPTIONS environment when

it starts running (before entering main), Its value configures PmemSanitizer’s runtime library,

including the recovery-and-check program, its arguments, and reordering strategy. Figure 4.3

illustrates how to use PmemSanitizer at compile time and run the instrumented binary.
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4.3 PmemConjurer

PmemConjurer modifies the core of CSA and implements an NVMM-specific checker

with the following capabilities.

1. Identify NVMM regions via pointer symbols.

2. Track NVMM objects via PMEMoid and derived symbols.

3. Emulate NVMM-specific functions and memory accesses.

4. Analyze recovery bugs at various program points.

In this section, we explain some implementation details of PmemConjurer’s static analyzer design.

4.3.1 NVMM Regions and Region Symbols

CSA does not distinguish stores to NVMM and other memory regions. To resolve it,

we modify CSA’s core to add a new type of memory region called NVMMSpaceRegion and

designate certain functions as returning pointers to NVMM regions, including pmem map file,

pmemobj open, and pmemobj direct. PmemSanitizer’s static checker attaches to these function

call sites during symbolic execution and creates a pointer-type symbol (RegSym) representing an

NVMMSpaceRegion for the returned address. PmemConjurer assumes that pointers from other

sources (e.g., taking the address of a stack variable or calling malloc), point to volatile memory.

In Figure 4.1, pmemobj direct on line 10 returns a RegSym. The assignment on line

10 stores the symbol to the stack variable pnode. CSA can extract this symbol stored in pnode

until reassigning it on line 13 or 20. If another variable copies pnode’s value, it acquires the

same RegSym. A derived pointer (e.g., &pnode->next) inherits its origin’s NVMMSpaceRegion

property, and PmemConjurer can extract the RegSym for the underlying pointer.
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4.3.2 NVMM Objects and Object Symbols

We track NVMM objects using PMEMoid symbols and their derived symbols. A PMEMoid

symbol can originate from multiple sources, for instance, function’s return value, function’s

arguments, and struct fields or array elements of PMEMoid type (e.g., pnode->next). PmemCon-

jurer creates new NVMM object symbols (ObjSym) for function-returned PMEMoid values (e.g.,

pmemobj root and pmemobj tx alloc). Reading a PMEMoid-typed memory location does not

always generate a new ObjSym. For example, reading new node on line 19 and 20 retrieves the

ObjSym created for pmemobj tx alloc. In contrast, the first read from a memory location with

unknown value (e.g., pnode->next) creates a new ObjSym, and the next reading from the same

location gets the same ObjSym before reassigning pnode.

Derived ObjSyms mainly come from casting a PMEMoid to a C union termed TOID [80]

(short for typed PMEMoid) by libpmemobj for encoding NVMM object types. CSA currently

does not handle casting-to-union statements, and PmemConjurer lifts this restriction by creating a

new ObjSym for the casting result and mapping it to the same RegSym of the PMEMoid symbol

(see below).

4.3.3 NVMMRegionState and Symbol Mappings

One challenge for symbolic execution to analyze NVMM-specific code is that a pro-

gram can access the same NVMM object either via a PMEMoid variable or its raw pointer, as

shown in Listing 4.1. By default, CSA would create a new symbol as the return value for each

pmemobj direct call, ignoring the correlation between ptr1 and ptr2. PmemConjurer avoids

this problem by creating an NVMMRegionState data structure and accessing them via a two-level

mapping mechanism.

Each RegSym corresponds to an NVMMRegionState data structure (Figure 4.4) describing

the region. NVMMRegionState tracks the type of its NVMM region. MapRegion represents
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RegSymObjSym

NvmmRegionState

RegStateMapObjRegMap

Type: MapRegion, or  
Existing, or  
NewAlloc, or  
Invalid

Freed: Yes or No
Logged: Yes or No
Modified: Yes or No

Figure 4.4: NVMMRegionState and two-level symbol mapping. This mechanism helps Pmem-
Conjurer recognize changes to the same NVMM region via either PMEMoid or pointer variables.

the region of a mapping function call (e.g., pmem map file or pmemobj open) that is not related

to a particular object. The Existing and NewAlloc types correspond to objects from different

sources (see Section 4.3.4). A region’s type becomes Invalid after unmapping or deallocation.

NVMMRegionState also records various properties that change according to program statements.

1 struct node *ptr1 = pmemobj_direct(head);

2 struct node *ptr2 = pmemobj_direct(head);

3 TX_ADD(head); // Undo -log: ObjSym for the head node

4 ptr1 ->in_use = 0; // Store: RegSym + offset_of(in_use)

5 ptr2 ->next = OID_NULL; // Store: RegSym + offset_of(next)

Listing 4.1: PmemConjurer recognizes the two pointers referencing the same memory location,

and the last three lines operate on the same object.

Two-level symbol mapping uses one hashmap (ObjRegMap) to map an ObjSym to a

RegSym, and another hashmap (RegStateMap) redirects a RegSym to an NVMMRegionState

instance. We model pmemobj direct so that it queries the ObjRegMap to retrieve and return

an existing RegSym as its result pointer. If the mapping does not exist, we know that an

untracked, existing object appears in the program and create a new set of ObjSym, RegSym, and

NVMMRegionState mappings for it. When a program statement reads or writes memory locations,

PmemConjurer extracts the RegSym from the address variable and uses the RegStateMap to

retrieve its NVMMRegionState. Functions operating on PMEMoid query the ObjRegMap followed
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Table 4.2: Program statements, NVMMRegionState transitions, and conditions for rule viola-
tions

Program statement NVMMRegionState transitions Rules to check and conditions for violations
Memory read N/A

Rule-4: Destination region’s type is Invalid.
Memory write Modified: No→ Yes

Rule-2: (TxLevel > 0) Object is Existing type but not logged.
Any flush function Modified: Yes→ No Rule-1a: Destination’s address is not from NVMMSpaceRegion.
Flush function with size Modified: Yes→ No Rule-1b: Flushed size is less than the destination’s type size.
Memory barrier

N/A Rule-1: Any tracked NVMMRegionState is modified.
Top-level function return
Unmapping function Type: MapRegion→ Invalid

N/A
TX BEGIN TxLevel→ TxLevel + 1
TX ADD (or similar) Logged: No→ Yes
TX FREE Freed: No→ Yes
TX END (TxLevel ¿ 1) TxLevel→ TxLevel - 1

TX END (TxLevel == 1)

TxLevel→ 0

Rule-3: Any tracked object is NewAlloc type but not modified.
Type: NewAlloc→ Existing
Type: Any (Freed)→ Invalid
Logged: Yes→ No
Modified (Logged): Yes→ No

by the RegStateMap. This mechanism ensures the last three lines of Listing 4.1 update and

analyze information of the same object.

4.3.4 Emulating Function Calls and Memory Accesses

PmemConjurer recognizes NVMM-specific functions and models their behaviors ac-

cording to their semantics. Most libpmemobj functions that return PMEMoid retrieve existing

NVMM objects (Existing type). The exceptions are allocator functions which make new ones

(NewAlloc type). TX ADD and TX FREE functions1 update the Modified and Freed properties of an

NVMMRegionState, respectively. Memory writes and allocator functions that zero-out a new

object set the Modified property, and a flush function or a transaction commit resets it.

In addition to tracking region and object symbols, PmemConjurer also tracks the trans-

action context during symbolic execution using a variable called TxLevel. It increments with a

TX BEGIN function and decrements at TX END. The TX END for the outermost transaction (TxLevel

== 1) commits all nested transactions. At commit, PmemConjurer iterates over its tracked

NVMMRegionState instances and update them if necessary. Table 4.2 presents details of NVMM-
1We use short macro names during the discussion but CSA actually analyzes the underlying functions.
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TxLevel: 0 TxLevel: 0

TxLevel: 1TxLevel: 1

TxLevel: 1 TxLevel: 1

L16: TX_BEGIN

L19: pnode->next = new_node;

L9: pmemobj_root

L18: TX_ADD_DIRECT

BUG:

Type: Existing
Logged: No
Modified: No

Root object
not tracked

Type: Existing
Logged: No
Modified: No

Type: Existing
Logged: Yes
Modified: No

Type: Existing
Logged: Yes
Modified: Yes

Type: Existing
Logged: No
Modified: Yes

1 2

3

6

4

5

Figure 4.5: PmemConjurer’s analysis flow for the root object in Figure 4.1.

RegionState transitions.

4.3.5 Rule-checking with NVMMRegionState

The state that PmemConjurer tracks during symbolic execution allows it to enforce most

of the rules listed in Section 4.2.1. Table 4.2 describes the points at which PmemConjurer checks

for rule violations. Figure 4.5 illustrates CSA’s symbolic execution and PmemConjurer’s analysis

flow for the “root” object (the list’s head node) in Figure 4.1. Each block in Figure 4.5 shows how

PmemConjurer tracks program state, including the transaction-nesting level and the root object’s

NVMMRegionState. The state transition corresponds to the execution path following lines 9 - 12,

without going into the while loop and then taking the if statement’s true-branch (lines 15 - 19).

PmemConjurer starts tracking the root object when pmemobj root returns and treats

it as an existing object. Variables head and pnode get the root object’s ObjSym and RegSym,

respectively. PmemConjurer checks Rule-2 when memory writes happen, and TxLevel is non-zero.

If a memory writer’s target address derives from a tracked RegSym, and its NVMMRegionState
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is not logged, PmemConjurer reports a violation. State 6 shows an error state caused by leaving

out line 18 of Figure 4.1.

4.3.6 Limitations of PmemConjurer’s Static Analysis

Although PmemConjurer’s static analysis can find many kinds of bugs, it does have

limitations in reasoning about thread interactions and store ordering constraints.

PmemConjurer’s symbolic execution does not consider interactions between threads.

Thus, it does not detect a violation of Rule-5 since it cannot decide if two object symbols from

two separate threads reference the same NVMM object.

The static analysis cannot infer store ordering constraints. Some NVMM programs

require explicit memory barriers to enforce the ordering about when stores become persistent,

such as using pmem drain in Figure 4.1. Store ordering constraints are difficult for static analysis

to infer because the code lacks description about its logic to maintain crash consistency. For

example, it cannot decide if there should be a memory barrier between stores to pnode->key and

pnode->val, because that depends on what actions the recovery code takes after a crash.

PmemSanitizer’s dynamic analysis complements PmemConjurer to overcome these limiti-

tions by providing multi-threading support and store-reordering testing for detecting ordering-

related bugs.

4.4 PmemSanitizer

PmemSanitizer aims to complement PmemConjurer by providing multi-threading and

store ordering analysis. It also performs more precise checks on flushing and logging sizes.

PmemSanitizer uses an LLVM IR instrumentation pass to inject probe or analysis functions

before program statements that access or manage NVMM. Figure 4.2 shows some of the inserted

functions as they appear in the target program’s assembly. The probe functions are thread-safe so
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that PmemSanitizer can analyze concurrent programs.

4.4.1 Instrumentation and Runtime Analysis

PmemSanitizer probes PMDK functions that memory-map NVMM to get the actual

address and size of each mapped NVMM region. It also probes all memory writes, cache flushes,

and transaction logging functions to collect the range of addresses they affect. PmemSanitizer’s

probe function collects thread-local information and assigns each operation a timestamp to track

ordering among them. For a store operation, such as a variable assignment or calling a memory-

altering function (e.g., memcpy or memset), PmemSanitizer records its destination’s old contents

for reordering tests (see Section 4.4.3).

PmemSanitizer performs rule-checking at two points: 1) when a transaction commits,

or 2) at a memory barrier. When a transaction is about to commit (e.g., just before calling

pmemobj tx commit), PmemSanitizer gathers modified NVMM ranges from all threads and

checks if they have overlaps (violating Rule-5). It also verifies Rule-2 with more accuracy than

the static analysis. At a memory barrier, PmemSanitizer verifies Rule-1 with concrete store/flush

sizes and performs reordering tests to check Rule-6 (see below).

4.4.2 Supporting Threaded Programs

PmemSanitizer’s dynamic analysis supports multi-threaded programs by collecting thread-

local information in each probe function and retrospectively analyzing their interactions in an

analysis function (any thread).

For coordinating probe and analysis functions, PmemSanitizer uses a global reader/writer

in an unconventional way: probe functions take the “reader” access to collect thread-local

information, while the analysis function takes “writer” access before starting analyzing, so other

threads cannot perform stores to NVMM or any instrumented NVMM-specific operations.
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This technique allows the concurrent execution of multiple program threads. It does

have the limitation of not catching a bug if a particular runtime schedule serializes all threads’

execution, but this rarely happens during our evaluation on modern multi-core machines. In

contrast, PMemCheck or PMReorder runs a target program using Valgrind, which serializes

threads [76] and does not consider interactions between threads.

4.4.3 Online Reordering Tests

PmemSanitizer performs store-reordering tests at memory barriers to test the program’s

ability to recover after a crash. Figure 4.6 is the implementation of PmemSanitizer’s store-

probe and ordering-testing functions. Function pmsan probe store runs before each store and

assigns a timestamp to each store operation and records the store destination’s old contents. In

pmsan analysis, it gathers stores from all threads and selectively (see below) reverts some

of them to emulate a crash before this memory barrier takes effect (when all stores become

persistent).

RevertSingle: (), (A, B), (A, C), (B, C), (A, B, C)

RevertAccumulative: (A, B, C), (B, C), (C), ()

Listing 4.2: Reordering test cases for three stores: A, B, and C.

Reordering strategy. At runtime, the “reorder” value of PMSAN OPTIONS dictates

PmemSanitizer how to revert stores. PmemSanitizer supports two strategies: “RevertSingle”

reverts each individual store, and “RevertAccumulative” reverts stores accumulatively in the order

specified by their timestamps. Supposing A, B, and C represent the three stores on line 26, 27, and

30 of Figure 4.1 and that the memory barrier on line 29 is missing, Listing 4.2 demonstrates test

cases generated for them using different strategies. Although the program executes the stores in

sequence, they do not necessary become persistent in the same order. Each tuple in Listing 4.2

indicates a test case where only shown stores are persistent when a crash happens. Function
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1 pmsan_store_probe(uint64_t dst, size_t size) {
2 if (!is_nvmm_range(dst, size))
3 return;
4 std::shared_lock probe(pmsan_lock);
5 record_dst_contents(dst, size);
6 }

(a) Probe function for stores

1 pmsan_analysis() {
2 std::unique_lock analysis(pmsan_lock);
3 gather_thread_local_stores();
4 while (next_reorder()) {
5 pit_t child = fork();
6 if (child == 0)
7 execv("recovery -and-check", args);
8 waitpid(child , &status , 0);
9 if (!exited_normally(status))

10 report_ordering_bug();
11 }
12 }

(b) Analysis function (only showing the reordering logic)

Figure 4.6: Reordering tests implementation (gists only).

next reorder (Figure 4.6-b) generates a sequence of all test cases according to the selected

strategy.

Online testing. For each test case, the parent process forks to run the recovery-and-

check program (specified via PMSAN OPTIONS) in the child process. The recovery-and-check

program is also PmemSanitizer-instrumented, and it communicates with the parent via shared

memory. For each store to revert of a test case, the child restores the contents of its affected range

before the store happened, effectively emulating a store that did not become persistent because of

a crash. Then, the child process executes the recovery code and the consistency-check routine.

The parent process reaps the child and checks its exit status to determine whether it recovered

successfully.

Recovery-and-check program. The recovery-and-check program should perform

crash recovery and then apply a consistency check on the resulting data. For Figure 4.1, the pro-
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gram would verify the following: when pnode->in use is true, the string length of pnode->val

should be non-zero. Those checks would detect inconsistent results produced by test cases (C) or

(A, C).

PmemSanitizer has two additional requirements for the recovery-and-check program: 1)

it must memory-map the same NVMM file with flag MAP PRIVATE, and 2) it must return zero

from main for a successful recovery or non-zero for failure. The first requirement prevents the

recovery procedure from modifying the shared NVMM data. The second one lets PmemSanitizer

recognize a successful recovery by checking the child process’ exit status.

After each test case, PmemSanitizer reports a bug if the test case is not recoverable. In

any case, it continues producing any remaining test cases.

4.5 Results

We evaluate PmemConjurer and PmemSanitizer from the following perspectives:

1. Can they detect a wide range of recovery bugs?

2. What is the impact on compilation and execution time?

3. How frequent are the false-negatives and false-positives?

4.5.1 Detecting Recovery Bugs

We evaluate PmemConjurer’ and PmemSanitizer’s bug detection abilities using both

fabricated bugs and known ones from the PMDK repository. To generate test cases, we use

libpmem, libpmemobj, and compiler intrinsics to build test programs (e.g., Figure 4.1), and

then manually introduce bugs for testing. They detect all of the fabricated bugs except those

crafted specifically to elicit a false-negative bug detection. To test them on real-world bugs, we

searched PMDK’s commit messages (more than 8000) for keywords like “fix” or “bug” to find
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Table 4.3: Detecting previously fixed bugs in PMDK examples - We browsed PMDK’s commit
history and found 19 recovery bugs, including ones described by PMTest [60]. PmemConjurer
and PmemSanitizer can identify all of them.

Violation Short description Bugs
Rule-1 Missing flush 1
Rule-2 Missing logging 5
Rule-3 No initialization 13
Rule-4 Use-after-free 0
Rule-5 Logging race 0
Rule-6 Missing barrier 0
Not checkable by our tools 0
Total 19

Table 4.4: New bugs detected by PmemConjurer and PmemSanitizer in PMDK examples

Violation Short description Source files Bugs
Rule-1 Missing flush array.c [34] 1
Rule-1a Flushing stack obj cpp ptr.cpp [28] 1
Rule-1b Incomplete flush pi.c [29], hashmap rp.c [33] 2
Rule-2 Missing logging rtree map.c [30, 32] 3
Rule-4 Use-after-free hashmap tx.c [31] 1

previously fixed recovery bugs. We also tested PmemConjurer and PmemSanitizer against the

bugs described in the evalutation of PMTest [60]. Table 4.3 summarizes the 19 bugs we collected

from PMDK commit logs (excluding new ones found by us). We validate that PmemConjurer

and PmemSanitizer can correctly identify all of them. Its static analyzer overlooks one of them

(see Section 4.5.3), but the dynamic analyzer catches it.

To search for new bugs, we ran PmemConjurer’s static analyzer on 42 C and 24 C++

source files containing example code from the pmem/pmdk and pmem/pmdk-examples GitHub

repositoires. We found eight new bugs. Table 4.4 summarizes them. PmemSanitizer’s dynamic

analysis also finds the Rule-1 and Rule-2 violations in Table 4.4. We have submitted patches to

fix the bugs to the PMDK maintainers and they have accepted all of them.

We have not found bugs violating Rule-5 or Rule-6, partially due to practical programs

using independent transactions or just relying on store ordering for crash consistency are rare. We
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Figure 4.7: Reletive slowdown using different dynamic analysis tools - PmemSanitizer’s
dynamic analysis causes 4.5× slowdown on average.

have created our own test programs with these bugs and PmemSanitizer can successfully detect

them.

Bugs appear less often in PMDK’s C++ programs and our investigation shows C++ bind-

ings for libpmemobj have made it less error-prone. For example, in a transaction implemented

in C++, the programmer does not have to explicitly invoke logging functions before modifying

NVMM objects. The C++ library provides smart pointers with operator overloading to perform

object-level logging automatically.

4.5.2 Performance

PmemConjurer’s static analyzer runs on programs’ control flow graphs before generating

the LLVM IR. Its analysis time varies between less-than-one to around ten seconds depending

on each source file’s length and complexity of its CFG. It works offline and does not impact the

program’s runtime performance.

We evaluate the performance impact of PmemSanitizer’s dynamic analysis on a machine

with one 8-core Xeon E3-1270v6 and 32 GB main memory. The CPU provides the CLFLUSHOPT

instruction for flushing modified cache lines to NVMM’s persistence domain, and the SFENCE

instruction to ensure memory ordering. We configure 16 GB of the memory to emulated NVMM.
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Figure 4.8: Scalability with independent transactions modifying 64-byte objects - Baseline
indicates the throughput of the benchmark without any debugging instrumentation.

We run NOVA [104] as the DAX-enabling file system, and applications use mmap() to access

NVMM-resident files.

We use seven mapping data structures (Figure 4.7) and their benchmark programs included

in the latest PMDK repository to measure PmemSanitizer’s performance and compare it to the

baseline, PMTest, and PMemCheck.

The baseline contains normally-compiled benchmarks without any instrumentation. We

evaluate PmemSanitizer by instrumenting the benchmarks at compile-time and running them on

the test machine. PMemCheck is an extension to Valgrind, and we run the baseline programs on

top of Valgrind with the tool enabled. PMTest requires manually instrumenting both libpmemobj

and the benchmark programs, and it only supports an old version of PMDK. Therefore, we report

relative slowdown factors for each tool, compared to their corresponding baseline.

Figure 4.7 shows PmemSanitizer’s dynamic analysis causes 4.5× slowdown on average.

That is 3.3× slower than PMTest since PMTest only instruments NVMM writes but PmemSani-

tizer also has to filter DRAM stores at runtime. PMTest does not have results for rtree and skiplist

since they do not exist in its supported PMDK version. PMemCheck is more than 10× worse

than the other two due to Valgrind’s emulated execution.

We also create a threaded benchmark to evaluate PmemSanitizer’s impact. In Figure 4.8,
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each thread executes one transaction that is independent of other threads and overwrites an

existing 64-byte NVMM object, and we vary the number of threads. The instrumented program

does not scale well because PmemSanitizer acquires a global mutex (see Section 4.4.2) to perform

inter-thread analysis when any thread commits a transaction.

4.5.3 False-Negatives

1 static PMEMoid alloc_int(size_t size) {

2 for (int i = 0; i < size; i++)

3 D_RW(array)[i] = i;

4 pmemobj_persist(pop, D_RW(array), sizeof(*D_RW(array)));

5 return array.oid;

6 }

Listing 4.3: False-negative: PmemConjurer does not report a bug because it assumes just

flushing the array’s first element is fine. But this function should flush a range of length size *

sizeof(*D RW(array)).

In our experiments, PmemSanitizer’s false-negatives (i.e., a overlooked bug) are rare in

real-world code. Listing 4.3 shows the only false-negative our static analyzer produced among

the bugs in Table 4.3. The pmemobj persist function should flush all modified elements of

the array but its size parameter is only for the first element. PmemConjurer does not report

partially-flushed objects because it assumes NVMM objects can contain transient fields that

do not require persistence. Whether the function should flush all modified elements or just the

first one is application-specific, so program analysis cannot make the correct inference without

additional information.

PmemSanitizer reports any modified but unflushed range, so it does not overlook this bug

as long as the program executes the function.

In general, for any dynamic analysis tool (not just PmemSanitizer), a major cause for
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false-negatives is that test cases do not execise problematic code paths. PmemSanitizer’s inter-

thread may also miss some violations of Rule-5 if the dynamic execution schedule for two threads

happens to prevent the error from occurring.

4.5.4 False-Positives

Our static analyzer reports false alarms mainly because some information is unavailable

in one single source file. One example shown in Listing 4.4 shows using a function pointer to

initialize a newly allocated object. Because the function pointer’s implementation is in a separate

source file, PmemConjurer cannot determine if it does the initialization and reports a violation of

Rule-3.

1 int btree_map_insert_new(.., void (*constructor)(..)) {

2 TX_BEGIN(pop) {

3 PMEMoid n = pmemobj_tx_alloc (..);

4 constructor(pop, pmemobj_direct(n), ..);

5 ..

6 } TX_END

7 }

Listing 4.4: False-positive 1: The static analyzer cannot analyze functions that do not belong to

the same source file under analysis. In this case, constructor points to an external function.

Listing 4.5 illustrates another false-positive case that reports unflushed stores when

function hm rp rebuild returns. The function rebuilds the hashmap to extend its capacity, and it

only flushes NVMM stores if the whole rebuild process succeeds. If function entries cache

fails by returning -1, the program continues from rebuild error and does not flush. Having

unflushed stores is fine in this case because the progam cannot access the modified NVMM data

if the rebuild action fails.

We find 12 source files result in false-positives of the static analyzer from 66 totally
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analyzed ones. To suppress these false alarms, we plan to provide Clang command-line options

to prune execution paths that involve external functions or when a callee returns failure code.

1 static int hm_rp_rebuild(/* args */) {

2 if (entries_cache(pop, &hashmap_rebuld , ..) == -1)

3 goto rebuild_err;

4 pmemobj_persist(/* args */);

5 ...

6 rebuild_error:

7 // no flush action

8 }

Listing 4.5: False-positive 2: PmemConjurer reports unflushed stores when entries cache

fails and the program continues from rebuild error. But the consistency of these stores does

not affect correctness.

The dynamic analyzer did not produce any false-positives, although the code in Listing 4.5

could lead one.

4.6 Related Work

In this section, we discuss related approaches for detecting NVMM programming errors

and compare them with PmemConjurer and PmemSanitizer.

PMemCheck [45] is a Valgrind [76] extension aiming to find recovery bugs for NVMM

programs using PMDK. It employs Valgrind’s binary instrumentation to trace all NVMM accesses,

cache flushes, logging routines and analyze their relations. It does not require annotating source

files or instrumenting the target during compilation. But it relies on Valgrind’s emulation layer to

trap these operations from a running binary, incuring large performance penalty. Moreover, it

also executes all threads in serial and omits interactions between threads. PMReorder [81] uses

store traces collected by PMemCheck to perform store ordering analysis as PmemSanitizer does.
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In contrast to PmemSanitizer, it requires the user annotating source files about what stores to

reorder, and it can only start testing after a target program terminates.

Yat [55] is a validation framework designed for evaluating the PMFS [22] file system. It

runs PMFS using a hypervisor called Hypersim and records memory traces between memory

barrier instructions. Then, it reorders stores to NVMM and replays them to emulate crashes. Yat

exhaustively tests all permutations of all subsets of stores between two memory barriers. The fact

of using a virtual machine environment and the exhaustive testing strategy makes it very slow,

limiting its applicability to other NVMM applications.

PMTest [60] provides two low-level checkers for verifying store persistence and ordering.

It also instruments libpmemobj’s TX BEGIN and TX END functions to check if stores of a trans-

action have been logged. Currently, PMTest requires the user manually instrumenting NVMM

stores in the source code, thus demanding more effort to delpoy than PMemCheck, PmemCon-

jurer or PmemSanitizer. PMTest can adopt PmemSanitizer’s compiler-instrumentation for better

automation. On the other hand, PmemSanitizer can provide PMTest’s low-level checkers for the

programmer to better describe persistence requirements.

4.7 Conclusion

We presented PmemConjurer and PmemSanitizer, tools for detecting recovery bugs that

challenge NVMM programming. To our knowledge, PmemConjurer provides the first static

analyzer for recovery bugs and proves symbolic execution is a viable solution to tackle this

challenge. PmemSanitizer’s dynamic analysis also introduces methods for analyzing multi-

threaded NVMM programs and performing store-reordering tests in a more convenient way than

existing approaches.

Our evaluation shows the effectiveness of our tool by detecting various real-life recovery

bugs in the PMDK repository. Although we have been targeting the libpmem and libpmemobj
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libraries to define NVMM-specific programming rules, we expect to derive similar rules for other

NVMM programming libraries, and adapt our program analysis techniques for them.
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Chapter 5

Conclusion

This thesis presented NOVA-Fortis, Pangolin, PmemConjurer, and PmemSanitizer to

explore the unique challenges that improving PMEM software’s reliability presents. We expect

their design and implementation to benefit the development of reliable software for future

computing platforms with persistent memory.

NOVA-Fortis provides strong protection for its metadata using a full replication. It also

protects file data using space-efficient parity when user-space applications access files using

the read() and write() system calls. NOVA-Fortis can benefit many applications that already

use file system interfaces for accessing storage. When applications memory-map a PMEM file,

NOVA-Fortis has to disable its file data protection because DAX-style mmap() bypasses the file

system. DAX-mmap() provides fast access to durable data from the user-space, but it also exposes

user-space software to explicitly handling PMEM errors.

To facilitate the protection of memory-mapped persistent data, the Pangolin library

provides high-performance, crash-consistent, and fault-tolerant library functions to access PMEM.

Pangolin uses a novel, space-efficient layout of data and parity to protect arbitrary-sized PMEM

objects combined with per-object checksums to detect corruption.

NOVA-Fortis and Pangolin demonstrate that PMEM file systems and programming li-

94



braries can make reliability and availability guarantees while providing high performance and

supporting DAX-style mmap(). They also make a clear case for developing unique reliability

mechanisms for PMEM rather than blithely adopting schemes used by conventional disk-based

storage systems.

Applications that do not use NOVA-Fortis or Pangolin may implement explicit manage-

ment of crash-consistency and fault-tolerance. They can adapt the techniques we described in

Chapter 2 and Chapter 3 for their specific fault-tolerance needs. To catch recovery bugs, Pmem-

Conjurer helps programmers detect them early in the development stage, without compiling the

program to binary or executing it. As a complementary tool, PmemSanitizer provides compiler

instrumentation and run-time reordering tests for checking a PMEM application’s reliability in the

testing phase. Our evaluation showed the effectiveness of our debugging tools by detecting various

real-life recovery bugs in the PMDK repository. We expect PMEM application developers to

adopt these tools in their development flow or use the program analysis techniques for developing

alternative debugging tools.
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