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Abstract

Adaptive Sequential Decision Making: Bandit Optimization and Active Learning

by

Chong Liu

Deep neural networks usually have many hyperparameters that need to be tuned.

Modern material design problems usually require material scientists to sequentially select

processing parameters and conduct experiments to observe material performances. To

save privacy cost, the learning system needs to carefully choose queries to answer under

the differential privacy framework. To train a robot under video guidance, engineers

need to carefully choose video samples for training. However, in all cases, people cannot

observe performances of unselected actions and the experimental cost can be huge. These

two challenges hinder efficient neural network training, new material design, privacy

protection, and robot training and call for actions. In this thesis, I present my research on

optimization, bandits, and active learning under the adaptive sequential decision making

framework. My algorithms are able to solve black box function optimization without

the curse of dimensionality, achieve no regret under the function class misspecification,

reduce privacy cost under the differential privacy framework, and significantly reduce

video sample complexity for robot training. All of them come with theoretical or empirical

analysis.

ix



Contents

Curriculum Vitae viii

Abstract ix

1 Introduction 1

2 Global Black-Box Optimization 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Complete Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 No-Regret Misspecified Linear Bandits 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Additional Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Disagreement-Based Active Learning for Privacy Protection 80
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.7 Complete Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x



5 Active Sample Selection for Video Semantic Segmentation 135
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Conclusions 160

A Auxiliary Technical Lemmas 162

B Additional Information about Differential Privacy 166

Bibliography 170

xi



Chapter 1

Introduction

Modern material design problems usually require material scientists to sequentially select

processing parameters ahead of time and then conduct expensive experiments to observe

material performances. However, material scientists cannot observe performances of uns-

elected parameters. The experimental cost can also be huge if parameters are not selected

well such that material performances fail to meet a given criterion.

To train a good neural network, computer scientists need to carefully choose a set of

hyperparameters of the neural network. One of the most popular ways to tune hyperpa-

rameters is to use grid search but it cannot work well if there are many hyperparameters.

Even worse, every time a certain set of hyperparameters is chosen for training on a vali-

dation set, the training time is long and computational cost is huge if the neural network

is deep in layers.

These two challenges, no output of unselected parameters and huge experimental cost,

hinder new material design and neural network training and call for actions.

From the point of view of machine learning, this kind of problems falls into the

framework of adaptive sequential decision making with bandit feedback, shown below.

During total T rounds, at each round t, decision makers take action xt and observe
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Introduction Chapter 1

feedback f(xt) of selected action only, then they use all information collected before to

learn about the environment and decide where to take actions afterwards to achieve a

certain given goal.

Adaptive Decision Making Framework

1: for t = 1, ..., T do

2: Take action xt ∈ Rd based on {x1, f(x1), ..., xt−1, f(xt−1)}.

3: Observe feedback f(xt) ∈ R.

4: end for

For example, in material design problem, xt is the set of processing parameters, such

as temperature, pressure, solution concentration, and time, and f(xt) is the material

performance. In neural network hyperparameter tuning task, xt is the set of hyper-

parameters, such as learning rate, batch size, number of iterations, and f(xt) is the

validation accuracy on validation set.

Systematically studying the framework and applying results to practical problems

are extremely exciting and have significant real-world impacts. Motivated by but not

limited to these two real-world problems, this thesis presents my research within the

adaptive sequential decision making framework and has two parts. In theory part, global

black-box optimization and misspecified linear bandits are studied. In application part,

active learning is used to protect privacy under differential privacy framework and to

save annotation cost for video semantic segmentation tasks. All four chapters later are

introduced briefly as follows.

Global black-box function optimization. In many material design problems, mate-

rial performance can be modeled as a black-box function of processing parameters where

the function needs to be either maximized or minimized. For example, in [1], material

scientists want to synthesize ceramic TiO2 thin films using microwave radiation where

2
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the film property is a black-box non-convex function of temperature, solution concentra-

tion, pressure, and processing time. Here scientists need to sequentially select a set of

processing parameters such that an ideal film can be synthesized in the end.

Existing methods, such as Bayesian Optimization (BO), have been deployed in solving

such problems and show promising performances. [2] used BO to find structural param-

eters that maximize the energy absorption under compression and successfully reduced

number of experiments from 1, 800 (required by grid search) to only 100, saving a lot

of experimental cost. However, by assuming the black-box objective function is drawn

from Gaussian process, BO suffers from the curse of dimensionality and works poorly

when the input dimension d is larger than 20. Developing efficient global optimization

algorithms is an interesting research question.

Chapter 2 solves the global black-box optimization problem with parametric function

approximation and doesn’t suffer from the curse of dimensionality. Theoretically, under

the realizable assumption and geometric conditions on parameter class, the new GO-

UCB algorithm can achieve global optima with a cumulative regret of Õ(
√
T ) where T

is number of total rounds. The regret bound is input dimension-free which means GO-

UCB works well in high dimensionality as long as a good parametric function is used for

approximation. At the core of GO-UCB is a carefully designed parameter uncertainty

set that allows optimistic exploration. Real-world experiments also show that GO-UCB

works better than classical BO approaches in high dimensional cases, even if the model

is misspecified.

No-regret misspecified linear bandits. Chapter 3 technically considers the same

problem as Chapter 2 but in a more challenging setting, misspecified bandits. Note

theoretical results in Chapter 2 hold if the realizability assumption holds. Realizability

assumption says that the approximation function class always contains the true underly-

ing function, which is almost impossible in real-world applications because one can hardly

3



Introduction Chapter 1

capture a function that is assumed to be unknown and black-boxed. Therefore, studying

misspecified bandits (without realizability assumption) is the main goal of Chapter 3.

To get started, Chapter 3 only studies the misspecified linear bandits. Existing work

usually assumes uniform misspecification but under this condition, most algorithms can

only achieve the Õ(
√
T + ϵT ) regret and unfortunately the ϵT term is unavoidable. To

overcome it, this chapter proposes the first misspecification condition under which clas-

sical LinUCB algorithm [16] achieves Õ(
√
T ) regret, a.k.a. no regret in theory. Starting

from linear bandits, there are many potential future directions awaiting to be pursued,

such as misspecified generalized linear bandits and misspecified kernelized bandits.

Disagreement-based active learning for privacy protection. In classification

tasks, compared with traditional supervised learning, active learning allows the learner

to actively select data points to query their labels, thus total labeling cost can be saved

and even classifier performance may improve. Motivated by success of active learning,

Chapter 4 revisits the model-agnostic private learning framework. The key idea is that

by answering fewer queries selected by active learning, privacy loss can be saved thus

stronger privacy protection can be obtained without hurting classification performance.

Based on this idea, the new PATE-ASQ algorithm is proposed and it is proved to satisfy

differential privacy guarantee and achieves almost the same learning bound as non-private

supervised learning algorithm. Later PATE-ASQ is also implemented and works well in

practice.

Active sample selection for video semantic segmentation. Instead of classification

task, Chapter 5 studies the video semantic segmentation annotation problem where video

samples are selected for human annotator to get annotated. Traditional methods suffer

from either high annotation cost or low performance. With the help of active learning,

the new human-in-the-loop algorithm designed in this chapter is able to achieve high

semantic segmentation performance while saving the annotation cost at the same time.

4
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After introduction, four chapters are written based on four published papers [3, 10,

5, 6] so each has its own problem setup, related work, results, and notation systems. For

quick access, readers may directly jump to the preferred chapter to see how adaptive

sequential decision making works for that specific problem. Although all chapters seem

relatively independent to each other, they all sit under the adaptive sequential decision

making framework and need to quantify the uncertainty and take sequential actions. The

differences between these problem settings and algorithms are also interesting to read.

In the end, Chapter 6 concludes this thesis.

5



Chapter 2

Global Black-Box Optimization

This chapter considers the problem of global optimization with noisy zeroth order oracles

— a well-motivated problem useful for various applications ranging from hyper-parameter

tuning for deep learning to new material design. Existing work relies on Gaussian pro-

cesses or other non-parametric family, which suffers from the curse of dimensionality. In

this chapter, we propose a new algorithm GO-UCB that leverages a parametric family of

functions (e.g., neural networks) instead. Under a realizable assumption and a few other

mild geometric conditions, we show that GO-UCB achieves a cumulative regret of Õ(
√
T )

where T is the time horizon. At the core of GO-UCB is a carefully designed uncertainty

set over parameters based on gradients that allows optimistic exploration. Synthetic and

real-world experiments illustrate GO-UCB works better than popular Bayesian optimiza-

tion approaches, even if the model is misspecified.

6
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2.1 Introduction

We consider the problem of finding a global optimal solution to the following opti-

mization problem

max
x∈X

f(x),

where f : X → R is an unknown non-convex function that is not necessarily differentiable

in x.

This problem is well-motivated by many real-world applications. For example, the

accuracy of a trained neural network on a validation set is complex non-convex func-

tion of a set of hyper-parameters (e.g., learning rate, momentum, weight decay, dropout,

depth, width, choice of activation functions ...) that one needs to maximize [11]. Also

in material design, researchers want to synthesize ceramic materials, e.g., titanium diox-

ide (TiO2) thin films, using microwave radiation [1] where the film property is a non-

convex function of parameters including temperature, solution concentration, pressure,

and processing time. Efficiently solving such non-convex optimization problems could

significantly reduce energy cost.

We assume having access to only noisy function evaluations, i.e., at round t, we select

a point xt and receive a noisy function value yt,

yt = f(xt) + ηt, (2.1)

where ηt for t = 1, ..., T are independent, zero-mean, σ-sub-Gaussian noise. This is

known as the noisy zeroth-order oracle setting in optimization literature. Let f ∗ be the

optimal function value, following the tradition of Bayesian optimization (see e.g., [12] for

a review), throughout this chapter, we use cumulative regret as the evaluation criterion,

7
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defined as

RT =
T∑
t=1

rt =
T∑
t=1

f ∗ − f(xt),

where rt is called instantaneous regret at round t. An algorithmA is said to be a no-regret

algorithm if limT→∞RT (A)/T = 0.

Generally speaking, solving a global non-convex optimization is NP-hard [13] and

we need additional assumptions to efficiently proceed. Bayesian optimization usually

assumes the objective function f is drawn from a Gaussian process prior. [14] proposed

the GP-UCB approach, which iteratively queries the argmax of an upper confidence

bound of the current posterior belief, before updating the posterior belief using the new

data point. However, Gaussian process relies on kernels, e.g., squared error kernel or

Matérn kernel, which suffer from the curse of dimensionality. A folklore rule-of-thumb is

that GP-UCB becomes unwieldy when the dimension is larger than 10.

A naive approach is to passively query T data points uniformly at random, estimate

f by f̂ using supervised learning, then return the maximizer of the plug-in estimator

x̂ = argmaxx∈X f̂(x). This may side-step the curse-of-dimensionality depending on which

supervised learning model we use. The drawback of this passive query model is that it

does not consider the structure of the function nor does it quickly “zoom-in” to the

region of the space that is nearly optimal. In contrast, an active query model allows

the algorithm to iteratively interact with the function. At round t, the model collects

information from all previous rounds 1, ..., t− 1 and decides where to query next.

GO-UCB Algorithm. In this chapter, we develop an algorithm that allows Bayesian

optimization-style active queries to work for general supervised learning-based function

approximation. We assume that the supervised learning model fw : X → R is differen-

tiable w.r.t. its dw-dimensional parameter vector w ∈ W ⊂ Rdw and that the function

8
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class F = {fw|w ∈ W} is flexible enough such that the true objective function f = fw∗

for some w∗ ∈ W , i.e., F is realizable. Our algorithm — Global Optimization via Upper

Confidence Bound (GO-UCB) — has two phases:

The GO-UCB Framework:

• Phase I: Uniformly explore n data points.

• Phase II: Optimistically explore T data points.

The goal of Phase I to sufficiently explore the function and make sure the estimated

parameter ŵ0 is close enough to true parameter w∗ such that exploration in Phase II are

efficient. To solve the estimation problem, we rely on a regression oracle that is able to

return an estimated ŵ0 after n observations. In details, after Phase I we have a dataset

{(xj, yj)}nj=1, then

ŵ0 ← argmin
w∈W

n∑
j=1

(fw(xj)− yj)2. (2.2)

This problem is known as a non-linear least square problem. It is computationally hard

in the worst-case, but many algorithms are known (e.g., SGD, Gauss-Newton, Levenberg-

Marquardt) to effectively solve this problem in practice. Our theoretical analysis of ŵ0

uses techniques from [15]. See Section 2.5.1 for details.

In Phase II, exploration is conducted following the principle of “Optimism in the Face

of Uncertainty”, i.e., the parameter is optimized within an uncertainty region that always

contains the true parameter w∗. Existing work in bandit algorithms provides techniques

that work when fw is a linear function [16] or a generalized linear function [17], but

no solution to general differentiable function is known. At the core of our GO-UCB is a

carefully designed uncertainty ball Ballt over parameters based on gradients, which allows

techniques from the linear bandit [16] to be adapted for the non-linear case. In detail,

9
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the ball is defined to be centered at ŵt — the solution to a regularized online regression

problem after t − 1 rounds of observations. And the radius of the ball is measured by

the covariance matrix of the gradient vectors of all previous rounds. We prove that w∗

is always trapped within the ball with high probability.

Contributions. In summary, our main contributions are:

1. We initiate the study of global optimization problem with parametric function

approximation and proposed a new optimistic exploration algorithm — GO-UCB.

2. Assuming realizability and other mild geometric conditions, we prove that GO-UCB

converges to the global optima with cumulative regret at the order of Õ(
√
T ) where

T is the time horizon.

3. GO-UCB does not suffer from the curse of dimensionality like Gaussian processes-

based Bayesian optimization methods. The unknown objective function f can

be high-dimensional, non-convex, non-differentiable, and even discontinuous in its

input domain.

4. Synthetic test function and real-world hyperparameter tuning experiments show

that GO-UCB works better than all compared Bayesian optimization methods in

both realizable and misspecified settings.

Technical novelties. The design of GO-UCB algorithm builds upon the work of

[16] and [18], but requires substantial technical novelties as we handle a generic nonlinear

parametric function approximation. Specifically:

1. LinUCB analysis (e.g., self-normalized Martingale concentration, elliptical potential

lemmas [16, 18]) is not applicable for nonlinear function approximation, but we

showed that they can be adapted for this purpose if we can localize the learner to

a neighborhood of w∗.

10
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2. We identify a new set of structural assumptions under which we can localize the

learner sufficiently with only O(
√
T ) rounds of pure exploration.

3. Showing that w∗ remains inside the parameter uncertainty ball Ballt,∀t ∈ [T ]

is challenging. We solve this problem by setting regularization centered at the

initialization parameter ŵ0 and presenting novel inductive proof of a lemma showing

∀t ∈ [T ], ŵt converges to w
∗ in ℓ2-distance at the same rate.

These new techniques could be of independent interest.

2.2 Related Work

Global non-convex optimization is an important problem that can be found in a lot

of research communities and real-world applications, e.g., optimization [19, 20], machine

learning [21, 22], hyperparameter tuning [23], neural architecture search [24, 25], and

material discovery [26].

One of the most prominent approaches to this problem is Bayesian Optimization (BO)

[27], in which the objective function is usually modeled by a Gaussian Process (GP) [28],

so that the uncertainty can be updated under the Bayesian formalism. Among the many

notable algorithms in GP-based BO [14, 29, 30, 31, 32, 33], GP-UCB [14] is the closest to

this chapter because our algorithm also selects data points in a UCB (upper confidence

bound) style but the construction of the UCB in this chapter is different since we are not

working with GPs. [34] proves lower bounds on regret for noisy Gaussian process bandit

optimization. GPs are highly flexible and can approximate any smooth functions, but

such flexibility comes at a price to play — curse of dimensionality. Most BO algorithms

do not work well when d > 10. Notable exceptions include the work of [35, 36, 37, 38, 39]

who designed more specialized BO algorithms for high-dimensional tasks.

11
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Besides BO with GPs, other nonparametric families were considered for global opti-

mization tasks, but they, too, suffer from the curse of dimensionality. We refer readers

to [40] and the references therein.

While most BO methods use GP as surrogate models, there are other BO methods

that use alternative function classes such as neural networks [41, 42]. These methods are

different from us in that they use different ways to fit the neural networks and a Monte

Carlo sampling approach to decide where to explore next. Empirically, it was reported

that they do not outperform advanced GP-based methods that use trust regions [37].

Our problem is also connected to the bandits literature [43, 44, 45, 46]. The global

optimization problem can be written as a nonlinear bandits problem in which queried

points are actions and the function evaluations are rewards. However, no bandits algo-

rithms can simultaneously handle an infinite action space and a generic nonlinear reward

function. Here “generic” means the reward function is much more general than a linear

or generalized linear function [46]. To the best of our knowledge, we are the first to

address the infinite-armed bandit problems with a general differentiable value function

(albeit with some additional assumptions).

A recent line of work studied bandits and global optimization with neural function

approximation [47, 48, 49]. The main difference from us is that these results still rely

on Gaussian processes with a Neural Tangent Kernel in their analysis, thus intrinsically

linear. Their regret bounds also require the width of the neural network to be much

larger than the number of samples to be sublinear. In contrast, our results apply to

general nonlinear function approximations and do not require overparameterization.

12
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2.3 Preliminaries

2.3.1 Notations

We use [n] to denote the set {1, 2, ..., n}. The algorithm queries n points in Phase I

and T points in Phase II. Let X ⊂ Rdx and Y ⊂ R denote the domain and range of f , and

W ⊂ [0, 1]dw denote the parameter space of a family of functions F := {fw : X → Y|w ∈

W}. For convenience, we denote the bivariate function fw(x) by fx(w) when w is the

variable of interest. ∇fx(w) and ∇2fx(w) denote the gradient and Hessian of function f

w.r.t. w. L(w) := Ex∼U(fx(w) − fx(w∗))2 denotes the (expected) risk function where U

is uniform distribution. For a vector x, its ℓp norm is denoted by ∥x∥p = (
∑d

i=1 |xi|p)1/p

for 1 ≤ p < ∞ and its ℓ∞ norm is denoted by ∥x∥∞ = maxi∈[dx] |xi|. For a matrix A,

its operator norm is denoted by ∥A∥op. For a vector x and a square matrix A, define

∥x∥2A = x⊤Ax. Throughout this chapter, we use standard big O notation that hide

universal constants; and to improve the readability, we use Õ to hide all logarithmic

factors as well as all polynomial factors in problem-specific parameters except dw, 1/µ, T .

For reader’s easy reference, we list all symbols and notations in Table 2.1.

2.3.2 Assumptions

Here we list main assumptions that we will work with throughout this chapter. The

first assumption says that we have access to a differentiable function family that contains

the unknown objective function.

Assumption 2.3.1 (Realizability) There exists w∗ ∈ W such that the unknown ob-

jective function f = fw∗. Also, assume W ⊂ [0, 1]dw . This is w.l.o.g. for any compact

W.

Realizable parameter class is a common assumption in literature [50, 51, 44], usually the

13
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Table 2.1: Symbols and notations.

Symbol Definition Description
∥A∥op operator norm
Ballt eq. (2.6) parameter uncertainty region at round t
βt eq. (2.7) parameter uncertainty region radius at round t
µ local strong convexity parameter
c local self-concordance parameter
dx domain dimension
dw parameter dimension
δ failure probability
ε covering number discretization distance
η σ-sub-Gaussian observation noise

fw(x) objective function at x parameterized by w
fx(w) objective function at w parameterized by x
∇fx(w) 1st order derivative w.r.t. w parameterized by x
∇2fx(w) 2nd order derivative w.r.t. w parameterized by x

F function range constant bound
γ, τ growth condition parameters
ι, ι′, ι′′ logarithmic terms
L(w) E[(fx(w)− fx(w∗))2] expected loss function
λ regularization parameter
n time horizon in Phase I
[n] {1, 2, ..., n} integer set of size n
rt fw∗(x∗)− fw∗(xt) instantaneous regret at round t

RT

∑T
t=1 rt cumulative regret after round T

Σt eq. (2.3) covariance matrix at round t
T time horizon in Phase II
U uniform distribution
w w ∈ W function parameter
w∗ w∗ ∈ W true parameter
ŵ0 oracle-estimated parameter after Phase I
ŵt eq. (2.5) updated parameter at round t
W W ⊆ [0, 1]dw parameter space
x x ∈ X data point
x∗ optimal data point

∥x∥p (
∑d

i=1 |xi|p)1/p ℓp norm
∥x∥∞ maxi∈[d] |xi| ℓ∞ norm

∥x∥A
√
x⊤Ax distance defined by square matrix A

X X ⊆ Rdx function domain
Y Y = [−F, F ] function range

14
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starting point of a line of research for a new problem because one doesn’t need to worry

about extra regret incurred by misspecified parameter. Although in this chapter we only

theoretically study the realizable parameter class, our GO-UCB algorithm empirically

works well in misspecified tasks too.

The second assumption is on properties of the function approximation.

Assumption 2.3.2 (Bounded, differentiable and smooth function approximation)

There exist constants F,Cg, Ch > 0 such that ∀x ∈ X ,∀w ∈ W, it holds that |fx(w)| ≤ F,

∥∇fx(w)∥2 ≤ Cg, and ∥∇2fx(w)∥op ≤ Ch.

This assumption imposes mild regularity conditions on the smoothness of the function

with respect to its parameter vector w.

The third assumption is on the expected loss function over the uniform distribution

(or any other exploration distribution) in the Phase I of GO-UCB.

Assumption 2.3.3 (Geometric conditions on the loss function) L(w) = Ex∼U(fx(w)−

fx(w
∗))2 satisfies (τ, γ)-growth condition or µ-local strong convexity at w∗, i.e., ∀w ∈ W,

min
{µ
2
∥w − w∗∥22,

τ

2
∥w − w∗∥γ2

}
≤ L(w)− L(w∗),

for constants µ, τ > 0, µ < dw and 0 < γ < 2. Also, L(w) satisfies a c-local self-

concordance assumption at w∗, i.e., for all w s.t. ∥w − w∗∥∇2L(w∗) ≤ c,

(1− c)2 · ∇2L(w∗) ⪯ ∇2L(w) ⪯ (1− c)−2 · ∇2L(w∗).

We also assume c ≤ 0.5 for convenience. This is without loss of generality because if the

condition holds for c > 0.5, then the condition for c ≤ 0.5 is automatically satisfied.
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w*

L(
w)

Expected loss function
Strong convexity boundary
Growth condition boundary

Figure 2.1: Example of a highly non-convex L(w) satisfying Assumption 2.3.3. Solid
lines denote the actual lower bound by taking min over strong convexity and growth
condition. L(w) is strongly convex near w∗ but can be highly non-convex away from
w∗.

This assumption has three main components: (global) growth condition, local strong

convexity, and local self-concordance.

The global growth condition says that fw with parameters far away from w∗ cannot

approximate f well over the distribution U . The local strong convexity assumption

requires the local neighborhood near w∗ to have quadratic growth.

These two conditions are strictly weaker than global strong convexity because it does

not require convexity except in a local neighborhood near the global optimal w∗, i.e.,

{w|∥w − w∗∥2 ≤ (τ/µ)
1

2−γ } and it does not limit the number of spurious local minima,

as the global γ-growth condition only gives a mild lower bound as w moves away from

w∗. See Figure 2.1 for an example. Our results work even if γ is a small constant < 1.

Self-concordance originates from a clean analysis of Newton’s method [52]. See Ex-

ample 4 of [53] for a list of examples satisfying self-concordance. A localized version

of self-concordance is needed in our problem for technical reasons, but again it is only

required within a small ball of radius c near w∗ for the expected loss under U . Our results
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work even if c vanishes at O(T−1/4).

To avoid any confusion, the three assumptions we made above are only about the

expected loss function w.r.t. uniform distribution U as a function of w, rather than

objective function fw∗(x). The problem to be optimized can still be arbitrarily complex

in terms of X , e.g., high-dimensional and non-continuous functions. As an example,

in Gaussian process-based Bayesian optimization approaches, fw∗(x) belongs to a re-

producing kernel Hilbert space, but its loss function is globally convex in its “infinite

dimensional” parameter w. Also, we no longer need this assumption in Phase II.

Additional notations. For convenience, we define ζ > 0 such that ∥∇2L(w∗)∥op ≤

ζ. The existence of a finite ζ is implied by Assumption 2.3.2 and it suffices to take

ζ = 2C2
g because ∇2L(w∗) = Ex∼U [2∇fx(w∗)∇fx(w∗)⊤].

2.4 Main Results

In Section 2.4.1, we state our Global Optimization with Upper Confidence Bound

(GO-UCB) algorithm and explain key design points of it. Then in Section 2.4.2, we

prove that its cumulative regret bound is at the rate of Õ(
√
T ).

2.4.1 Algorithm

Our GO-UCB algorithm, shown in Algorithm 1, has two phases. Phase I does uniform

exploration in n rounds and Phase II does optimistic exploration in T rounds. In Step

1 of Phase I, n is chosen to be large enough such that the objective function can be

sufficiently explored. Step 2-3 are doing uniform sampling. In Step 5, we call regression

oracle to estimate ŵ0 given all observations in Phase I as in eq. (2.2). Adapted from [15],

we prove the convergence rate of ∥ŵ0 − w∗∥2 is at the rate of Õ(1/
√
n). See Theorem

2.5.2 for details.
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The key challenge of Phase II of GO-UCB is to design an acquisition function to

select xt, ∀t ∈ [T ]. Since we are using parametric function to approximate the objective

function, we heavily rely on a feasible parameter uncertainty region Ballt,∀t ∈ [T ], which

should always contain the true parameter w∗ throughout the process. The shape of Ballt

is measured by the covariance matrix Σt, defined as

Σt = λI +
t−1∑
i=0

∇fxi
(ŵi)∇fxi

(ŵi)
⊤. (2.3)

Note i is indexing over both x and w, which means that as time t goes from 0 to T , the

update to Σt is always rank one. It allows us to bound the change of Σt from t = 0 to T .

Ballt is centered at ŵt, the newly estimated parameter at round t. In Step 2, we

Algorithm 1 GO-UCB

Input: Time horizon T , uniform exploration phase length n, uniform distribution U ,
regression oracle Oracle, regularization weight λ, confidence sequence βt for t = 1, 2, ..., T .
Phase I (Uniform exploration)

1: for j = 1, ..., n do
2: Sample xj ∼ U(X ).
3: Observe yj = f(xj) + ηj.
4: end for
5: Estimate ŵ0 ← Oracle(x1, y1, ..., xn, yn).

Phase II (Optimistic exploration)

1: for t = 1, ..., T do
2: Update Σt by eq. (2.3) with the input λ.
3: Update ŵt by eq. (2.5) with the input λ.
4: Update Ballt by eq. (2.6) with the input βt.
5: Select xt = argmaxx∈X maxw∈Ballt fx(w).
6: Observe yt = f(xt) + ηt.
7: end for

Output: x̂ ∼ U({x1, ..., xT}).
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update the estimated ŵt by solving the following optimization problem:

ŵt = argmin
w

λ

2
∥w − ŵ0∥22 +

1

2

t−1∑
i=0

((w − ŵi)
⊤∇fxi

(ŵi) + fxi
(ŵi)− yi)2. (2.4)

The optimization problem is an online regularized least square problem involving gra-

dients from all previous rounds, i.e., ∇fxi
(ŵi),∀i ∈ [T ]. The intuition behind it is that

we use gradients to approximate the function since we are dealing with generic objective

function. We set the regularization w.r.t. ŵ0 rather than 0 because from regression oracle

we know how close is ŵ0 to w
∗. By setting the gradient of objective function in eq. (2.4)

to be 0, the closed form solution of ŵt is

ŵt = Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)(∇fxi

(ŵi)
⊤ŵi + yi − fxi

(ŵi))

)
+ λΣ−1

t ŵ0. (2.5)

Now we move to our definition of Ballt, shown as

Ballt = {w : ∥w − ŵt∥2Σt
≤ βt}, (2.6)

where βt is a pre-defined monotonically increasing sequence that we will specify later.

Following the “optimism in the face of uncertainty” idea, our ball is centered at ŵt with

βt being the radius and Σt measuring the shape. βt ensures that the true parameter w∗ is

always contained in Ballt w.h.p. In Section 2.5.2, we will show that it suffices to choose

βt = Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
, (2.7)

where Õ hides logarithmic terms in t, T and 1/δ (w.p. 1− δ).

Then in Step 5 of Phase II, xt is selected by joint optimization over x ∈ X and

w ∈ Ballt. Finally, we collect all observations in T rounds and output x̂ by uniformly
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sampling over {x1, ..., xT}.

2.4.2 Regret Upper Bound

Now we present the cumulative regret upper bound of GO-UCB algorithm.

Theorem 2.4.1 (Cumulative regret of GO-UCB) Suppose Assumption 2.3.1, 2.3.2,

& 2.3.3 hold with parameters F,Cg, Ch, ζ, µ, γ, τ, c. Assume

T > Cd2wF
4ι2 ·max

{
µγ/(2−γ)

τ 2/(2−γ)
,
ζ

µc2

}2

, (2.8)

where C is a universal constant and ι is a logarithmic term depending on n,Ch, 2/δ (both

of them from Theorem 2.5.2). Then Algorithm 1 with parameters n =
√
T , λ = Cλ

√
T

(for a Cλ logarithmically dependent to T and polynomial in all other parameters) and

β1:T as in eq. (2.7) obeys that with probability at least 1− δ,

R√
T+T = Õ

(
√
TF +

√
TβTdw +

Tβ2
T

λ2

)
= Õ

(
d2w
√
T

µ

)
.

Let us highlight a few interesting aspects of the result.

Remark 2.4.2 Without Gaussian process assumption, we propose the first algorithm to

solve global optimization problem with Õ(
√
T ) cumulative regret, which is dimension-free

in terms of its input domain X . GO-UCB is a no-regret algorithm since limT→∞RT/T =

0, and the output x̂ satisfies that f ∗ − E[f(x̂)] ≤ Õ(1/
√
T ), which is also knowns as

expected simple regret upper bound. The dependence in T is optimal up to logarithmic

factors, as it matches the lower bound for linear bandits [54, Theorem 3].

Remark 2.4.3 (Choice of λ) One important deviation from the classical linear bandit

analysis is that we require a regularization that centers around ŵ0 and the regularization
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weight λ to be Cλ

√
T , comparing to λ = O(1) in the linear case. The choice is to ensure

that ŵt stays within the local neighborhood of ŵ0, and to delicately balance different terms

that appear in the regret analysis to ensure that the overall regret bound is Õ(
√
T ).

Remark 2.4.4 (Choice of n) We choose n =
√
T , therefore, it puts sample complexity

requirement on T shown in eq. (2.8). The choice of n plays two roles here. First, it

guarantees that the regression result ŵ0 lies in the neighboring region of w∗ of the loss

function L(w) with high probability. The neighboring region of w∗ has nice properties,

e.g., local strong convexity, which allow us to build the upper bound of ℓ2-distance between

ŵ0 and w∗. Second, in Phase I, we are doing uniform sampling over the function so the

cumulative regret in Phase I is bounded by 2Fn = 2F
√
T which is at the same Õ(

√
T )

rate as that in Phase II.

2.5 Proof Overview

In this section, we give a proof sketch of all theoretical results. A key insight of our

analysis is that there is more mileage that seminal techniques developed by [16] for an-

alyzing linearly parameterized bandits problems in analyzing non-linear bandits, though

we need to localize to a nearly optimal region and carefully handle the non-linear compo-

nents via more aggressive regularization. Other assumptions that give rise to a similarly

good initialization may work too and our new proof can be of independent interest in

analyzing other extensions of LinUCB, e.g., to contextual bandits, reinforcement learning

and other problems.

In detail, first we prove the estimation error bound of ŵ0 for Phase I of GO-UCB

algorithm, then prove the feasibility of Ballt. Finally by putting everything together we

prove the cumulative regret bound of GO-UCB algorithm. Due to page limit, we list all

auxiliary lemmas in Appendix A and show complete proofs in Section 2.8.
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2.5.1 Regression Oracle Guarantee

The goal of Phase I of GO-UCB is to sufficiently explore the unknown objective

function with n uniform queries and obtain an estimated parameter ŵ0. By assuming

access to a regression oracle, we prove the convergence bound of ŵ0 w.r.t. w∗, i.e.,

∥ŵ0 − w∗∥22. To get started, we need the following regression oracle lemma.

Lemma 2.5.1 (Adapted from [15])) Suppose Assumption 2.3.1 & 2.3.2 hold. There

is an absolute constant C ′, such that after round n in Phase I of Algorithm 1, with

probability > 1− δ/2, regression oracle estimated ŵ0 satisfies

Ex∼U [(fx(ŵ0)− fx(w∗))2] ≤ C ′dwF
2ι

n
,

where ι is the logarithmic term depending on n,Ch, 2/δ.

[15] proves that expected square error of Empirical Risk Minimization (ERM) esti-

mator can be bounded at the rate of Õ(1/n) with high probability, rather than Õ(1/
√
n)

rate achieved by Chernoff/Hoeffding bounds. It works with realizable and misspecified

settings. Proof of Lemma 2.5.1 includes simplifying it with regression oracle, Assumption

2.3.1, and ε-covering number argument over parameter class. Basically Lemma 2.5.1 says

that expected square error of fx(ŵ0) converges to fx(w
∗) at the rate of Õ(1/n) with high

probability. Based on it, we prove the following regression oracle guarantee.

Theorem 2.5.2 (Regression oracle guarantee) Suppose Assumption 2.3.1, 2.3.2, &

2.3.3 hold. There is an absolute constant C such that after round n in Phase I of Algo-

rithm 1 where n satisfies n ≥ CdwF
2ι · max

{
µγ/(2−γ)

τ2/(2−γ) ,
ζ

µc2

}
, with probability > 1 − δ/2,

regression oracle estimated ŵ0 satisfies

∥ŵ0 − w∗∥22 ≤
CdwF

2ι

µn
,
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where ι is the logarithmic term depending on n,Ch, 2/δ.

Compared with Lemma 2.5.1, there is an extra sample complexity requirement on

n because we need n to be sufficiently large such that the function can be sufficiently

explored and more importantly ŵ0 falls into the neighboring region (strongly convex

region) of w∗. See Figure 2.1 for illustration. It is also the reason why strong convexity

parameter µ appears in the denominator of the upper bound.

2.5.2 Feasibility of Ballt

The following lemma is the key part of algorithm design of GO-UCB. It says that our

definition of Ballt is appropriate, i.e., throughout all rounds in Phase II, w∗ is contained

in Ballt with high probability.

Lemma 2.5.3 (Feasibility of Ballt) Set Σt, ŵt as in eq. (2.3), (2.5). Set βt as

βt = Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
. (2.9)

Suppose Assumption 2.3.1, 2.3.2, & 2.3.3 hold and choose n =
√
T , λ = Cλ

√
T . Then

∀t ∈ [T ] in Phase II of Algorithm 1, w.p. > 1− δ,

∥ŵt − w∗∥2Σt
≤ βt.

For reader’s easy reference, we write our choice of βt again in eq. (2.9). Note this lemma

requires careful choices of λ and n because βt appears later in the cumulative regret

bound and βt is required to be at the rate of Õ(1). The proof has three steps. First we

obtain the closed form solution of ŵt as in eq. (2.5). Next we use induction to prove

that ∀t ∈ [T ], ∥ŵt − w∗∥22 ≤ Õ(C̃/n) for some universal constant C̃. Finally we prove

∥ŵt − w∗∥2Σt
≤ βt.
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2.5.3 Regret Analysis

To prove cumulative regrets bound of GO-UCB algorithm, we need following two

lemmas of instantaneous regrets in Phase II of GO-UCB.

Lemma 2.5.4 (Instantaneous regret bound) Set Σt, ŵt, βt as in eq. (2.3), (2.5), &

(2.7) and suppose Assumption 2.3.1, 2.3.2, & 2.3.3 hold, then with probability > 1−δ, w∗

is contained in Ballt. Define ut = ∥∇fxt(ŵt)∥Σ−1
t
, then ∀t ∈ [T ] in Phase II of Algorithm

1,

rt ≤ 2
√
βtut +

2βtCh

λ
.

The first term of the upper bound is pretty standard, seen also in LinUCB [16] and GP-

UCB [14]. After we apply first order gradient approximation of the objective function,

the second term is the upper bound of the high order residual term, which introduces

extra challenge to derive the upper bound.

Technically, proof of Lemma 2.5.4 requires w∗ is contained in our parameter uncer-

tainty ball Ballt with high probability throughout Phase II of GO-UCB, which has been

proven in Lemma 2.5.3. Later, the proof utilizes Taylor’s theorem and uses the convexity

of Ballt twice. See Section 2.8.4. The next lemma is an extension of Lemma 2.5.4, where

the proof uses monotonically increasing property of βt in t.

Lemma 2.5.5 (Summation of squared instantaneous regret bound) Set Σt, ŵt, βt

as in eq. (2.3), (2.5), & (2.7) and suppose Assumption 2.3.1, 2.3.2, & 2.3.3 hold, then

with probability > 1− δ, w∗ is contained in Ballt and ∀t ∈ [T ] in Phase II of Algorithm

1,

T∑
t=1

r2t ≤ 16βTdw log

(
1 +

TC2
g

dwλ

)
+

8β2
TC

2
hT

λ2
.
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Proof of Theorem 2.4.1 follows by putting everything together via Cauchy-Shwartz

inequality
∑T

t=1 rt ≤
√
T
∑T

t=1 r
2
t .

2.6 Experiments

We compare our GO-UCB algorithm with four Bayesian Optimization (BO) algo-

rithms: GP-EI [29], GP-PI [55], GP-UCB [14], and Trust Region BO (TuRBO) [37],

where the first three are classical methods and TuRBO is a more advanced algorithm

designed for high-dimensional cases.

To run GO-UCB, we choose our parametric function model f̂ to be a two linear layer

neural network with sigmoid function being the activation function:

f̂(x) = linear2(sigmoid(linear1(x))),

where w1, b1 denote the weight and bias of linear1 layer and w2, b2 denote those of

linear2 layer. Specifically, we set w1 ∈ R25×dx , b1 ∈ R25, w2 ∈ R25, b2 ∈ R, meaning

the dimension of activation function is 25. All implementations are based on BoTorch

framework [56] and sklearn package [57] with default parameter settings.

2.6.1 Implementation of GO-UCB

Noise parameter σ = 0.01. Regression oracle in GO-UCB is approximated by stochas-

tic gradient descent algorithm on our two linear layer neural network model with mean

squared error loss, 2000 iterations and 10−11 learning rate. Exactly solving optimization

problem in Step 5 of Phase II may not be computationally tractable, so we use iterative

gradient ascent algorithm over x and w with 2000 iterations and 10−4 learning rate. βt

is set as d3wF
4t/T . λ is set as

√
T log2 T .
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(a) f1 (realizable)

0 10 20 30 40 50 60 70
Time Horizon

0

10000

20000

30000

40000

50000

Cu
m

ul
at

iv
e 

Re
gr

et

GP-UCB
GP-EI
GP-PI
TuRBO
GO-UCB

(b) f2 (misspecified)
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Figure 2.2: Cumulative regrets (the lower the better) of all algorithms on
20-dimensional f1, f2, f3 synthetic functions.

2.6.2 Synthetic Experiments

First, we test all algorithms on three high-dimensional synthetic functions defined

on [−5, 5]dx where dx = 20, including both realizable and misspecified cases. The first

test function f1 is created by setting all elements in w1, b1, w2, b2 in f̂ to be 1, so f1 is a

realizable function given f̂ . The second and third test functions f2, f3 are Styblinski-Tang

function and Rastrigin function, defined as:

f2 = −
1

2

20∑
i=1

x4i − 16x2i + 5xi,

f3 = −200 +
20∑
i=1

10 cos(2πxi)− x2i ,

where xi denotes the i-th element in its 20 dimensions, so f2, f3 are misspecified functions

given f̂ . We set n = 5, T = 25 for f1 and n = 8, T = 64 for f2, f3. To reduce the effect

of randomness in all algorithms, we repeat the whole optimization process for 5 times

for all algorithms and report mean and error bar of cumulative regrets. The error bar

is measured by Wald’s test with 95% confidence, i.e., 1.96ν/
√
5 where ν is standard

deviation of cumulative regrets and 5 is the number of repetitions.

From Figure 2.2, we learn that in all tasks our GO-UCB algorithm performs better
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than all other four BO approaches. Among BO approches, TuRBO performs the best

since it is specifically designed for high-dimensional tasks. In Figure 2.2(a), mean of

cumulative regrets of GO-UCB and TuRBO stays the same when t ≥ 22, which means

that both of them have found the global optima, but GO-UCB algorithm is able to find

the optimal point shortly after Phase I and enjoys the least error bar. It is well expected

since f1 is a realizable function for f̂ . Unfortunately, GP-UCB, GP-EI, and GP-PI incur

almost linear regrets, showing the bad performances of classical BO algorithms in high-

dimensional cases.

In Figure 2.2(b) and 2.2(c), all methods are suffering from linear regrets because f2, f3

are misspecified functions. The gap between GO-UCB and other methods is smaller in

Figure 2.2(c) than in 2.2(b) because optimizing f3 is more challenging than f2 since f3

has more local optimal points.

2.6.3 Real-World Experiments

To illustrate the GO-UCB algorithm works in real-world tasks, we do hyperparameter

tuning experiments on three tasks using three classifiers. Three UCI datasets [58] are

Breat-cancer, Australian, and Diabetes, and three classifiers are random forest, multi-

layer perceptron, and gradient boosting where each of them has 7, 8, 11 hyperparameters.

For each classifier on each dataset, the function mapping from hyperparameters to clas-

sification accuracy is the black-box function that we are maximizing, so the input space

dimension dx = 7, 8, 11 for each classifier. We use cumulative regret to evaluate hyperpa-

rameter tuning performances, however, best accuracy f ∗ is unknown ahead of time so we

set it to be the best empirical accuracy of each task. To reduce the effect of randomness,

we divide each dataset into 5 folds and every time use 4 folds for training and remaining

1 fold for testing. We report mean and error bar of cumulative regrets where error bar
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is measured by Wald’s test, the same as synthetic experiments.

Hyperparameters can be continuous or categorical, however, in order to fairly compare

GO-UCB with Bayesian optimization methods, in all hyperparameter tuning tasks, we set

function domain to be [0, 10]dx , a continuous domain. If a hyperparameter is categorical,

we allocate equal length domain for each hyperparameter. For example, the seventh

hyperparameter of random forest is a bool value, True or False and we define [0, 5) as

True and [5, 10] as False. If a hyperparameter is continuous, we set linear mapping

from the hyperparameter domain to [0, 10]. For example, the sixth hyperparameter of

multi-layer perceptron is a float value in (0, 1) thus we multiply it by 10 and map it to

(0, 10).

Hyperparameters in hyperparameter tuning tasks. We list hyperparameters

in all three tasks as follows.

Classification with Random Forest.

1. Number of trees in the forest, (integer, [20, 200]).

2. Criterion, (string, “gini”, “entropy”, or “logloss”).

3. Maximum depth of the tree, (integer, [1, 10]).

4. Minimum number of samples required to split an internal node, (integer, [2, 10]).

5. Minimum number of samples required to be at a leaf node, (integer, [1, 10]).

6. Maximum number of features to consider when looking for the best split, (string,

“sqrt” or “log2”).

7. Bootstrap, (bool, True or False).

Classification with Multi-Layer Perceptron.
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1. Activation function (string, “identity”, “logistic”, “tanh”, or “relu”).

2. Strength of the L2 regularization term, (float, [10−6, 10−2]).

3. Initial learning rate used, (float, [10−6, 10−2]).

4. Maximum number of iterations, (integer, [100, 300]).

5. Whether to shuffle samples in each iteration, (bool, True or False).

6. Exponential decay rate for estimates of first moment vector, (float, (0, 1)).

7. Exponential decay rate for estimates of second moment vector (float, (0, 1)).

8. Maximum number of epochs to not meet tolerance improvement, (integer, [1, 10]).

Classification with Gradient Boosting.

1. Loss, (string, “logloss” or “exponential”).

2. Learning rate, (float, (0, 1)).

3. Number of estimators, (integer, [20, 200]).

4. Fraction of samples to be used for fitting the individual base learners, (float, (0,

1)).

5. Function to measure the quality of a split, (string, “friedman mse” or “squared

error”).

6. Minimum number of samples required to split an internal node, (integer, [2, 10]).

7. Minimum number of samples required to be at a leaf node, (integer, [1, 10]).

8. Minimum weighted fraction of the sum total of weights, (float, (0, 0.5)).
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9. Maximum depth of the individual regression estimators, (integer, [1, 10]).

10. Number of features to consider when looking for the best split, (float, “sqrt” or

“log2”).

11. Maximum number of leaf nodes in best-first fashion, (integer, [2, 10]).

Figure 2.3 shows results on Breast-cancer dataset. In Figure 2.3(b)(c) GO-UCB

performs statistically much better that all other BO algorithms since there is almost no

error bar gap between TuRBO and GO-UCB. It shows that GO-UCB can be deployed

in real-world applications to replace BO methods. Also, in Figure 2.3(b) performance of

GO-UCB Phase I is not good but GO-UCB can still perform better than others in Phase

II, which shows the effectiveness of Phase II of GO-UCB. In Figure 2.3(a) all algorithms

have similar performances. In Figure 2.3(b), TuRBO performs similarly as GP-UCB,

GP-EI, and GP-PI when t ≤ 23, but after t = 23 it performs better and shows a curved

regret line by finding optimal points. Results on Australian and Diabetes datasets are

shown in Figure 2.4 and 2.5 where similar algorithm performances can be seen.

Note in experiments, we choose parametric model f̂ to be a two linear layer neural

network. In more real-world experiments, one can choose the model f̂ in GO-UCB to be

simpler functions or much more complex functions, e.g., deep neural networks, depending

on task requirements.

2.7 Conclusions

Global non-convex optimization is an important problem that widely exists in many

real-world applications, e.g., deep learning hyper-parameter tuning and new material

design. However, solving this optimization problem in general is NP-hard. Existing
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Figure 2.3: Cumulative regrets (the lower the better) of all algorithms in real-world
hyperparameter tuning task on Breast-cancer dataset.
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Figure 2.4: Cumulative regrets (the lower the better) of all algorithms in real-world
hyperparameter tuning task on Australian dataset.
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Figure 2.5: Cumulative regrets (the lower the better) of all algorithms in real-world
hyperparameter tuning task on Diabetes dataset.
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work relies on Gaussian process assumption, e.g., Bayesian optimization, or other non-

parametric family which suffers from the curse of dimensionality.

We propose the first algorithm to solve such global optimization with parametric

function approximation, which shows a new way of global optimization. GO-UCB first

uniformly explores the function and collects a set of observation points and then uses the

optimistic exploration to actively select points. At the core of GO-UCB is a carefully

designed uncertainty set over parameters based on gradients that allows optimistic explo-

ration. Under realizable parameter class assumption and a few mild geometric conditions,

our theoretical analysis shows that cumulative regret of GO-UCB is at the rate of Õ(
√
T ),

which is dimension-free in terms of function domain X . Our high-dimensional synthetic

test shows that GO-UCB works better than BO methods even in misspecified setting.

Moreover, GO-UCB performs better than BO algorithms in real-world hyperparameter

tuning tasks, which may be of independent interest.

There is µ, the strongly convexity parameter, in the denominator of upper bound in

Theorem 2.4.1. µ can be small in practice, thus the upper bound can be large. Developing

the cumulative regret bound containing a term depending on µ but being independent

to T remains a future problem.

2.8 Complete Proofs

In this section, we show complete proofs of all technical results in the main sections.

For reader’s easy reference, we define ι as a logarithmic term depending on n,Ch, 2/δ (w.p.

> 1 − δ/2), ι′ as a logarithmic term depending on t, dw, Cg, 1/λ, 2/δ (w.p. > 1 − δ/2),

and ι′′ as a logarithmic term depending on t, dw, Cg, 1/λ.
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2.8.1 Regression Oracle Guarantee

Lemma 2.8.1 (Restatement of Lemma 2.5.1) Suppose Assumption 2.3.1 & 2.3.2

hold. There is an absolute constant C ′, such that after round n in Phase I of Algorithm

1, with probability > 1− δ/2, regression oracle estimated ŵ0 satisfies

Ex∼U [(fx(ŵ0)− fx(w∗))2] ≤ C ′dwF
2ι

n
,

where ι is the logarithmic term depending on n,Ch, 2/δ.

Proof: The regression oracle lemma establishes on Lemma A.0.1 which works only

for finite function class. In order to work with our continuous parameter class W , we

need ε-covering number argument.

First, let w̃, W̃ denote the ERM parameter and finite parameter class after applying

covering number argument on W . By Lemma A.0.1, we find that with probability >

1− δ/2,

Ex∼U [(fx(w̃)− fx(w∗))2]

≤
(
1 + α

1− α

)(
inf

w∈W̃∪{w∗}
Ex∼U [(fx(w)− fx(w∗))2] +

F 2 log(|W̃|) log(2)
nα

)
+

2 log(4/δ)

nα

≤
(
1 + α

1− α

)(
F 2 log(|W̃|) log(2)

nα

)
+

2 log(4/δ)

nα
,

where the second inequality is by realizable assumption (Assumption 2.3.1). Our param-

eter classW ⊆ [0, 1]dw , so log(|W̃|) = log(1/εdw) = dw log(1/ε) and the new upper bound

is that with probability > 1− δ/2,

Ex∼U [(fx(w̃)− fx(w∗))2] ≤ C
′′
(
dwF

2 log(1/ε)

n
+

log(2/δ)

n

)
,
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where C
′′
is a universal constant obtained by choosing α = 1/2. Note w̃ is the ERM

parameter in W̃ after discretization, not our target parameter ŵ0 ∈ W . By (a + b)2 ≤

2a2 + 2b2,

Ex∼U [(fx(ŵ0)− fx(w∗))2] ≤ 2Ex∼U [(fx(ŵ0)− fx(w̃))2] + 2Ex∼U [(fx(w̃)− fx(w∗))2]

≤ 2ε2C2
h + 2C

′′
(
dwF

2 log(1/ε)

n
+

log(2/δ)

n

)
(2.10)

where the second line applies discretization error ε and Assumption 2.3.2. By choosing

ε = 1/
√
nC2

h, we get

(2.10) =
2

n
+
C

′′
dwF

2 log(nC2
h)

n
+

2C
′′
log(2/δ)

n
≤ C ′dwF

2 log(nC2
h) + log(2/δ)

n

where we can take C ′ = 2C
′′
(assuming 2 < C

′′
dwF

2 log(nC2
h)). The proof completes by

defining ι as the logarithmic term depending on n,Ch, 2/δ.

Theorem 2.8.2 (Restatement of Theorem 2.5.2) Suppose Assumption 2.3.1, 2.3.2,

& 2.3.3 hold. There is an absolute constant C such that after round n in Phase I of Al-

gorithm 1 where n satisfies

n ≥ CdwF
2ι ·max

{
µγ/(2−γ)

τ 2/(2−γ)
,
ζ

µc2

}
,

with probability > 1− δ/2, regression oracle estimated ŵ0 satisfies

∥ŵ0 − w∗∥22 ≤
CdwF

2ι

µn
,

where ι is the logarithmic term depending on n,Ch, 2/δ.

Proof: Recall the definition of expected loss function L(w) = Ex∼U(fx(w)−fx(w∗))2
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and the second order Taylor’s theorem, L(ŵ0) at w
∗ can be written as

L(ŵ0) = L(w∗) + (ŵ0 − w∗)∇L(w∗) +
1

2
∥ŵ0 − w∗∥2∇2L(w̃),

where w̃ lies between ŵ0 and w
∗. Also, because ∇L(w∗) = ∇Ex∼U(fx(w

∗)−fx(w∗))2 = 0,

then with probability > 1− δ/2,

1

2
∥ŵ0 − w∗∥2∇2L(w̃) = L(ŵ0)− L(w∗) ≤ C ′dwF

2ι

n
, (2.11)

where the inequality is due to Lemma 2.5.1.

Next, we prove the following lemma stating after a certain number of n samples,

∥ŵ0 − w∗∥∇2L(w∗) can be bounded by the parameter c from our local-self-concordance

assumption.

Lemma 2.8.3 Suppose Assumption 2.3.1, 2.3.2, & 2.3.3 hold. There is an absolute

constant C ′ such that after round n in Phase I of Algorithm 1 where n satisfies

n ≥ 2C ′dwF
2ι ·max

{
µγ/(2−γ)

τ 2/(2−γ)
,
ζ

µc2

}
,

then with probability > 1− δ/2,

∥ŵ0 − w∗∥∇2L(w∗) ≤ c.

Proof: First we will prove that when n satisfies the first condition, then ∥ŵ0−w∗∥2 ≤

(τ/µ)1/(2−γ) by a proof by contradiction.

Assume ∥ŵ0 − w∗∥2 > (τ/µ)1/(2−γ). Check that under this condition, we have

τ
2
∥ŵ0 − w∗∥γ2 < µ

2
∥ŵ0 − w∗∥22, therefore the growth-condition (rather than the local

strong convexity) part of the Assumption 2.3.3 is active. By the (τ, γ)-growth condition,
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we have

τ

2
∥ŵ0 − w∗∥γ2 ≤ L(ŵ0)− L(w∗) ≤ C ′dwF

2ι

n
.

Substituting the first lower bound of n in the assumption, we get

∥ŵ0 − w∗∥ ≤ (τ/µ)1/(2−γ),

thus having a contradiction. This proves that when n satisfies the first condition, ŵ0 is

within the region where local strong convexity is active.

By the local strong-convexity condition,

µ

2
∥ŵ0 − w∗∥22 ≤ L(ŵ0)− L(w∗) ≤ C ′dwF

2ι

n
.

Then,

∥ŵ0 − w∗∥∇2L(w∗) ≤
√
ζ∥ŵ0 − w∗∥2 ≤

√
2ζC ′dwF 2ι

µn
.

Substitute the second lower bound on n that we assumed, we get that

∥ŵ0 − w∗∥∇2L(w∗) ≤

√
2ζC ′dwF 2ι

µn
≤ c.

Now we continue the proof of Theorem 2.5.2. Observe that ∥w̃ − w∗∥∇2L(w∗) ≤

∥ŵ0 − w∗∥∇2L(w∗) ≤ c, since w̃ lies on the line-segment between ŵ0 and w∗. It follows
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that by the c-local self-concordance assumption (Assumption 2.3.3),

(1− c)2∥ŵ0 − w∗∥2∇2L(w∗) ≤ ∥ŵ0 − w∗∥2∇2L(w̃).

Therefore, by eq. (2.11)

∥ŵ0 − w∗∥2∇2L(w∗) ≤
2C ′dwF

2ι

(1− c)2n
.

The proof completes by inequality ∥ŵ0 − w∗∥22 ≤ ∥ŵ0 − w∗∥2∇2L(w∗)/µ due to µ-strongly

convexity of L(w) at w∗ (Assumption 2.3.3) and defining C = 2C ′/(1− c)2.

2.8.2 Properties of Covariance Matrix Σt

In eq. (2.3), Σt is defined as λI +
∑t−1

i=0∇fxi
(ŵi)∇fxi

(ŵi)
⊤. In this section, we prove

three lemmas saying the change of Σt as t ∈ 1, ..., T is bounded in Phase II of GO-UCB.

The key observation is that at each round i, the change made to Σt is ∇fxi
(ŵi)∇fxi

(ŵi)
⊤,

which is only rank one.

Lemma 2.8.4 (Adapted from [18]) Set Σt, ŵt as in eq. (2.3) & (2.5), suppose As-

sumption 2.3.1 & 2.3.3 hold, and define ut = ∥∇fxt(ŵt)∥Σ−1
t
. Then

detΣt = detΣ0

t−1∏
i=0

(1 + u2i ).
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Proof: Recall the definition of Σt = λI+
∑t−1

i=0∇fxi
(ŵi)∇fxi

(ŵi)
⊤ and we can show

that

detΣt+1 = det(Σt +∇fxt(wt)∇fxt(wt)
⊤)

= det(Σ
1
2
t (I + Σ

− 1
2

t ∇fxt(wt)∇fxt(wt)
⊤Σ

− 1
2

t )Σ
1
2
t )

= det(Σt) det(I + Σ
− 1

2
t ∇fxt(wt)(Σ

− 1
2

t ∇fxt(wt))
⊤)

= det(Σt) det(I + vtv
⊤
t ),

where vt = Σ
− 1

2
t ∇fxt(wt). Recall ut is defined as ∥∇fxt(ŵt)∥Σ−1

t
. Because vtv

⊤
t is a rank

one matrix, det(I + vtv
⊤
t ) = 1 + u2t . The proof completes by induction.

Lemma 2.8.5 (Adapted from [18]) Set Σt as in eq. (2.3) and suppose Assumption

2.3.1, 2.3.2, & 2.3.3 hold. Then

log

(
detΣt−1

detΣ0

)
≤ dw log

(
1 +

tC2
g

dwλ

)
.

Proof of Lemma 2.8.4 directly follows definition of Σt and proof of Lemma 2.8.5 involves

Lemma 2.8.4 and inequality of arithmetic and geometric means. Note Cg is a constant

coming from Assumption 2.3.2. We do not claim any novelty in proofs of these two lem-

mas which replace feature vector in linear bandit [18] with gradient vectors. Proof:

Let ξ1, ..., ξdw denote eigenvalues of
∑t−1

i=0∇fxi
(wi)∇fxi

(wi)
⊤, then

dw∑
k=1

ξk = tr

(
t−1∑
i=0

∇fxi
(wi)∇fxi

(wi)
⊤

)
=

t−1∑
i=0

∥∇fxi
(wi)∥22 ≤ tC2

g , (2.12)
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where the inequality is by Assumption 2.3.2. By Lemma 2.8.4,

log

(
detΣt−1

detΣ0

)
≤ log det

(
I +

1

λ

t−1∑
i=0

∇fxi
(wi)∇fxi

(wi)
⊤

)

= log

(
dw∏
k=1

(1 + ξk/λ)

)

= dw log

(
dw∏
k=1

(1 + ξk/λ)

)1/dw

≤ dw log

(
1

dw

dw∑
k=1

(1 + ξk/λ)

)

≤ dw log

(
1 +

tC2
g

dwλ

)
,

where the second inequality is by inequality of arithmetic and geometric means and the

last inequality is due to eq. (2.12).

Lemma 2.8.6 Set Σt, ŵt as in eq. (2.3) & (2.5) and suppose Assumption 2.3.1, 2.3.2,

& 2.3.3 hold. Then

t−1∑
i=0

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) ≤ 2dw log

(
1 +

tC2
g

dwλ

)
.

A trivial bound of LHS in Lemma 2.8.6 could be simply O(tC2
g/λ). Lemma 2.8.6

is important because it saves the upper bound to be O(log(tC2
g/λ)), which allows us to

build a feasible parameter uncertainty ball, shown in the next section.

Proof: First, we prove ∀i ∈ {0, 1, ..., t− 1}, 0 < ∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) < 1. Recall

the definition of Σt, it’s easy to see that Σt is a positive definite matrix and thus 0 <
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∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi). To prove it’s smaller than 1, we need to decompose Σt and write

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi)

= ∇fxi
(ŵi)

⊤

(
λI +

t−1∑
i=0

∇fxi
(ŵi)∇fxi

(ŵi)
⊤

)−1

∇fxi
(ŵi)

= ∇fxi
(ŵi)

⊤

(
∇fxi

(ŵi)∇fxi
(ŵi)

⊤ −∇fxi
(ŵi)∇fxi

(ŵi)
⊤ + λI

+
t−1∑
i=0

∇fxi
(ŵi)∇fxi

(ŵi)
⊤

)−1

∇fxi
(ŵi).

Let A = −∇fxi
(ŵi)∇fxi

(ŵi)
⊤ + λI +

∑t−1
i=0∇fxi

(ŵi)∇fxi
(ŵi)

⊤, and it becomes

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) = ∇fxi
(ŵi)

⊤(∇fxi
(ŵi)∇fxi

(ŵi)
⊤ + A)−1∇fxi

(ŵi).

By applying Sherman-Morrison lemma (Lemma A.0.3), we have

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi)

= ∇fxi
(ŵi)

⊤
(
A−1 − A−1∇fxi

(ŵi)∇fxi
(ŵi)

⊤A−1

1 +∇fxi
(ŵi)⊤A−1∇fxi

(ŵi)

)
∇fxi

(ŵi)

= ∇fxi
(ŵi)

⊤A−1∇fxi
(ŵi)−

∇fxi
(ŵi)

⊤A−1∇fxi
(ŵi)∇fxi

(ŵi)
⊤A−1∇fxi

(ŵi)

1 +∇fxi
(ŵi)⊤A−1∇fxi

(ŵi)

=
∇fxi

(ŵi)
⊤A−1∇fxi

(ŵi)

1 +∇fxi
(ŵi)⊤A−1∇fxi

(ŵi)
< 1.
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Next, we use the fact that ∀x ∈ (0, 1), x ≤ 2 log(1 + x), and we have

t−1∑
i=0

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) ≤
t−1∑
i=0

2 log
(
1 +∇fxi

(ŵi)
⊤Σ−1

t ∇fxi
(ŵi)

)
≤ 2 log

(
detΣt−1

detΣ0

)
≤ 2dw log

(
1 +

tC2
g

dwλ

)
,

where the last two inequalities are due to Lemma 2.8.4 and 2.8.5.

2.8.3 Feasibility of Ballt

Lemma 2.8.7 (Restatement of Lemma 2.5.3) Set Σt, ŵt as in eq. (2.3), (2.5). Set

βt as

βt = Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
.

Suppose Assumption 2.3.1, 2.3.2, & 2.3.3 hold and choose n =
√
T , λ = Cλ

√
T . Then

∀t ∈ [T ] in Phase II of Algorithm 1, w.p. > 1− δ,

∥ŵt − w∗∥2Σt
≤ βt.

Proof: The proof has three steps. First we obtain the closed form solution of ŵt.

Next we derive the upper bound of ∥ŵi−w∗∥22. Finally we use it to prove that the upper

bound of ∥ŵt − w∗∥2Σt
matches our choice of βt.

Step 1: Closed form solution of ŵt. The optimal criterion for the objective
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function in eq. (2.4) is

0 = λ(ŵt − ŵ0) +
t−1∑
i=0

((ŵt − ŵi)
⊤∇fxi

(ŵi) + fxi
(ŵi)− yi)∇fxi

(ŵi).

Rearrange the equation and we have

λ(ŵt − ŵ0) +
t−1∑
i=0

(ŵt − ŵi)
⊤∇fxi

(ŵi)∇fxi
(ŵi)

=
t−1∑
i=0

(yi − fxi
(ŵi))∇fxi

(ŵi),

λ(ŵt − ŵ0) +
t−1∑
i=0

(ŵt − ŵi)
⊤∇fxi

(ŵi)∇fxi
(ŵi)

=
t−1∑
i=0

(yi − fxi
(w∗) + fxi

(w∗)− fxi
(ŵi))∇fxi

(ŵi),

λ(ŵt − ŵ0) +
t−1∑
i=0

ŵ⊤
t ∇fxi

(ŵi)∇fxi
(ŵi)

=
t−1∑
i=0

(ŵ⊤
i ∇fxi

(ŵi) + ηi + fxi
(w∗)− fxi

(ŵi))∇fxi
(ŵi),

ŵt

(
λI +

t−1∑
i=1

∇fxi
(ŵi)∇fxi

(ŵi)
⊤

)
− λŵ0

=
t−1∑
i=0

(ŵ⊤
i ∇fxi

(ŵi) + ηi + fxi
(w∗)− fxi

(ŵi))∇fxi
(ŵi),

ŵtΣt = λŵ0 +
t−1∑
i=0

(ŵ⊤
i ∇fxi

(ŵi) + ηi + fxi
(w∗)− fxi

(ŵi))∇fxi
(ŵi),

where the second equation is by removing and adding back fxi
(w∗), the third equation is

due to definition of observation noise η and the last equation is by our choice of Σt (eq.
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(2.3)). Now we have the closed form solution of ŵt:

ŵt = Σ−1
t

(
λŵ0 +

t−1∑
i=0

(ŵ⊤
i ∇fxi

(ŵi) + ηi + fxi
(w∗)− fxi

(ŵi))∇fxi
(ŵi)

)
.

Further, ŵt − w∗ can be written as

ŵt − w∗ = Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)(∇fxi

(ŵi)
⊤ŵi + ηi + fxi

(w∗)− fxi
(ŵi))

)
+ λΣ−1

t ŵ0 − Σ−1
t Σtw

∗

= Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)(∇fxi

(ŵi)
⊤ŵi + ηi + fxi

(w∗)− fxi
(ŵi))

)
+ λΣ−1

t (ŵ0 − w∗)

− Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)∇fxi

(ŵi)
⊤

)
w∗

= Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)(∇fxi

(ŵi)
⊤(ŵi − w∗) + ηi + fxi

(w∗)− fxi
(ŵi))

)
+ λΣ−1

t (ŵ0 − w∗)

= Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)

1

2
∥w∗ − ŵi∥2∇2fxi (w̃)

)
+ Σ−1

t

(
t−1∑
i=0

∇fxi
(ŵi)ηi

)
+ λΣ−1

t (ŵ0 − w∗),

(2.13)

where the second line is again by our choice of Σt and the last equation is by the second

order Taylor’s theorem of fxi
(w∗) at ŵi where w̃ lies between w∗ and ŵi.

Step 2: Upper bound of ∥ŵi − w∗∥22. Note eq. (2.13) holds ∀i ∈ [T ] because all

ŵi are obtained through the same optimization problem, which means

ŵi − w∗ = Σ−1
i

(
i−1∑
ρ=0

∇fxρ(ŵρ)
1

2
∥w∗ − ŵρ∥2∇2fxρ (w̃)

)
+ Σ−1

i

(
i−1∑
ρ=0

∇fxρ(ŵρ)ηρ

)
+ λΣ−1

i (ŵ0 − w∗).

By inequality (a + b + c)2 ≤ 4a2 + 4b2 + 4c2 and definition of Σi, we take the square of
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both sides and get

∥ŵi − w∗∥22 ≤
4

λ

∥∥∥∥∥
i−1∑
ρ=0

∇fxρ(ŵρ)ηρ

∥∥∥∥∥
2

Σ−1
i

+ 4∥ŵ0 − w∗∥22 +
1

λ

∥∥∥∥∥
i−1∑
ρ=0

∇fxρ(ŵρ)∥w∗ − ŵρ∥2∇2fxρ (w̃ρ)

∥∥∥∥∥
2

Σ−1
i

.

(2.14)

Now we use induction to prove the convergence rate of ∥ŵi − w∗∥22,∀i ∈ [T ]. Recall

at the very beginning of Phase II, by Theorem 2.5.2 (check that the condition on n is

satisfied due to our condition on T and the choice of n =
√
T ), with probability > 1−δ/2,

∥ŵ0 − w∗∥22 ≤
CdwF

2ι

µn
.

To derive a claim based on induction, formally, we suppose at round i, there exists

some universal constant C̃ such that with probability > 1− δ/2,

∥ŵi − w∗∥22 ≤
C̃dwF

2ι

µn
.

Our task is to prove that at round i+ 1 with probability > 1− δ/2,

∥ŵi+1 − w∗∥22 ≤
C̃dwF

2ι

µn
.

Note C̃ is for induction purpose, which can be different from C.
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From eq. (2.14), at round i+ 1 we can write

∥ŵi+1 − w∗∥22 ≤
4σ2

λ
log

(
det(Σi) det(Σ0)

−1

δ2i

)
+

4CdwF
2ι

µn

+
1

λ

∥∥∥∥∥
i∑

ρ=0

∇fxρ(ŵρ)∥w∗ − ŵρ∥2∇2fxρ (w̃ρ)

∥∥∥∥∥
2

Σ−1
i+1

≤ 4σ2

λ

(
dw log

(
1 +

iC2
g

dwλ

)
+ log

(
π2i2

3δ

))
+

4CdwF
2ι

µn

+
1

λ

∥∥∥∥∥
i∑

ρ=0

∇fxρ(ŵρ)∥w∗ − ŵρ∥2∇2fxρ (w̃ρ)

∥∥∥∥∥
2

Σ−1
i+1

≤ 4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+

1

λ

∥∥∥∥∥
i∑

ρ=0

∇fxρ(ŵρ)∥w∗ − ŵρ∥2∇2fxρ (w̃ρ)

∥∥∥∥∥
2

Σ−1
i+1

,

where the first inequality is due to self-normalized bound for vector-valued martingales

(Lemma A.0.2 in Appendix A) and Theorem 2.5.2, the second inequality is by Lemma

2.8.5 and our choice of δi = 3δ/(π2i2), and the last inequality is by defining ι′ as the

logarithmic term depending on i, dw, Cg, 1/λ, 2/δ (with probability > 1 − δ/2). The

choice of δi guarantees the total failure probability over t rounds is no larger than δ/2.

Now we use our assumption ∥ŵi − w∗∥22 ≤ C̃dwF 2ι
µn

to bound the last term.

∥ŵi+1 − w∗∥22 ≤
4dwσ

2ι′

λ
+

4CdwF
2ι

µn
+
C̃2C2

hd
2
wF

4ι2

µ2λn2

(
i∑

ρ=0

√
∇fxρ(ŵρ)⊤Σ

−1
i+1∇fxρ(ŵρ)

)2

≤ 4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+
C̃2C2

hd
2
wF

4ι2

µ2λn2

(
i∑

ρ=0

1

)(
i∑

ρ=0

∇fxρ(ŵρ)
⊤Σ−1

i+1∇fxρ(ŵρ)

)

≤ 4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+
C̃2C2

hd
3
wF

4iι′′ι2

µ2λn2
,

where the first inequality is due to smoothness of loss function in Assumption 2.3.3 and

triangular inequality, the second inequality is by Cauchy-Schwarz inequality, and the last
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inequality is because of Lemma 2.8.6 and defining ι′′ as logarithmic term depending on

i, dw, Cg, 1/λ.

What we need is that there exists some universal constant C̃ such that

4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+
C̃2C2

hd
3
wF

4iι2ι′′

λµ2n2
≤ C̃dwF

2ι

µn
.

Note the LHS is monotonically increasing w.r.t i so the inequality must hold when i = T ,

i.e.,

4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+
C̃2C2

hd
3
wF

4Tι2ι′′

λµ2n2
≤ C̃dwF

2ι

µn
.

Recall the range of our function is [−F, F ], given any distribution, the variance σ2 can

always be upper bounded by F 2/4, so we just need to show that

dwF
2ι′

λ
+

4CdwF
2ι

µn
+
C̃2C2

hd
3
wF

4Tι2ι′′

λµ2n2
≤ C̃dwF

2ι

µn
,

µ2n2ι′ + 4λµnCι+ C̃2C2
hd

2
wF

2Tι2ι′′ ≤ λµnC̃ι,

C̃2C2
hd

2
wF

2Tι2ι′′ − C̃λµnι+ µ2n2ι′ + 4λµnCι ≤ 0,

where the second and third lines are by rearrangement. A feasible solution on C̃ requires

λ2µ2n2ι2 − 4C2
hd

2
wF

2Tι2ι′′(µ2n2ι′ + 4λµnCι) ≥ 0,

λ2µ2n− 4C2
hd

2
wF

2Tι′′(µ2nι′ + 4λµCι) ≥ 0, (2.15)

where the second line is by rearrangement. Substitute our choices of λ = Cλ

√
T , n =

√
T
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and solve the quadratic inequality for Cλ; we get that it suffices to choose

Cλ = 4

√
C2

hd
2
wF

2ι′ι′′ +
16C2C4

hd
4
wF

4ι2ι′′2

µ2
= Õ

(
d2w
µ

)
, (2.16)

with assumption dw > µ. Check that Cλ depends only logarithmically on T and that it

ensures eq. (2.15) holds, therefore certifying that a universal constant C̃ exists. There-

fore, by induction, we prove that ∀i ∈ [T ] there exists a universal constant C̃ such that

with probability > 1− δ/2,

∥ŵi − w∗∥22 ≤
C̃dwF

2ι

µn
.

With this result, now we are ready to move to Step 3.

Step 3: Upper bound of ∥ŵt − w∗∥2Σt
. Multiply both sides of eq. (2.13) by Σ

1
2
t

and we have

Σ
1
2
t (ŵt − w∗) ≤ 1

2
Σ

− 1
2

t

(
t−1∑
i=0

∇fxi
(ŵi)∥w∗ − ŵi∥2∇2fxi (w̃)

)
+ Σ

− 1
2

t

(
t−1∑
i=0

∇fxi
(ŵi)ηi

)
+ λΣ

− 1
2

t (ŵ0 − w∗).

Take square of both sides and by inequality (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2 we obtain

∥ŵt − w∗∥2Σt
≤ 4

∥∥∥∥∥
t−1∑
i=0

∇fxi
(ŵi)ηi

∥∥∥∥∥
2

Σ−1
t

+ 4λ2∥ŵ0 − w∗∥2
Σ−1

t
+

∥∥∥∥∥
t−1∑
i=0

∇fxi
(ŵi)∥w∗ − ŵi∥2∇2fxi (w̃)

∥∥∥∥∥
2

Σ−1
t

.
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The remaining proof closely follows Step 2, i.e.,

∥ŵt − w∗∥2Σt
≤ 4dwσ

2ι′ +
4λCdwF

2ι

µn
+
C̃2C2

hd
2
wF

4ι2

µ2n2

(
t−1∑
i=0

√
∇fxi

(ŵi)⊤Σ
−1
t ∇fxi

(ŵi)

)2

≤ 4dwσ
2ι′ +

4λCdwF
2ι

µn
+
C̃2C2

hd
2
wF

4ι2

µ2n2

(
t−1∑
i=0

1

)(
t−1∑
i=0

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi)

)

≤ 4dwσ
2ι′ +

4λCdwF
2ι

µn
+
C̃2C2

hd
3
wF

4tι′′ι2

µ2n2

≤ Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
,

where the last inequality is by our choices of λ = Cλ

√
T , n =

√
T . Therefore, our choice

of

βt = Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)

guarantees that w∗ is always contained in Ballt with probability 1− δ.

2.8.4 Regret Analysis

Lemma 2.8.8 (Restatement of Lemma 2.5.4) Set Σt, ŵt, βt as in eq. (2.3), (2.5), &

(2.7) and suppose Assumption 2.3.1, 2.3.2, & 2.3.3 hold, then with probability > 1−δ, w∗

is contained in Ballt. Define ut = ∥∇fxt(ŵt)∥Σ−1
t
, then ∀t ∈ [T ] in Phase II of Algorithm

1,

rt ≤ 2
√
βtut +

2βtCh

λ
.

Proof: By definition of instantaneous regret rt,

rt = fx∗(w∗)− fxt(w
∗).

48



Global Black-Box Optimization Chapter 2

Recall the selection process of xt and define w̃ = argmaxw∈Ballt fxt(w),

rt ≤ fxt(w̃)− fxt(w
∗) = (w̃ − w∗)⊤∇fxt(ẇ),

where the equation is by first order Taylor’s theorem and ẇ lies between w̃ and w∗ which

means ẇ is guaranteed to be in Ballt since Ballt is convex. Then, by adding and removing

terms,

rt = (w̃ − ŵt + ŵt − w∗)⊤(∇fxt(ŵt)−∇fxt(ŵt) +∇fxt(ẇ))

≤ ∥w̃ − ŵt∥Σt∥∇fxt(ŵt)∥Σ−1
t

+ ∥ŵt − w∗∥Σt∥∇fxt(ŵt)∥Σ−1
t

+ (w̃ − ŵt)
⊤(∇fxt(ẇt)−∇fxt(ŵt))

+ (ŵt − w∗)⊤(∇fxt(ẇ)−∇fxt(ŵt)),

where the last inequality is due to Holder’s inequality. By definitions of βt in Ballt and

ut = ∥∇fxt(ŵt)∥Σ−1
t
,

rt ≤ 2
√
βtut + (w̃ − ŵt)

⊤(∇fxt(ẇ)−∇fxt(ŵt)) + (ŵt − w∗)⊤(∇fxt(ẇ)−∇fxt(ŵt)).

Again by first order Taylor’s theorem where ẅ lies between ẇ and ŵ and thus ẅ lies in

Ballt,

rt ≤ 2
√
βtut + (w̃ − ŵt)

⊤Σ
1
2
t Σ

− 1
2

t ∇2fxt(ẅ)Σ
− 1

2
t Σ

1
2
t (ẇ − ŵt)

+ (ŵt − w∗)⊤Σ
1
2
t Σ

− 1
2

t ∇2fxt(ẅ)Σ
− 1

2
t Σ

1
2
t (ẇ − ŵt)

≤ 2
√
βtut + ∥(w̃ − ŵt)

⊤Σ
1
2
t ∥2∥Σ

− 1
2

t ∇2fxt(ẅ)Σ
− 1

2
t ∥op∥Σ

1
2
t (ẇ − ŵt)∥2

+ ∥(ŵt − w∗)⊤Σ
1
2
t ∥2∥Σ

− 1
2

t ∇2fxt(ẅ)Σ
− 1

2
t ∥op∥Σ

1
2
t (ẇ − ŵt)∥2

≤ 2
√
βtut +

2βtCh

λ
,
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where the second inequality is by Holder’s inequality and the last inequality is due to

definition of βt in Ballt, Assumption 2.3.2, and our choice of Σt.

Lemma 2.8.9 (Restatement of Lemma 2.5.5) Set Σt, ŵt, βt as in eq. (2.3), (2.5),

& (2.7) and suppose Assumption 2.3.1, 2.3.2, & 2.3.3 hold, then with probability > 1−δ,

w∗ is contained in Ballt and ∀t ∈ [T ] in Phase II of Algorithm 1,

T∑
t=1

r2t ≤ 16βTdw log

(
1 +

TC2
g

dwλ

)
+

8β2
TC

2
hT

λ2
.

Proof: By Lemma 2.5.4 and inequality (a+ b)2 ≤ 2a2 + 2b2,

T∑
t=1

r2t ≤
T∑
t=1

8βtu
2
t +

8β2
tC

2
h

λ2

≤ 8βT

T∑
i=1

u2t +
8β2

TC
2
hT

λ2

≤ 16βTdw log

(
1 +

TC2
g

dwλ

)
+

8β2
TC

2
hT

λ2
,

where the second inequality is due to βt is increasing in t and the last inequality is by

Lemma 2.8.6.

By putting everything together, we are ready to prove the main cumulative regret

theorem.

Proof: [Proof of Theorem 2.4.1] By definition of cumulative regret including both
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Phase I and II,

R√
T+T =

√
T∑

j=1

rj +
T∑
t=1

rt

≤ 2
√
TF +

√√√√T
T∑
t=1

r2t

≤ 2
√
TF +

√
16TβTdw log

(
1 +

TC2
g

dwλ

)
+

8T 2β2
TC

2
h

λ2

≤ Õ

(
√
TF +

√
TβTdw +

T 2β2
T

λ2

)
,

where the first inequality is due to function range and Cauchy-Schwarz inequality, the

second inequality is by Lemma 2.5.5 and the last inequality is obtained by setting λ =

Cλ

√
T , n =

√
T as required by Lemma 2.5.3 where Cλ is in eq. (2.16).

Recall that βt is defined in eq. (2.7), so

βT = Õ

(
d3w
µ2

)
.

The proof completes by plugging in upper bound of βT .
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Chapter 3

No-Regret Misspecified Linear

Bandits

This chapter studies linear bandits when the underlying reward function is not linear.

Existing work relies on a uniform misspecification parameter ϵ that measures the sup-

norm error of the best linear approximation. This results in an unavoidable linear regret

whenever ϵ > 0. We describe a more natural model of misspecification which only requires

the approximation error at each input x to be proportional to the suboptimality gap at

x. It captures the intuition that, for optimization problems, near-optimal regions should

matter more and we can tolerate larger approximation errors in suboptimal regions. Quite

surprisingly, we show that the classical LinUCB algorithm — designed for the realizable

case — is automatically robust against such gap-adjusted misspecification. It achieves a

near-optimal
√
T regret for problems that the best-known regret is almost linear in time

horizon T . Technically, our proof relies on a novel self-bounding argument that bounds

the part of the regret due to misspecification by the regret itself.
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3.1 Introduction

Stochastic linear bandit is a classical problem of online learning and decision-making

with many influential applications, e.g., A/B testing [59], recommendation systems [50],

advertisement placements [60], clinical trials [61], hyperparameter tuning [62], and new

material discovery [63].

More formally, stochastic bandit is a sequential game between an agent who chooses

a sequence of actions x0, ..., xT−1 ∈ X and nature who decides on a sequence of noisy

observations (rewards) y0, ..., yT−1 according to yt = f0(xt) + noise for some underlying

function f0. The goal of the learner is to minimize the cumulative regret the agent

experiences relative to an oracle who knows the best action to choose ahead of time, i.e.,

RT (x0, ..., xT−1) =
T−1∑
t=0

rt =
T−1∑
t=0

max
x∈X

f0(x)− f0(xt),

where rt is called instantaneous regret.

Despite being highly successful in the wild, existing theory for stochastic linear bandits

(or more generally learning-oracle based bandits problems [51, 44]) relies on a realizability

assumption, i.e., the learner is given access to a function class F such that the true

expected reward f0 : X → R satisfies that f0 ∈ F . Realizability is considered one of the

strongest and most restrictive assumptions in the standard statistical learning setting,

but in the linear bandits, all known attempts to deviate from the realizability assumption

result in a regret that grows linearly with T [64, 65, 66, 67, 68, 69].

In practical applications, it is often observed that feature-based representation of the

actions with function approximations in estimating the reward can result in very strong

policies even if the estimated reward functions are far from being correct [51].

So what went wrong? The critical intuition we rely on is the following:
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It should be sufficient for the estimated reward function to clearly differentiate

good actions from bad ones, rather than requiring it to perfectly estimate the

rewards numerically.

Contributions. In this chapter, we formalize this intuition by defining a new family

of misspecified bandit problems based on a condition that adjusts the need for an accurate

approximation pointwise at every x ∈ X according to the suboptimality gap at x. Unlike

the existing misspecified linear bandits problems with a linear regret, our problem admits

a nearly optimal Õ(
√
T ) regret despite being heavily misspecified. Specifically:

• We define ρ-gap-adjusted misspecified (ρ-GAM) function approximations and char-

acterize how they preserve important properties of the true function that are rele-

vant for optimization.

• We show that the classical LinUCB algorithm [16] can be used as is (up to some

mild hyperparameters) to achieve an Õ(
√
T ) regret under a moderate level of gap-

adjusted misspecification (ρ ≤ O(1/
√
log T )). In comparison, the regret bound

one can obtain under the corresponding uniform misspecification setting is only

Õ(T/
√
log T ). This represents an exponential improvement in the average regret

metric RT/T .

To the best of our knowledge, the suboptimality gap-adjusted misspecification prob-

lem was not studied before and we are the first to obtain
√
T -style regrets without a

realizability assumption.

Technical novelty. Due to misspecification, we have technical challenges that ap-

pear in bounding the instantaneous regret and parameter uncertainty region. We tackle

the challenges by a self-bounding trick, i.e., bounding the instantaneous regret by the

instantaneous regret itself, which can be of independent interest in more settings, e.g.,

Gaussian process bandit optimization and reinforcement learning.
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3.2 Related Work

The problem of linear bandits was first introduced in [70]. Then [71] proposed the

upper confidence bound to study linear bandits where the number of actions is finite.

Based on it, [54] proposed an algorithm based on confidence ellipsoids and then [16]

simplified the proof with a novel self-normalized martingale bound. Later [50] proposed

a simpler and more robust linear bandit algorithm and showed Õ(
√
dT ) regret cannot

be improved beyond a polylog factor. [43] further improved the regret upper and lower

bound, which characterized the minimax regret up to an iterated logarithmic factor. See

[72] for a detailed survey of linear bandits.

In terms of misspecification, [64] first studied the misspecified linear bandit with

a fixed action set. They found that LinUCB [16] is not robust when misspecification

is large. They showed that in a favourable case when one can test the linearity of

the reward function, their RLB algorithm is able to switch between the linear bandit

algorithm and finite-armed bandit algorithm to address misspecification issue and achieve

the Õ(min{
√
K, d}

√
T ) regret where K is number of arms.

The most studied setting of model misspecification is uniform misspecification where

the ℓ∞ distance between the best-in-class function and the true function is always upper

bounded by some parameter ϵ, i.e.,

Definition 3.2.1 (ϵ-uniform misspecification) We say function class F is an ϵ-uniform

misspecified approximation of f0 if there exists f ∈ F such that supx∈X |f(x)−f0(x)| ≤ ϵ.

Under this definition, [65] proposed the optimal design-based phased elimination algo-

rithm for misspecified linear bandits and achieved Õ(d
√
T + ϵ

√
dT ) regret when number

of actions is infinite. They also found that with modified confidence band in LinUCB,

LinUCB is able to achieve the same regret. With the same misspecification model, [44]

studied contextual bandit with regression oracle, [67] studied multi-armed linear contex-
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tual bandit, and [66] studied misspecified contextual linear bandits after reduction of the

algorithm. All of their results suffer from linear regrets. Later [68] studied misspecified

Gaussian process bandit optimization problem and achieved Õ(d
√
T+ϵ
√
dT ) regret when

linear kernel is used in Gaussian process. Moreover, their lower bound shows that Ω̃(ϵT )

term is unavoidable in this setting.

Besides uniform misspecification, there are some work considering different defini-

tions of misspecification. [69] defines misspecification error as an expected squared error

between true function and best-in-class function where expectation is taken over distri-

bution of context space and action space. [73] considered average misspecification, which

is weaker than uniform misspecification and allows tighter regret bound. However, they

also have linear regrets. Our work is different from all related work mentioned above

because we are working under a newly defined misspecifiation condition and show that

LinUCB is a no-regret algorithm in this case.

Model misspecification is naturally addressed in the related agnostic contextual ban-

dits setting [74], but these approaches typically require the action space to be finite, thus

not directly applicable to our problem. In addition, empirical evidence [51] suggests that

the regression oracle approach works better in practice than the agnostic approach even

if realizability cannot be verified.

3.3 Preliminaries

3.3.1 Notations

Let [n] denote the integer set {1, 2, ..., n}. The algorithm runs in T rounds in total.

Let f0 denote the true function, so the maximum function value is defined as f ∗ =

maxx∈X f0(x) and the maximum point is defined as x∗ = argmaxx∈X f0(x). Let X ⊂ Rd
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Figure 3.1: (a): An example of ρ-gap-adjusted misspecification (Definition 3.3.1) in
1-dimension where ρ = 0.7. The blue line shows a non-linear true function and the
gray region shows the gap-adjusted misspecified function class. Note the vertical range
of gray region at a certain point x depends on the suboptimal gap. For example, at
x = 1 suboptimal gap is 2 and the vertical range is 4ρ = 2.8. The red line shows a
feasible linear function that is able to optimize the true function by taking x∗ = 2. (b):
An example of weak ρ-gap-adjusted misspecification (Definition 3.3.3) in 1-dimension
where ρ = 0.7. The difference to (a) is that one can shift the qualifying approximation
arbitrarily up or down and the specified model only has to ρ-RAM approximate f0 up
to an additive constant factor.

and Y ⊂ R denote the domain and range of f0. We use W to denote the parameter class

of a family of linear functions F := {fw : X → Y|w ∈ W} where fw(x) = w⊤x. Define

w∗ as the parameter of best linear approximation function. ∥w∥2 ≤ Cw,∀w ∈ W and

∥x∥2 ≤ Cb,∀x ∈ X . For a vector x, its ℓ2 norm is denoted by ∥x∥2 =
√∑d

i=1 x
2
i and for

a matrix A its operator norm is denoted by ∥A∥op. For a vector x and a square matrix

A, define ∥x∥2A = x⊤Ax.
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3.3.2 Problem Setup

We consider the following optimization problem:

x∗ = argmax
x∈X

f0(x),

where f0 is the true function which might not be linear in X . We want to use a linear

function fw = w⊤x ∈ F to approximate f0 and maximize f0. At time 0 ≤ t ≤ T − 1,

after querying a data point xt, we will receive a noisy feedback:

yt = f0(xt) + ηt, (3.1)

where ηt is independent, zero-mean, and σ-sub-Gaussian noise.

The major highlight of our study is that we do not rely on the popular realizability

assumption (i.e. f0 ∈ F) that is frequently assumed in the existing function approxi-

mation literature. Alternatively, we propose the following gap-adjusted misspecification

condition.

Definition 3.3.1 (ρ-gap-adjusted misspecification) We say a function f is a ρ-gap-

adjusted misspecified (or ρ-GAM in short) approximation of f0 if for parameter 0 ≤ ρ < 1,

sup
x∈X

∣∣∣∣f(x)− f0(x)f ∗ − f0(x)

∣∣∣∣ ≤ ρ.

We say function class F = {fw|w ∈ W} satisfies ρ-GAM for f0, if there exists w∗ ∈ W

such that fw∗ is a ρ-GAM approximation of f0.

Observe that when ρ = 0, this recovers the standard realizability assumption, but when

ρ > 0 it could cover many misspecified function classes.
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Figure 3.1(a) shows a 1-dimensional example with fw(x) = 0.75x+0.5 and piece-wise

linear function f0(x) that satisfies local misspecification. With Definition 3.3.1, we have

the following proposition.

Proposition 3.3.2 Let f be a ρ-GAM approximation of f0 (Definition 3.3.1). Then it

holds:

• (Preservation of maximizers)

argmax
x

f(x) = argmax
x

f0(x).

• (Preservation of max value)

max
x∈X

f(x) = f ∗.

• (Self-bounding property)

|f(x)− f0(x)| ≤ ρ(f ∗ − f0(x)) = ρr(x).

This tells f and f0 coincide on the same global maximum points and the same global

maxima if Definition 3.3.1 is satisfied, while allowing f and f0 to be different (potentially

large) at other locations. Therefore, Definition 3.3.1 is a “local” assumption that does

not require f to be uniformly close to f0 (e.g. the “uniform” misspecification assumes

supx∈X |f(x)− f0(x)| ≤ ρ). Proof of Proposition 3.3.2 is shown in Section 3.6.1.

In addition, we can modify Definition 3.3.1 with a slightly weaker condition that only

requires argmaxx f(x) = argmaxx f0(x) but not necessarily maxx∈X f(x) = f ∗.

Definition 3.3.3 (Weak ρ-gap-adjusted misspecification) Denote f ∗
w = maxx∈X f(x).

Then we say f is (weak) ρ-gap-adjusted misspecification approximation of f0 for a pa-
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rameter 0 ≤ ρ < 1 if:

sup
x∈X

∣∣∣∣f(x)− f ∗
w + f ∗ − f0(x)

f ∗ − f0(x)

∣∣∣∣ ≤ ρ.

See Figure 3.1(b) for an example satisfying Definition 3.3.3, in which there is a constant

gap between f ∗
w and f ∗. The idea of this weaker assumption is that we can always

extend the function class by adding a single offset parameter c w.l.o.g. to learn the

constant gap f ∗ − f ∗
w. In the linear case, this amounts to homogenizing the feature

vector by appending 1. For this reason, we stick to Definition 3.3.1 and linear function

approximation for conciseness and clarity in main sections. See Section 3.6.2 for formal

statements and proofs of regret bound of linear bandits under Definition 3.3.3.

Note that both Definition 3.3.1 and Definition 3.3.3 are defined generically which

do not require any assumptions on the parametric form of f . While we focus on the

linear bandit setting in this chapter, this notion can be considered for arbitrary function

approximation learning problems.

3.3.3 Assumptions

Assumption 3.3.4 (Boundedness) For any x ∈ X , ∥x∥2 ≤ Cb. For any w ∈ W,

∥w∥2 ≤ Cw. Moreover, for any x, x̃ ∈ X , the true expected reward function |f0(x) −

f0(x̃)| ≤ F .

These are mild assumptions that we assume for convenience. Relaxations of these are

possible but not the focus of this chapter. Note that the additional assumption is not

required when f0 is realizable.

Assumption 3.3.5 Suppose X ∈ Rd is a compact set, and all the global maximizers of
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f0 live on the d− 1 dimensional hyperplane. i.e., ∃a ∈ Rd, b ∈ R1, s.t.

argmax
x∈X

f0(x) ⊂ {x ∈ Rd : x⊤a = b}.

For instance, when d = 1, the above reduces to that f0 has a unique maximizer. This

is a compatibility assumption for Definition 3.3.1, since any linear function that violates

Assumption 3.3.5 will not satisfy Definition 3.3.1.

In addition, to obtain an Õ(
√
T ) regret, for any finite sample T , we require the

following condition.

Assumption 3.3.6 (Low misspecification) The linear function class is a ρ-GAM ap-

proximation of f0 with

ρ <
1

8d

√
log
(
1 +

TC2
bC

2
w

dσ2

) = O

(
1

d
√
log T

)
. (3.2)

The condition is required for technical reasons. Relaxing this condition for LinUCB may

require fundamental breakthroughs that knock out logarithmic factors from its regret

analysis. This will be further clarified in the proof. In general, however, we conjecture

that this condition is not needed and there are algorithms that can achieve Õ(
√
T/(1−ρ))

regret for any ρ < 1, but a new algorithm needs to be designed.

While this assumption may suggest that we still require realizability in a truly asymp-

totic world, handling a O(1/
√
log T ) level of misspecification is highly non-trivial in finite

sample setting. For instance, if T is a trillion, 1/
√

log(1e12) ≈ 0.19. This means that

for most practical cases, LinUCB is able to tolerate a constant level of misspecification

under the GAM model.
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3.3.4 LinUCB Algorithm

We will focus on analyzing the classical Linear Upper Confidence Bound (LinUCB)

algorithm due to [54, 16], shown below.

Algorithm 2 LinUCB [16]

Input: Predefined sequence βt for t = 1, 2, 3, ... as in eq. (3.5); Set λ = σ2/C2
w and

Ball0 =W .

1: for t = 0, 1, 2, ... do
2: Select xt = argmaxx∈X maxw∈Ballt w

⊤x.
3: Observe yt = f0(xt) + ηt.
4: Update

Σt+1 = λI +
t∑

i=0

xix
⊤
i where Σ0 = λI. (3.3)

5: Update

ŵt+1 = argmin
w

λ∥w∥22 +
t∑

i=0

(w⊤xi − yi)22. (3.4)

6: Update Ballt+1 = {w|∥w − ŵt+1∥2Σt+1
≤ βt+1}.

7: end for

3.4 Main Results

In this section, we show that the classical LinUCB algorithm [16] works in ρ-gap-

adjusted misspecified linear bandits and achieves cumulative regret at the order of Õ(
√
T/(1−

ρ)). The following theorem shows the cumulative regret bound.

Theorem 3.4.1 Suppose Assumptions 3.3.4, 3.3.5, and 3.3.6 hold. Set

βt = 8σ2

(
1 + d log

(
1 +

tC2
bC

2
w

dσ2

)
+ 2 log

(
π2t2

3δ

))
. (3.5)
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Then Algorithm 2 guarantees w.p. > 1− δ simultaneously for all T = 1, 2, ...

RT ≤ F +

√
8(T − 1)βT−1d

(1− ρ)2
log

(
1 +

TC2
bC

2
w

dσ2

)
.

Remark 3.4.2 The result shows that LinUCB achieves Õ(
√
T ) cumulative regret bound

and thus it is a no-regret algorithm in ρ-gap-adjusted misspecified linear bandits. In

contrast, LinUCB can only achieve Õ(
√
T + ϵT ) regret in uniformly misspecified linear

bandits. Even if ϵ = Õ(1/
√
log T ), the resulting regret Õ(T/

√
log T ) is still exponentially

worse than ours.

Proof: By definition of cumulative regret, function range absolute bound F , and

Cauchy-Schwarz inequality,

RT = r0 +
T−1∑
t=1

rt

≤ F +

√√√√(T−1∑
t=1

1

)(
T−1∑
t=1

r2t

)

= F +

√√√√(T − 1)
T−1∑
t=1

r2t .

Observe that the choice of βt is monotonically increasing in t. Also by Lemma 3.4.7, we

get that with probability 1− δ, w∗ ∈ Ballt,∀t = 1, 2, 3, ..., which verifies the condition to

apply Lemma 3.4.5 simultaneously for all T = 1, 2, 3, ..., thereby completing the proof.

3.4.1 Regret Analysis

The proof follows the LinUCB analysis closely. The main innovation is a self-bounding

argument that controls the regret due to misspecification by the regret itself. This appears

63



No-Regret Misspecified Linear Bandits Chapter 3

in Lemma 3.4.4 and then again in the proof of Lemma 3.4.7.

Before we proceed, let ∆t denote the deviation term of our linear function from the

true function at xt, formally,

∆t = f0(xt)− w⊤
∗ xt, (3.6)

And our observation model (eq. (3.1)) becomes

yt = f0(xt) + ηt = w⊤
∗ xt +∆t + ηt. (3.7)

Moreover, we have the following lemma showing the property of deviation term ∆t.

Lemma 3.4.3 (Bound of deviation term) ∀t ∈ {0, 1, . . . , T − 1},

|∆t| ≤
ρ

1− ρ
w⊤

∗ (x∗ − xt).

Proof: Recall the definition of deviation term in eq. (3.6):

∆t = f0(xt)− w⊤
∗ xt.

By Definition 3.3.1, ∀t ∈ {0, 1, . . . , T − 1},

−ρ(f ∗ − f0(xt)) ≤ ∆t ≤ ρ(f ∗ − f0(xt))

−ρ(f ∗ − w⊤
∗ xt −∆t) ≤ ∆t ≤ ρ(f ∗ − w⊤

∗ xt −∆t)

−ρ(w⊤
∗ x∗ − w⊤

∗ xt −∆t) ≤ ∆t ≤ ρ(w⊤
∗ x∗ − w⊤

∗ xt −∆t)

−ρ
1− ρ

(w⊤
∗ x∗ − w⊤

∗ xt) ≤ ∆t ≤
ρ

1 + ρ
(w⊤

∗ x∗ − w⊤
∗ xt),

where the third line is by Proposition 3.3.2 and the proof completes by taking the absolute
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value of the lower and upper bounds.

Next, we prove instantaneous regret bound and its sum of squared regret version in

the following two lemmas:

Lemma 3.4.4 (Instantaneous regret bound) Define ut := ∥xt∥Σ−1
t
, assume w∗ ∈

Ballt then for each t ≥ 1

rt ≤
2
√
βtut

1− ρ
.

Proof: By definition of instantaneous regret,

rt = f ∗ − f0(xt)

= w⊤
∗ x∗ − (w⊤

∗ xt +∆(xt))

≤ w⊤
∗ x∗ − w⊤

∗ xt + ρ(f ∗ − f0(xt))

= w⊤
∗ x∗ − w⊤

∗ xt + ρrt,

where the inequality is by Definition 3.3.1. Therefore, by rearranging the inequality we

have

rt ≤
1

1− ρ
(w⊤

∗ x∗ − w⊤
∗ xt) ≤

2
√
βtut

1− ρ
,

where the last inequality is by Lemma 3.4.6.

Lemma 3.4.5 Assume βt is monotonically nondecreasing and w∗ ∈ Ballt for all t =

1, ..., T − 1, then

T−1∑
t=1

r2t ≤
8βT−1d

(1− ρ)2
log

(
1 +

TC2
b

dλ

)
.
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Proof: By definition ut =
√
x⊤t Σ

−1
t xt and Lemma 3.4.4,

T−1∑
t=1

r2t ≤
T−1∑
t=1

4

(1− ρ)2
βtu

2
t

≤ 4βT−1

(1− ρ)2
T−1∑
t=1

u2t

≤ 4βT−1

(1− ρ)2
T−1∑
t=0

u2t

≤ 8βT−1d

(1− ρ)2
log

(
1 +

TC2
b

dλ

)
,

where the second inequality is by the monotonic increasing property of βt and the last

inequality uses the elliptical potential lemma (Lemma 3.4.9).

Previous two lemmas hold on the following lemma, bounding the gap between f ∗ and

the linear function value at xt, shown below.

Lemma 3.4.6 Define ut = ∥xt∥Σ−1
t

and assume βt is chosen such that w∗ ∈ Ballt. Then

w⊤
∗ (x∗ − xt) ≤ 2

√
βtut.

Proof: Let w̃ denote the parameter that achieves argmaxw∈Ballt w
⊤xt, by the opti-

mality of xt,

w⊤
∗ x∗ − w⊤

∗ xt ≤ w̃⊤xt − w⊤
∗ xt

= (w̃ − ŵt + ŵt − w∗)
⊤xt

≤ ∥w̃ − ŵt∥Σt∥xt∥Σ−1
t

+ ∥ŵt − w∗∥Σt∥xt∥Σ−1
t

≤ 2
√
βtut

where the second inequality applies Holder’s inequality; the last line uses the definition
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of Ballt (note that both w∗, w̃ ∈ Ballt).

3.4.2 Confidence Analysis

All analysis in the previous section requires w∗ ∈ Ballt,∀t ∈ [T ]. In this section, we

show that our choice of βt in (3.5) is valid and w∗ is trapped in the uncertainty set Ballt

with high probability.

Lemma 3.4.7 (Feasibility of Ballt) Suppose Assumptions 3.3.4, 3.3.5, and 3.3.6 hold.

Set βt as in eq. (3.5). Then, w.p. > 1− δ,

∥w∗ − ŵt∥2Σt
≤ βt,∀t = 1, 2, ...

Proof: By setting the gradient of objective function in eq. (3.4) to be 0, we obtain

the closed form solution of eq. (3.4):

ŵt = Σ−1
t

t−1∑
i=0

yixi.

Therefore,

ŵt − w∗ = −w∗ + Σ−1
t

t−1∑
i=0

xiyi

= −w∗ + Σ−1
t

t−1∑
i=0

xi(x
⊤
i w∗ + ηi +∆i)

= −w∗ + Σ−1
t

(
t−1∑
i=0

xix
⊤
i

)
w∗ + Σ−1

t

t−1∑
i=0

ηixi + Σ−1
t

t−1∑
i=0

∆ixi, (3.8)
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where the second equation is by eq. (3.7) and the first two terms of eq. (3.8) can be

further simplified as

−w∗ + Σ−1
t

(
t−1∑
i=0

xix
⊤
i

)
w∗ = −w∗ + Σ−1

t

(
λI +

t−1∑
i=0

xix
⊤
i − λI

)
w∗

= −w∗ + Σ−1
t Σtw∗ − λΣ−1

t w∗

= −λΣ−1
t w∗,

where the second equation is by definition of Σt (eq. (3.3)). Therefore, eq. (3.8) can be

rewritten as

ŵt − w∗ = −λΣ−1
t w∗ + Σ−1

t

t−1∑
i=0

ηixi + Σ−1
t

t−1∑
i=0

∆ixi.

Multiply both sides by Σ
1
2
t and we have

Σ
1
2
t (ŵt − w∗) = −λΣ

− 1
2

t w∗ + Σ
− 1

2
t

t−1∑
i=0

ηixi + Σ
− 1

2
t

t−1∑
i=0

∆ixi.

Take a square of both sides and apply generalized triangle inequality, we have

∥ŵt − w∗∥2Σt
≤ 4λ2∥w∗∥2Σ−1

t
+ 4

∥∥∥∥∥
t−1∑
i=0

ηixi

∥∥∥∥∥
2

Σ−1
t

+ 4

∥∥∥∥∥
t−1∑
i=0

∆ixi

∥∥∥∥∥
2

Σ−1
t

. (3.9)

The remaining task is to bound these three terms separately. The first term of eq. (3.9)

is bounded as

4λ2∥w∗∥2Σ−1
t
≤ 4λ∥w∗∥22 ≤ 4σ2,

where the first inequality is by definition of Σt and ∥Σ−1
t ∥op ≤ 1/λ and the second
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inequality is by choice of λ = σ2/C2
w.

The second term of eq. (3.9) can be bounded by Lemma A.0.2 and Lemma A.0.5:

4

∥∥∥∥∥
t−1∑
i=0

ηixi

∥∥∥∥∥
2

Σ−1
t

≤ 4σ2 log

(
det(Σt) det(Σ0)

−1

δ2t

)

≤ 4σ2

(
d log

(
1 +

tC2
b

dλ

)
− log δ2t

)
,

where δt is chosen as 3δ/(π2t2) so that the total failure probabilities over T rounds can

always be bounded by δ/2:

T∑
t=1

3δ

π2t2
<

∞∑
t=1

3δ

π2t2
=

3δπ2

6π2
=
δ

2
.

And the third term of eq. (3.9) can be bounded as

4

∥∥∥∥∥
t−1∑
i=0

∆ixi

∥∥∥∥∥
2

Σ−1
t

= 4

(
t−1∑
i=0

∆ixi

)⊤

Σ−1
t

(
t−1∑
j=0

∆jxj

)

= 4
t−1∑
i=0

t−1∑
j=0

∆i∆jxiΣ
−1
t xj

≤ 4
t−1∑
i=0

t−1∑
j=0

|∆i||∆j|∥xi∥Σ−1
t
∥xj∥Σ−1

t
,

where the last line is by taking the absolute value and Cauchy-Schwarz inequality. Con-
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tinue the proof and we have

4
t−1∑
i=0

t−1∑
j=0

|∆i||∆j|∥xi∥Σ−1
t
∥xj∥Σ−1

t
= 4

(
t−1∑
i=0

|∆i|∥xi∥Σ−1
t

)(
t−1∑
j=0

|∆j|∥xj∥Σ−1
t

)

= 4

(
t−1∑
i=0

|∆i|∥xi∥Σ−1
t

)2

≤ 4

(
t−1∑
i=0

|∆i|2
)(

t−1∑
i=0

∥xj∥2Σ−1
t

)

≤ 4dρ2
t−1∑
i=0

r2i .

where the first inequality is due to Cauchy-Schwarz inequality and the second uses the

self-bounding properties |∆i| ≤ ρri from Proposition 3.3.2 and Lemma 3.4.8.

To put things together, we have shown that w.p. > 1− δ, for any t ≥ 1,

∥ŵt − w∗∥2Σ−1
t
≤ 4σ2 + 4ρ2d

t−1∑
i=0

r2i + 4σ2

(
d log

(
1 +

tC2
b

dλ

)
+ 2 log

(
π2t2

3δ

))
, (3.10)

where we condition on (3.10) for the rest of the proof.

Observe that this implies that the feasibility of w∗ in Ballt can be enforced if we choose

βt to be larger than (3.10). The feasiblity of w∗ in turn allows us to apply Lemma 3.4.4

to bound the RHS with β0, ..., βt−1. We will use induction to prove that our choice

βt := 2σ2ιt for t = 1, 2, ...

is valid, where short hand

ιt := 4 + 4

(
d log

(
1 +

tC2
b

dλ

)
+ 2 log

(
π2t2

3δ

))
.

For the base case t = 1, by eq. (3.10) and the definition of β1 we directly have
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∥ŵ1 − w∗∥2Σ−1
1

≤ β1. Assume our choice of βi is feasible for i = 1, ..., t − 1, then we can

write

∥ŵt − w∗∥2Σ−1
t
≤ σ2ιt + 4ρ2d

t−1∑
i=1

βiu
2
i

≤ σ2ιt + 4ρ2dβt−1

t−1∑
i=1

u2i ,

where the second line is due to non-decreasing property of βt. Then by Lemma 3.4.9 and

Assumption 3.3.6, we have

∥ŵt − w∗∥2Σ−1
t
≤ σ2ιt + 8ρ2d2βt−1 log

(
1 +

tC2
b

dλ

)
≤ σ2ιt +

1

2
βt−1 ≤ 2σ2ιt = βt, (3.11)

The critical difference from the standard LinUCB analysis here is that if βt−1 appears

on the LHS of the bound and if its coefficient is larger, any valid bound for βt will have

to grow exponentially in t. This is where Assumption 3.3.6 helps us. Assumption 3.3.6

ensures that the coefficient of βt−1 is smaller than 1/2, so we can take βt−1 ≤ βt and

move βt/2 to the right-hand side.

Proof of previous lemma needs the following two lemmas.

Lemma 3.4.8 (Upper bound of
∑t−1

i=0 x
⊤
i Σ

−1
t xi)

t−1∑
i=0

x⊤i Σ
−1
t xi ≤ d.
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Proof: Recall that Σt =
∑t−1

i=0 xix
T
i + λId.

t−1∑
i=0

x⊤i Σ
−1
t xi =

t−1∑
i=0

tr
[
Σ−1

t xix
T
i

]
= tr

[
Σ−1

t

t−1∑
i=0

xix
T
i

]

= tr
[
Σ−1

t (Σt − λId)
]

= tr [Id]− tr
[
λΣ−1

t

]
≤ d.

The last line follows from the fact that Σ−1
t is positive semidefinite.

Lemma 3.4.9 (Upper bound of
∑t−1

i=0 x
⊤
i Σ

−1
i xi (adapted from [16]))

t−1∑
i=0

x⊤i Σ
−1
i xi ≤ 2d log

(
1 +

tC2
b

dλ

)
.

Proof: First we prove that ∀i ∈ {0, 1, ..., t − 1}, 0 ≤ x⊤i Σ
−1
i xi < 1. Recall the

definition of Σi and we know Σ−1
i is a positive semidefinite matrix and thus 0 ≤ x⊤i Σ

−1
i xi.

To prove x⊤i Σ
−1
i xi < 1, we need to decompose Σi and write

x⊤i Σ
−1
i xi = x⊤i

(
λI +

i−1∑
j=0

xjx
⊤
j

)−1

xi

= x⊤i

(
xix

⊤
i − xix⊤i + λI +

i−1∑
j=0

xjx
⊤
j

)−1

xi.

Let A = −xix⊤i + λI +
∑i−1

j=0 xjx
⊤
j and it becomes

x⊤i Σ
−1
i xi = x⊤i (xix

⊤
i + A)−1xi.
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By Sherman-Morrison lemma (Lemma A.0.3), we have

x⊤i Σ
−1
i xi = x⊤i

(
A−1 − A−1xix

⊤
i A

−1

1 + x⊤i A
−1xi

)
xi

= x⊤i A
−1xi −

x⊤i A
−1xix

⊤
i A

−1xi
1 + x⊤i A

−1xi

=
x⊤i A

−1xi
1 + x⊤i A

−1xi
< 1.

Next we use the fact that ∀x ∈ [0, 1), x ≤ 2 log(x+ 1) and we have

t−1∑
i=0

x⊤i Σ
−1
i xi ≤

t−1∑
i=0

2 log
(
1 + x⊤i Σ

−1
i xi

)
≤ 2 log

(
det(Σt−1)

det(Σ0)

)
≤ 2d log

(
1 +

tC2
b

dλ

)
,

where the last two lines are by Lemma 2.8.4 and Lemma A.0.5.

3.5 Conclusions

We study linear bandits with the underlying reward function being non-linear, which

falls into the misspecified bandit framework. Existing work on misspecified bandit usu-

ally assumes uniform misspecification where the ℓ∞ distance between the best-in-class

function and the true function is upper bounded by the misspecification parameter ϵ.

Existing lower bound shows that the Ω̃(ϵT ) term is unavoidable where T is the time

horizon, thus the regret bound is always linear. However, in solving optimization prob-

lems, one only cares about the approximation error near the global optimal point and

approximation error is allowed to be large in highly suboptimal regions. In this chapter,

we capture this intuition and define a natural model of misspecification, called ρ-gap-
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adjusted misspecificaiton, which only requires the approximation error at each input x

to be proportional to the suboptimality gap at x with ρ being the proportion parameter.

Previous work found that classical LinUCB algorithm is not robust in ϵ-uniform

misspecified linear bandit when ϵ is large. However, we show that LinUCB is automat-

ically robust against such gap-adjusted misspecification. Under mild conditions, e.g.,

ρ ≤ O(1/
√
log T ), we prove that it achieves the near-optimal Õ(

√
T ) regret for problems

that the best-known regret is almost linear. Also, LinUCB doesn’t need the knowledge

of ρ to run. However, if the upper bound of ρ is revealed to LinUCB, the βt term can

be carefully chosen according to eq. (3.11). Our technical novelty lies in a new self-

bounding argument that bounds part of the regret due to misspecification by the regret

itself, which can be of independent interest in more settings.

We believe our analysis for LinUCB is tight and the requirement that ρ = O(1/
√
log T )

is essential, but we conjecture that there is a different algorithm that could handle con-

stant ρ or even when ρ approaches 1 at a rate of O(1/
√
T ). We leave the resolution to

this conjecture as future work.

More broadly, this chapter opens a brand new door for research in model misspeci-

fication, including misspecified linear bandits, misspecified kernelized bandits, and even

reinforcement learning with misspecified function approximation. Moreover, we hope this

chapter make people rethink about the relationship between function optimization and

function approximation. In the future, much more can be done. For example, we can de-

sign a new no-regret algorithm that works under gap-adjusted misspecification framework

where ρ is a constant, and study ρ-gap-adjusted misspecified Gaussian process bandit

optimization.
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3.6 Additional Proofs

3.6.1 Proof of Proposition 3.3.2

Equivalently, ρ-gap-adjusted misspecification (Definition 3.3.1) satisfies

|f(x)− f0(x)| ≤ ρ |f ∗ − f0(x)| , ∀x ∈ X . (3.12)

Proof: [Proof of preservation of max value: maxx∈X f(x) = f ∗]

Let f ∗
w := maxx∈X f(x). We first prove f ∗

w ≤ f ∗ by contradiction. Suppose f ∗
w > f ∗,

since X is compact, there exists xw ∈ X such that f(xw) = f ∗
w > f ∗. Then by eq. (3.12)

this implies

f(xw)− f0(xw) ≤ ρ(f ∗ − f0(xw))⇒ f ∗ < f ∗
w = f(xw) ≤ ρf ∗ + (1− ρ)f0(xw) ≤ f ∗

Contraction! Therefore, f ∗
w ≤ f ∗. On the other hand, choose x0 ∈ argmaxx∈X f0(x), then

by (3.12) f(x0) = f0(x0) = f ∗. This implies f ∗
w ≥ f ∗. Combing both results to obtain

f ∗
w = f ∗.

Proof: [Proof of preservation of maximizers: argmaxx f(x) = argmaxx f0(x)]

Using that f(x) ≤ ρf ∗ + (1 − ρ)f0(x) and maxx∈X f(x) = f ∗, it is easy to verify

argmaxx f(x) ⊂ argmaxx f0(x). On the other hand, if x′ ∈ argmaxx f0(x), then by eq.

(3.12) f(x′) = f0(x
′) = f ∗ and this means argmaxx f0(x) ⊂ argmaxx f(x).

Proof: [Proof of self-bounding property] This directly comes from the definition.

3.6.2 Weak ρ-Gap-Adjusted Misspecification

To study the properties of weak ρ-gap-adjusted misspecification condition, first we

recall Definition 3.3.3.
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Definition 3.6.1 (Restatement of Weak ρ-gap-adjusted misspecification) Denote

f ∗
w = maxx∈X f(x). Then we say f is (weak) ρ-gap-adjusted misspecification approxima-

tion of f0 for a parameter 0 ≤ ρ < 1 if:

sup
x∈X

∣∣∣∣f(x)− f ∗
w + f ∗ − f0(x)

f ∗ − f0(x)

∣∣∣∣ ≤ ρ.

Under the weak ρ-gap-adjusted misspecification condition, it no longer holds f ∗
w = f ∗.

However, it still preserves the maximizers.

Proposition 3.6.2 Under the weak ρ-gap-adjusted misspecification condition, it holds

argmax
x

f(x) = argmax
x

f0(x).

Proof: Suppose x′ ∈ argmaxx f(x), then by definition

|f ∗−f0(x′)| = |f(x′)−f ∗
w+f

∗−f0(x′)| ≤ ρ|f ∗−f0(x′)| ⇒ (1−ρ)|f ∗−f0(x′)| ≤ 0⇒ x′ ∈ argmax
x

f0(x).

On the other hand, if x′ ∈ argmaxx f0(x), then

|f ∗
w − f(x′)| = |f(x′)− f ∗

w + f ∗ − f0(x′)| ≤ ρ|f ∗ − f0(x′)| = 0⇒ x′ ∈ argmax
x

f(x).

The next proposition shows the weak ρ-adjusted misspecification condition charac-

terizes the suboptimality gap between f and f0.

Proposition 3.6.3 Denote g(x) := f ∗
w − f(x) ≥ 0, g0(x) := f ∗ − f0(x) ≥ 0, then the

weak ρ-gap-adjusted misspecification condition implies:

(1− ρ)g0(x) ≤ g(x) ≤ (1 + ρ)g0(x), x ∈ X .
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This can be proved directly by the triangular inequality. This reveals the weak ρ-gap-

adjusted misspecification condition requires g(x) to live in the band [(1 − ρ)g0(x), (1 +

ρ)g0(x)], and the concrete maximum values f ∗
w and f ∗ can be arbitrarily different.

To study linear bandits under the weak ρ-gap-adjusted misspecification, we need to

slightly modify LinUCB [16] and work with the following LinUCBw algorithm.

Algorithm 3 LinUCBw (adapted from [16])

Input: Predefined sequence βt for t = 1, 2, 3, ... as in eq. (3.13); Set λ = σ2/C2
w and

Ball0 =W .

1: for t = 0, 1, 2, ... do

2: Select xt = argmaxx∈X max[w⊤,c]∈Ballt [w
⊤, c]

[
x
1

]
.

3: Observe yt = f0(xt) + ηt.
4: Update

Σt+1 = λId+1 +
t∑

i=0

[
xi
1

]
· [x⊤i , 1] where Σ0 = λId+1.

5: Update [
ŵt+1

ĉt+1

]
= argmin

w,c
λ

∥∥∥∥[wc
]∥∥∥∥2

2

+
t∑

i=0

(w⊤xi + c− yi)22.

6: Update

Ballt+1 =

{[
w
c

] ∣∣∣∣ ∥∥∥∥[wc
]
−
[
ŵt+1

ĉt+1

]∥∥∥∥2
Σt+1

≤ βt+1

}
.

7: end for

Theorem 3.6.4 Suppose Assumptions 3.3.4, 3.3.5, and 3.3.6 hold. W.l.o.g., assuming

c∗ = f ∗ − f ∗
w ≤ F . Set

βt = 8σ2

(
1 + (d+ 1) log

(
1 +

tC2
b (C

2
w + F 2)

dσ2

)
+ 2 log

(
π2t2

3δ

))
. (3.13)
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Then Algorithm 3 guarantees w.p. > 1− δ simultaneously for all T = 1, 2, ...

RT ≤ F + c∗ +

√
8(T − 1)βT−1(d+ 1)

(1− ρ)2
log

(
1 +

TC2
b (C

2
w + F 2)

dσ2

)
.

Remark 3.6.5 The result again shows that LinUCBw algorithm achieves Õ(
√
T ) cumu-

lative regret and thus it is also a no-regret algorithm under the weaker condition (Def-

inition 3.3.3). Note Definition 3.3.3 is quite weak which even doesn’t require the true

function sits within the approximation function class.

Proof:

The analysis is similar to the ρ-gap-adjusted case but includes c∗ = f ∗ − f ∗
w. For

instance, let ∆w
t denote the deviation term of our linear function from the true function

at xt, then

∆w
t = f0(xt)− w⊤

∗ xt − c∗,

And our observation model (eq. (3.1)) becomes

yt = f0(xt) + ηt = w⊤
∗ xt + c∗ +∆w

t + ηt.

Then similar to Lemma 3.4.3, we have the following lemma, whose proof is nearly identical

to Lemma 3.4.3.

Lemma 3.6.6 (Bound of deviation term) ∀t ∈ {0, 1, . . . , T − 1},

|∆t| ≤
ρ

1− ρ
w⊤

∗ (x∗ − xt).

We also provide the following lemma, which is the counterpart of Lemma 3.4.6.
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Lemma 3.6.7 Define ut =

∥∥∥∥∥∥∥
xt
1


∥∥∥∥∥∥∥
Σ−1

t

and assume βt is chosen such that w∗ ∈ Ballt.

Then

w⊤
∗ (x∗ − xt) ≤ 2

√
βtut.

Proof: Let w̃, c̃ denote the parameter that achieves argmaxw,c∈Ballt w
⊤xt+ c, by the

optimality of xt,

w⊤
∗ x∗ − w⊤

∗ xt =

[
w⊤

∗ , c
∗

]x∗
1

− [w⊤
∗ , c

∗

]xt
1


≤
[
w̃⊤, c̃

]xt
1

− [w⊤
∗ , c

∗

]xt
1


= (

[
w̃⊤, c̃

]
−
[
ŵ⊤

t , ĉt

]
+

[
ŵ⊤

t , ĉt

]
−
[
w⊤

∗ , c
∗

]
)

xt
1


≤
∥∥∥∥[w̃⊤, c̃

]
−
[
ŵ⊤

t , ĉt

]∥∥∥∥
Σt

∥∥∥∥∥∥∥
xt
1


∥∥∥∥∥∥∥
Σ−1

t

+

∥∥∥∥[ŵ⊤
t , ĉt

]
−
[
w⊤

∗ , c
∗

]∥∥∥∥
Σt

∥∥∥∥∥∥∥
xt
1


∥∥∥∥∥∥∥
Σ−1

t

≤ 2
√
βtut

where the second inequality applies Holder’s inequality; the last line uses the definition

of Ballt (note that both

[
w̃⊤, c̃

]
,

[
w⊤

∗ , c
∗

]
∈ Ballt).

The rest of the analysis follows the analysis of Theorem 3.4.1.
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Chapter 4

Disagreement-Based Active

Learning for Privacy Protection

The Private Aggregation of Teacher Ensembles (PATE) framework is one of the most

promising recent approaches in differentially private learning. Existing theoretical anal-

ysis shows that PATE consistently learns any VC-classes in the realizable setting, but

falls short in explaining its success in more general cases where the error rate of the opti-

mal classifier is bounded away from zero. This chapter fills in the gap by introducing the

Tsybakov Noise Condition (TNC) and establish stronger and more interpretable learning

bounds. These bounds provide new insights into when PATE works and improve over ex-

isting results even in the narrower realizable setting. We also investigate the compelling

idea of using active learning for saving privacy budget, and empirical studies show the

effectiveness of this new idea. The novel components in the proofs include a more refined

analysis of the majority voting classifier — which could be of independent interest —

and an observation that the synthetic “student” learning problem is nearly realizable by

construction under the Tsybakov noise condition.
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4.1 Introduction

Differential privacy (DP) [75] is one of the most popular approaches towards ad-

dressing the privacy challenges in the era of artificial intelligence and big data. While

differential privacy is certainly not a solution to all privacy-related problems, it represents

a gold standard and is a key enabler in many applications [76, 77, 78].

Recently, there has been an increasing demand in training machine learning and deep

learning models with DP guarantees, which has motivated a growing body of research

on this problem [79, 80, 81, 82, 83, 84].

In a nutshell, differentially private machine learning aims at providing formal pri-

vacy guarantees that provably reduce the risk of identifying individual data points in

the training data, while still allowing the learned model to be deployed and to provide

accurate predictions. Many of these methods satisfying DP guarantees work well in low-

dimensional regime where the model is small and the data is large. It however remains a

fundamental challenge how to avoid the explicit dependence in the ambient dimension of

the model and to develop practical methods in privately releasing deep learning models

with a large number of parameters.

The “knowledge transfer” model of differentially private learning is a promising recent

development [85, 86] which relaxes the problem by giving the learner access to a public

unlabeled dataset. The main workhorse of this model is the Private Aggregation of

Teacher Ensembles (PATE) framework:
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The PATE Framework:

1. Randomly partition the private dataset into K splits.

2. Train one “teacher” classifier on each split.

3. Apply the K “teacher” classifiers on public data and privately release their

majority votes as pseudo-labels.

4. Output the “student” classifier trained on the pseudo-labeled public data.

PATE achieves DP via the sample-and-aggregate scheme [87] for releasing the pseudo-

labels. Since the teachers are trained on disjoint splits of the private dataset, adding

or removing one data point could affect only one of the teachers, hence limiting the

influence of any single data point. The noise injected in the aggregation will then be able

to “obfuscate” the output and obtain provable privacy guarantees.

This approach is appealing in practice as it does not place any restrictions on the

teacher classifiers, thus allowing any deep learning models to be used in a model-agnostic

fashion. The competing alternative for differentially private deep learning, NoisySGD

[83], is not model-agnostic, and it requires significantly more tweaking and modifications

to the model to achieve a comparable performance, (e.g., on MNIST), if achievable.

There are a number of DP mechanisms that can be used to instantiate the PATE

Framework. Laplace mechanism and Gaussian mechanism are used in [85, 86] respec-

tively. This chapter primarily considers the new mechanism of [88], which instantiates

the PATE framework with a more data-adaptive scheme of private aggregation based on

the Sparse Vector Technique (SVT). This approach allows PATE to privately label many

examples while paying a privacy loss for only a small subset of them (see Algorithm 5 for

details). Moreover, [88] provides the first theoretical analysis of PATE which shows that

it is able to PAC-learn any hypothesis classes with finite VC-dimension in the realizable
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Table 4.1: Summary of our results: excess risk bounds for PATE algorithms.

Algorithm
PATE (Gaussian Mech.)

[85]
PATE (SVT-based) PATE (Active Learning)

This chapter[88] This chapter

Realizable Õ
(

d
(nϵ)2/3

∨ d
m

)
Õ
(

d
(nϵ)2/3

∨
√

d
m

)
Õ
(

d3/2

nϵ
∨ d

m

)
Õ
(

d3/2θ1/2

nϵ
∨ d

m

)
τ -TNC Õ

((
d3/2

nϵ

) 2τ
4−τ ∨ d

m

)
same as agnostic Õ

((
d3/2

nϵ

) τ
2−τ ∨ d

m

)
Õ
((

d3/2θ1/2

nϵ

) τ
2−τ ∨ d

m

)
Agnostic
(vs h∗)

Ω(Err(h∗)) required.
13Err(h∗)+

Õ
(

d3/5

n2/5ϵ2/5
∨
√

d
m

) Ω(Err(h∗)) required. Ω(Err(h∗)) required.

Agnostic
(vs hagg∞ )

- -
Consistent under
weaker conditions.

-

• Results new to this chapter are highlighted in blue.

• Teacher number hyperparameter K is chosen optimally. The number of public data points we privately label is
chosen optimally (subsampling the available public data to run PATE) to minimize the risk bound. δ is assumed
to be in its typical range δ < 1/poly(n) and ϵ < log(1/δ). The TNC parameter τ ranges between (0, 1]. See Table
4.2 for a checklist of notations.

• Proofs of utility guarantees of PATE (Gaussian mechanism) can be found in Section 4.7.

setting, i.e, expected risk of best hypothesis equals 0. And in this case, the center of

teacher agreement is true label. However, this is a giant leap from the standard differen-

tially private learning models (without the access to a public unlabeled dataset) because

the VC-classes are not privately learnable in general [89, 90]. [88] also establishes a set

of results on the agnostic learning setting, albeit less satisfying, as the excess risk, i.e.,

the error rate of the learned classifier relative to the optimal classifier, does not vanish

as the number of data points increases, a.k.a., inconsistency.

To fill in the gap, in this chapter, we revisit the problem of model-agnostic private

learning in PATE framework in two non-realizable settings: under the Tsybakov Noise

Condition (TNC) [91, 92] and in agnostic setting. By making TNC assumption, teachers

stay close to the best hypothesis h∗ in hypothesis class, thus we consider h∗ as the new

center for teachers to agree on, instead of considering true label in the realizable setting.

We make no assumptions in agnostic setting, and a different center of teacher gravity is

considered. In addition, we introduce active learning [93] to PATE and propose a new

practical algorithm.
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Summary of results. Our contributions are summarized as follows.

1. We show that PATE consistently learns any VC-classes under TNC with fast rates

and requires very few unlabeled public data points. When specializing to the re-

alizable case, we show that the sample complexity bound of the SVT-based PATE

is Õ(d3/2/αϵ) and Õ(d/α) for the private and public datasets respectively. The

best known results [88] is Õ(d3/2/α3/2ϵ) (for private data) and Õ(d/α2) (for public

data).

2. We analyze standard Gaussian mechanism-based PATE [86] under TNC. In the

realizable case, we obtained a sample complexity of Õ(d3/2/αϵ) and Õ(d/α) for the

private and public datasets respectively, which matches the bound of [88] with a

simpler and more practical algorithm that uses fewer public data points.

3. We show that PATE learning is inconsistent for agnostic learning in general and

derive new learning bounds that compete against a sequence of limiting majority

voting classifiers.

4. We propose a new active learning-based algorithm, PATE with Active Student

Queries (PATE-ASQ), to adaptively select which public data points to release.

Under TNC, we show that active learning with standard Gaussian mechanism is

able to match the same learning bounds of the SVT-based method for privacy

aggregation (Algorithm 4), except some additional dependence.

5. Finally, our experiments on real-life datasets demonstrate that PATE-ASQ achieves

significantly better accuracy than standard PATE algorithms while incurring the

same or lower privacy loss.

These results (summarized in Table 4.1) provide strong theoretical insight into how

PATE works. Interestingly, our theory suggests that Gaussian mechanism suffices es-
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pecially if we use active learning and that it is better not to label all public data when

the number of public data points m is large. The remaining data points can be used for

semi-supervised learning. These tricks have been proposed in empirical studies of PATE

(see, e.g., semi-supervised learning [85, 86], active learning [94]), thus our theory can

be viewed as providing formal justifications to these PATE variants that are producing

strong empirical results in deep learning with differential privacy.

Motivation and applicability. We conclude the introduction by commenting on the

applicability of the knowledge transfer model of differentially private learning and PATE.

First, while this model applies only to those cases when a (small) public unlabeled dataset

is available, it gains a more favorable privacy-utility tradeoff on those applicable cases.

Second, public datasets are often readily available (e.g., census microdata) or can be

acquired at a low cost (e.g., incentivizing patients to opt-in) especially if we do not need

labels (e.g., getting doctor’s diagnosis is expensive). Note that this setting is different

from label differential privacy [95] where only labels are considered private. In our prob-

lem, even if the public data points are labeled, they are scarce and learning directly from

them without using the private data will not give the same learning bound. In addition,

PATE uses standard off-the-shelf learners / optimizers as blackboxes, thereby retaining

their computational efficiency. For these reasons, we argue that the “knowledge trans-

fer” model is widely applicable and could enable practical algorithms with formal DP

guarantees in the many applications where the standard private learning model fails to

be sufficiently efficient, private and accurate at the same time.
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4.2 Related Work

The literature on differentially private machine learning is enormous and it is impos-

sible for us to provide an exhaustive discussion. Instead we focus on a few closely related

work and only briefly discuss other representative results in the broader theory of private

learning.

4.2.1 Private Learning with an Auxiliary Public Dataset

The use of an auxiliary unlabeled public dataset was pioneered in empirical studies

[85, 86] where PATE was proposed and shown to produce stronger results than NoisySGD

in many regimes. Our work builds upon [88]’s first analysis of PATE and substantially

improves the theoretical underpinning. To the best of our knowledge, our results are new

and we are the first that consider noise models and active learning for PATE.

[96] also studied the problem of private learning with access to an additional public

dataset. Specifically, their result reveals an interesting “theorem of the alternatives”-

type result that says either a VC-class is learnable without an auxiliary public dataset,

or we need at leastm = Ω(d/α) public data points, which essentially says that our sample

complexity on the (unlabeled) public data points are optimal. They also provide an upper

bound that says Õ(d/α2) private data and Õ(d/α) public data are sufficient (assuming

constant privacy parameter ϵ) to agnostically learn any classes with VC-dimension d to

α-excess risk. Their algorithm however uses an explicit (distribution-independent) α-net

construction due to [97] and exponential mechanism for producing pseudo-labels, which

cannot be efficiently implemented. Our contributions are complementary as we focus on

oracle-efficient algorithms that reduce to the learning bounds of ERM oracles (for passive

learning) and active learning oracles. Our algorithms can therefore be implemented

(and has been) in practice [85, 86]. Moreover, we show that under TNC, the inefficient
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construction is not needed and PATE is indeed consistent and enjoys faster rates. It

remains an open problem how to achieve consistent private agnostic learning with only

access to ERM oracles.

4.2.2 Privacy-Preserving Prediction

There is another line of work [98] that focuses on the related problem of “privacy-

preserving prediction” which does not release the learned model (which we do), but

instead privately answer one randomly drawn query x (which we need to answer many,

so as to train a model that can be released). While their technique can be used to obtain

bounds in our setting, it often involves weaker parameters. More recent works under this

model [99, 100] notably achieve consistent agnostic learning in this setting with rates

comparable to that of [96]. However, they rely on the same explicit α-net construction

[97], which renders their algorithm computationally inefficient in practice. In contrast,

we analyze an oracle-efficient algorithm via a reduction to supervised learning (which is

practically efficient if we believe supervised learning is easy).

4.2.3 Theory of Private Learning

More broadly, the learnability and sample complexity of private learning were studied

under various models in [79, 101, 97, 95, 89, 90, 96]. The VC-classes were shown to be

learnable when the either the hypothesis class or the data-domain is finite [79]. [101]

characterizes the sample complexity of private learning in the realizable setting with a

particular “dimension” that measures the extent to which we can construct a specific

discretization of the hypothesis space that works for “all distributions” on data. Such

a discretization does not exist, when H and X are both continuous. Specifically, the

problem of learning threshold functions on [0, 1] having VC-dimension of 1 is not privately
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learnable [95, 89].

4.2.4 Weaker Private Learning Models

This setting of private learning was relaxed in various ways to circumvent the above

artifact. These include protecting only the labels [95, 97], leveraging prior knowledge

with a prior distribution [95], switching to the general learning setting with Lipschitz

losses [90], relaxing the distribution-free assumption [90], and the setting we consider in

this chapter — when we assume the availability of an auxiliary public data [88, 96]. Note

that these settings are closely related to each other in that some additional information

about the distribution of the data is needed.

4.2.5 Tsybakov Noise Condition and Statistical Learning The-

ory

The Tsybakov Noise Condition (TNC) [91, 92] is a natural and well-established con-

dition in learning theory that has long been used in the analysis of passive as well as

active learning [102]. The Tsybakov noise condition is known to yield better convergence

rates for passive learning [93], and label savings for active learning [103]. However, the

contexts under which we use these techniques are different. For instance, while we are

making the assumption of TNC, the purpose is not for active learning, but rather to

establish stability. When we apply active learning, it is for the synthetic learning prob-

lem with pseudo-labels that we release privately, which does not actually satisfy TNC.

To the best of our knowledge, we are the first that formally study noise models in the

theory of private learning. Lastly, active learning was considered for PATE learning in

[94], which demonstrates the clear practical benefits of adaptively selecting what to label.

We remain the first that provides theoretical analysis with provable learning bounds.

88



Disagreement-Based Active Learning for Privacy Protection Chapter 4

Table 4.2: Summary of symbols and notations.

Symbol Definition Description
1(x) = 1(x = T),= 0(x = F) indicator function
Err(h) E(x,y)∼D[1(h(x) ̸= y)] expected risk of h w.r.t. D
Êrr(h) 1

n

∑n
i=1[1(h(xi) ̸= yi)] empirical risk of h w.r.t. dataset {(xi, yi)|i ∈ [n]}

D distribution over Z
d VC dimension
DX marginal distribution over X
DT {(xTi , yTi )|i ∈ [n]} ∼ D labeled private teacher dataset
DS {(xSj )|j ∈ [m]} ∼ DX unlabeled public student dataset

DIS region of disagreement in active learning
Dis(h1, h2) Ex∼DX [1(h1(x) ̸= h2(x)] expected disagreement of h1 and h2 w.r.t D
D̂is(h1, h2)

1
n

∑n
i=1[1(h1(xi) ̸= h2(xi))] empirical disagreement of h1 and h2 w.r.t. {(xi, yi)|i ∈ [n]}

H H ⊆ {0, 1}X hypothesis class
h hypothesis, a function mapping from X to Y
h∗ argminh∈H Err(h) best hypothesis

ĥ argminh∈H Êrr(h) Empirical Risk Minimizer (ERM)

ĥagg aggregated classifier in PATE

ĥpriv privately aggregated classifier in PATE
hagg∞ infinite ensemble classifier
K number of teachers
ℓ labeling budget
m number of unlabeled student points
n number of labeled teacher points
[n] {1, 2, ..., n} integer set

Õ big O notation hiding poly-logarithmic factors
r(x) E[y|x] regression function from x to y
T cut-off threshold
X feature space
Y {0, 1} label space
Z X × Y sample space
Z∗ ⋃

n∈NZn space of a dataset of unspecified size
α excess risk
β, γ failure probabilities
ϵ, δ Definition 4.3.1 parameters of differential privacy
ν, ξ Definition 4.4.12 parameters of high margin condition
τ Definition 4.4.1 parameter of the Tsybakov noise condition
θ [93] disagreement coefficient of active learning

∆̂ Eq. 4.1 realized margin
∆ Eq. 4.4 expected margin
⊥ randomly assigned label
∨ X ∨ Y = max{X, Y } max operation

≲,≳ inequalities hiding logarithmic factors
c, c′, C constants
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4.3 Preliminaries

In this section, first we introduce symbols and notations that we will use throughout

this chapter. Then we formally introduce differential privacy and discuss existing progress

on PATE and model-agnostic private learning. Finally we introduce disagreement-based

active learning, which is the key tool we will use for our new active learning-based PATE

algorithm.

4.3.1 Symbols and Notations

We use [n] to denote the set {1, 2, ..., n}. Let X denote the feature space, Y = {0, 1}

denote the label, Z = X × Y to denote the sample space, and Z∗ =
⋃

n∈NZn to denote

the space of a dataset of unspecified size. A hypothesis (classifier) h is a function mapping

from X to Y . A set of hypotheses H ⊆ {0, 1}X is called the hypothesis class. The VC

dimension of H is denoted by d. Also, let D denote the distribution over Z, and DX

denote the marginal distribution over X . DT = {(xTi , yTi )|i ∈ [n]} ∼ D is the labeled

private teacher dataset, and DS = {(xSj )|j ∈ [m]} ∼ DX is the unlabeled public student

dataset.

The expected risk of a certain hypothesis h with respect to the distribution D over Z

is defined as Err(h) = E(x,y)∼D[1(h(x) ̸= y)], where 1(x) is the indicator function which

equals to 1 when x is true, 0 otherwise. The empirical risk of a certain hypothesis h

with respect to a dataset {(xi, yi)|i ∈ [n]} is defined as Êrr(h) = 1
n

∑n
i=1[1(h(xi) ̸= yi)].

The best hypothesis h∗ is defined as h∗ = argminh∈H Err(h), and the Empirical Risk

Minimizer (ERM) ĥ is defined as ĥ = argminh∈H Êrr(h). ĥagg is used to denote the

aggregated classifier in the PATE framework. ĥpriv denotes the privately aggregated

one. The expected disagreement between a pair of hypotheses h1 and h2 with respect to

the distribution DX is defined as Dis(h1, h2) = Ex∼DX [1(h1(x) ̸= h2(x)]. The empirical
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disagreement between a pair of hypotheses h1 and h2 with respect to a dataset {(xi, yi)|i ∈

[n]} is defined as D̂is(h1, h2) =
1
n

∑n
i=1[1(h1(xi) ̸= h2(xi))]. Throughout this chapter, we

use standard big O notations; and to improve the readability, we use ≲ and Õ to hide

poly-logarithmic factors. For reader’s easy reference, we summarize the symbol and

notations above in Table 4.2.

4.3.2 Differential Privacy and Private Learning

Now we formally introduce differential privacy.

Definition 4.3.1 (Differential Privacy [104]) A randomized algorithmM : Z∗ → R

is (ϵ, δ)-DP (differentially private) if for every pair of neighboring datasets D,D′ ∈ Z∗

(denoted by ∥D −D′∥1 = 1) for all S ⊆ R:

P(M(D) ∈ S) ≤ eϵ · P(M(D′) ∈ S) + δ.

The definition says that if an algorithmM is DP, then no adversary can use the output

of M to distinguish between two parallel worlds where an individual is in the dataset

or not. ϵ, δ are privacy loss parameters that quantify the strength of the DP guarantee.

The closer they are to 0, the stronger the guarantee is.

The problem of DP learning aims at designing a randomized training algorithm that

satisfies Definition 4.3.1. More often than not, the research question is about under-

standing the privacy-utility trade-offs and characterizing the Pareto optimal frontiers.

4.3.3 PATE and Model-Agnostic Private Learning

There are different ways we can instantiate the PATE framework to privately aggre-

gate the teachers’ predicted labels. The simplest, described in Algorithm 4, uses Gaussian
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Algorithm 4 Standard PATE [86]

Input: “Teachers” ĥ1, ..., ĥK trained on disjoint subsets of the private data. “Na-
ture” chooses an adaptive sequence of data points x1, ..., xℓ. Privacy parameters ϵ, δ >
0.

1: Find σ such that
√

2ℓ log(1/δ)
σ2 + ℓ

2σ2 = ϵ.

2: Nature chooses x1.
3: for j ∈ [ℓ] do
4: Output ŷj ← 1(

∑K
k=1 ĥk(xj) +N (0, σ2) ≥ K/2).

5: Nature chooses xj+1 adaptively (as a function of the output vector till time j).
6: end for

mechanism to perturb the voting score.

An alternative approach due to [88] uses the Sparse Vector Technique (SVT) in a

nontrivial way to privately label substantially more data points in the cases when teacher

ensemble’s predictions are stable for most input data. The stability is quantified in terms

of the margin function, defined as

∆̂(x) :=
∣∣∣2 K∑

k=1

ĥk(x)−K
∣∣∣, (4.1)

which measures the absolute value of the difference between the number of votes (see

Algorithm 5).

In both algorithms, the privacy budget parameters ϵ, δ are taken as an input and the

following privacy guarantee applies to all input datasets.

Theorem 4.3.2 Algorithm 4 and 5 are both (ϵ, δ)-DP.

Careful readers may note the slightly improved constants in the formula for calibrating

privacy than when these methods were first introduced. We include the new proof based

on the concentrated differential privacy [105] approach in the Section 4.7.

The key difference between the two private-aggregation mechanisms is that the stan-

dard PATE pays for a unit privacy loss for every public data point labeled, while the
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Algorithm 5 SVT-based PATE [88]

Input: “Teacher” classifiers ĥ1, ..., ĥK trained on disjoint subsets of the private data.
“Nature” chooses an adaptive sequence of data points x1, ..., xℓ. Unstable cut-off T ,
privacy parameters ϵ, δ > 0.

1: Nature chooses x1.
2: λ← (

√
2T (ϵ+ log(2/δ)) +

√
2T log(2/δ))/ϵ.

3: w ← 3λ log(2(ℓ+ T )/δ), ŵ ← w + Lap(λ).
4: c = 0.
5: for j ∈ [ℓ] do

6: distj ← max{0, ⌈∆̂(xj)/2⌉ − 1}.
7: d̂istj ← distj + Lap(2λ).

8: if d̂istj > ŵ then

9: Output ŷj ← 1(
∑K

k=1 ĥk(xj) ≥ K/2).
10: else
11: Output ŷj ←⊥.
12: c← c+ 1, break if c ≥ T .
13: ŵ ← w + Lap(λ).
14: end if
15: Nature chooses xj+1 adaptively (based on ŷ1, ..., ŷj).
16: end for

SVT-based PATE essentially pays only for those queries where the voted answer from

the teacher ensemble is close to be unstable (those with a small margin). Combining this

intuition with the fact that the individual classifiers are accurate — by the statistical

learning theory, they are — the corresponding majority voting classifier can be shown to

be accurate with a large margin. These two critical observations of [88] lead to the first

learning theoretic guarantees for SVT-based PATE. For completeness, we include this

result with a concise new proof in Section 4.7.

Lemma 4.3.3 (Adapted from Theorem 3.11 of [106]) If the classifiers ĥ1, ..., ĥK and

the sequence x1, ..., xℓ obey that there are at most T of them such that ∆̂(xk) < K/3 for

K = 136 log(4ℓT/min(δ, β/2)) ·
√
T log(2/δ)/ϵ. Then with probability at least 1 − β,

Algorithm 5 finishes all ℓ queries and for all i ∈ [ℓ] such that ∆̂(xi) ≥ K/3, the output

of Algorithm 5 is ĥagg(xi).
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Lemma 4.3.4 (Lemma 4.2 of [106]) If the classifiers ĥ1, ...., ĥK obey that each of them

makes at most B mistakes on data (x1, y1), ..., (xℓ, yℓ), then

∣∣∣∣{i ∈ [ℓ]
∣∣∣ K∑

k=1

1(ĥk(xi) ̸= yi) ≥
K

3

}∣∣∣∣ ≤ 3B.

Lemma 4.3.4 implies that if the individual classifiers are accurate — by the statisti-

cal learning theory, they are — the corresponding majority voting classifier is not only

nearly as accurate, but also has sufficiently large margin that satisfies the conditions in

Lemma 4.3.3.

Next, we state and provide a straightforward proof of the following results due to [106].

The results are already stated in the referenced work in the form of sample complexities,

but we include a more direct analysis of the error bound and clarify a few technical

subtleties.

Algorithm 6 PATE-PSQ

Input: Labeled private teacher dataset DT , unlabeled public student dataset
DS, unstable query cutoff T , privacy parameters ϵ, δ > 0; number of splits
K.

1: Randomly and evenly split the teacher dataset DT into K parts DT
k ⊆ DT where

k ∈ [K].
2: Train K classifiers ĥk ∈ H, one from each part DT

k .

3: Call Algorithm 5 with parameters (ĥ1, ..., ĥK), D
S, T, ϵ, δ and ℓ = m to obtain pseudo-

labels for the public dataset ŷS1 , ..., ŷ
S
m. (Alternatively, call Algorithm 4 with param-

eters (ĥ1, ..., ĥK), D
S, ϵ, δ, ℓ = m)

4: For those pseudo labels that are ⊥, assign them arbitrarily to {0, 1}.
Output: ĥS trained on pseudo-labeled student dataset.

Theorem 4.3.5 (Adapted from Theorems 4.6 and 4.7 of [106]) Set

T = 3
(
E[Err(ĥ1)]m+

√
m log(m/β)

2

)
,
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K = O
( log(mT/min(δ, β))

√
T log(1/δ)

ϵ

)
.

Let ĥS be the output of Algorithm 6 that uses Algorithm 5 for privacy aggregation. With

probability at least 1 − β (over the randomness of the algorithm and the randomness of

all data points drawn i.i.d.), we have

Err(ĥS) ≤ Õ
(d2m log(1/δ)

n2ϵ2
+

√
d

m

)

for the realizable case, and

Err(ĥS) ≤ 13Err(h∗) + Õ
(m1/3d2/3

n2/3ϵ2/3
+

√
d

m

)

for the agnostic case 1.

We provide a self-contained proof of this result in Section 4.7.

Remark 4.3.6 (Error bounds when m is sufficiently large) Notice that we do not

have to label all public data, so when we have a large number of public data, we can afford

to choose m to be smaller so as to minimize the bound. That gives us a Õ( d
n2/3ϵ2/3

) error

bound for the realizable case and a O(Err(h∗)) + Õ( d3/5

n2/5ϵ2/5
) error bound for the agnostic

case 2.

1The numerical constant 13 might be improvable (and it is indeed worse than the result stated in
[88]), though we decide to present this for the simplicity of the proof.

2These correspond to the Õ((d/α)3/2) sample complexity bound in Theorem 4.6 of [106] for realizable
PAC learning for error α; and the Õ(d3/2/α5/2) sample complexity bound in Theorem 4.7 of [106] for
agnostic PAC learning with error O(α + Err(h∗)). The privacy parameter ϵ is taken as a constant in
these results.
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Algorithm 7 Disagreement-Based Active Learning [93]

Input: A “data stream” x1, x2, ... sampled i.i.d. from distribution D. A hypothesis class
H. An on-demand “labeling service” that outputs label yi ∼ P (y|x = xi) when requested
at time i. Parameter ℓ,m, γ.

1: Initialize the version space V ← H.
2: Initialize the selected dataset Q← ∅.
3: Initialize “Current Output” to be any h ∈ H.
4: Initialize “Counter” c← 0.
5: for j ∈ [m] do
6: if xj ∈ DIS(V ) then
7: “Request for label” for xj and get back yj from the “labeling service”.
8: Update Q← Q ∪ {(xj, yj)}.
9: c← c+ 1.
10: end if
11: if log2(j) ∈ N then
12: Update V ← {h ∈ V : (ErrQ(h)−ming∈V ErrQ(g))|Q| ≤ U(j, γj)j},

where
U(j, γj) = c′(d log(θ(d/j)) + log(1/γj))/j +
c′
√
Err(h∗)(d log(θ(Err(h∗)) + log(1/γj))/j, c′ is a constant, and

γj = γ/(log2(2j))
2.

13: Set “Current Output” to be any h ∈ V .
14: end if
15: if c ≥ ℓ then
16: Break.
17: end if
18: end for

Output: Return “Current Output”.
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4.3.4 Disagreement-Based Active Learning

We adopt the disagreement-based active learning algorithm that comes with strong

learning bounds (see, e.g., an excellent treatment of the subject in [93]). The exact

algorithm, described in Algorithm 7, keeps updating a subset of the hypothesis class H

called a version space by collecting labels only from those data points from a certain region

of disagreement and eliminates candidate hypothesis that are certifiably suboptimal.

Definition 4.3.7 (Region of disagreement [93]) For a given hypothesis class H, its

region of disagreement is defined as a set of data points over which there exists two

hypotheses disagreeing with each other,

DIS(H) = {x ∈ X : ∃h, g ∈ H s.t. h(x) ̸= g(x)}.

Region of disagreement is the key concept of the disagreement-based active learning

algorithm. It captures the uncertainty region of data points for the current version space.

The algorithm is fed a sequence of data points and runs in the online fashion, whenever

there exists a data point in this region, its label will be queried. Then any bad hypotheses

will be removed from the version space.

The algorithm, as it is written is not directly implementable, as it represents the

version spaces explicitly, but there are practical implementations that avoids explicitly

representing the versions spaces by a reduction to supervised learning oracles. In our

experiments, we implement the PATE-ASQ algorithm and show it works well in practice

while no explicit region of disagreement is maintained.
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4.4 Main Results

In Section 4.4.1 and 4.4.2, we present a more refined theoretical analysis of PATE-PSQ

(Algorithm 6) that uses SVT-based PATE (Algorithm 5) as the subroutine. Our results

provide stronger learning bounds and new theoretical insights under various settings. In

Section 4.4.3, we propose a new active learning based method and show that we can obtain

qualitatively the same theoretical gain while using the simpler (an often more practical)

Gaussian mechanism-based PATE (Algorithm 4) as the subroutine. For comparison, we

also include an analysis of standard PATE (with Gaussian mechanism) in Section 4.7.

Table 4.1 summarizes these technical results.

4.4.1 Improved Learning Bounds under TNC

Recall that our motivation is to analyze PATE in the cases when the best classifier

does not achieve 0 error and that existing bound presented in Theorem 4.3.5 is vacuous

if Err(h∗) > 1/26. The error bound of ĥS does not match the performance of h∗ even as

m,n → ∞ and even if we output the voted labels without adding noise. This does not

explain the empirical performance of Algorithm 6 reported in [85, 86] which demonstrates

that the retrained classifier from PATE could get quite close to the best non-private

baselines even if the latter are far from being perfect. For instance, on Adult dataset

and SVHN dataset, the non-private baselines have accuracy 85% and 92.8% and PATE

achieves 83.7% and 91.6% respectively.

To under stand how PATE works in the regime where the best classifier h∗ obeys

that Err(h∗) > 0, we introduce a large family of learning problems that satisfy the so-

called Tsybakov Noise Condition (TNC), under which we show that PATE is consistent

with fast rates. To understand TNC, we need to introduce a few more notations. Let

label y ∈ {0, 1} and define the regression function r(x) = E[y|x]. The Tsybakov noise
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condition is defined in terms of the distribution of r(x).

Definition 4.4.1 (Tsybakov noise condition) The joint distribution of the data (x, y)

satisfies the Tsybakov noise condition with parameter τ if there exists a universal constant

C > 0 such that for all t ≥ 0

P(|r(x)| ≤ t) ≤ Ct
τ

1−τ .

Note that when r(x) = 0.5, the label is purely random and when r(x) = 0 or 1, y is a

deterministic function of x. The Tsybakov noise condition essentially is reasonable “low

noise” condition that does not require a uniform lower bound of |r(x)| for all x. When the

label-noise is bounded for all x, e.g., when y = h∗(x) with probability 0.6 and 1− h∗(x)

with probability 0.4, then the Tsybakov noise condition holds with τ = 1. The case when

τ = 1 is also known as the Massart noise condition or bounded noise condition in the

statistical learning literature.

For our purpose, it is more convenient to work with the following equivalent definition

of TNC, which is equivalent to Definition 4.4.1 (see a proof from [107, Definition 7]).

Lemma 4.4.2 (Equivalent definition of TNC) We say that a distribution of (x, y)

satisfies the Tsybakov noise condition with parameter τ ∈ [0, 1] if and only if there exists

η ∈ [1,∞) such that, for every labeling function h,

Dis(h, hBayes) ≤ η(Err(h)− Err(hBayes))
τ . (4.2)

where hBayes(x) = 1(r(x) > 0.5) is the Bayes optimal classifier.

In the remainder of this chapter, we make the assumption that the Bayes optimal classifier

hBayes ∈ H and works with the slightly weaker condition that requires (4.2) to hold only
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for h ∈ H and that we replace hBayes by the optimal classifier h∗ ∈ H 3.

We emphasize that the Tsybakov noise condition is not our invention. It has a

long history from statistical learning theory to interpolate between the realizable setting

and the agnostic setting. Specifically, problems satisfying TNC admit fast rates. For

τ ∈ [0, 1], the empirical risk minimizer achieves an excess risk of O(1/n1/(2−τ)), which

clearly interpolates the realizable case of O(1/n) and the agnostic case of O(1/
√
n).

Next, we give a novel analysis of Algorithm 6 under TNC. The analysis is simple

but revealing, as it not only avoids the strong assumption that requires Err(h∗) to be

close to 0, but also achieves a family of fast rates which significantly improves the sample

complexity of PATE learning even for the realizable setting.

Theorem 4.4.3 (Utility guarantee of Algorithm 6 under TNC) Assume the data

distribution D and the hypothesis class H obey the Tsybakov noise condition with param-

eter τ . Then Algorithm 6 with

T = Õ

((m2−τdτ

nτ ϵτ

) 2
4−3τ

)
,

K = O
( log(mT/min(δ, β))

√
T log(1/δ)

ϵ

)
,

obeys that with probability at least 1− β:

Err(ĥS) ≤ Err(h∗) + Õ

(
d

m
+

(
md2

n2ϵ2

) τ
4−3τ

)
.

Remark 4.4.4 (Bounded noise case) When τ = 1, the Tsybakov noise condition is

3This slightly different condition, that requires (4.2) to hold only for h ∈ H but with hBayes replaced
by the optimal classifier h∗ (without assuming that h∗ = hBayes) is all we need. This is formally referred
to as the Bernstein class condition by [93]. Very confusingly, when the Tsybakov noise condition is being
referred to in more recent literature, it is in fact the Bernstein class condition — a slightly weaker but
more opaque definition about both the hypothesis class H and the data generating distribution.
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implied by the bounded noise assumption, a.k.a., Massart noise condition, where the labels

are generated by the Bayes optimal classifier h∗ and then toggled with a fixed probability

less than 0.5. Theorem 4.4.3 implies that the excess risk is bounded by Õ( d
2m

n2ϵ2
+ d

m
),

with K = Õ( dm
nϵ2

), which implies a sample complexity upper bound of Õ(d
3/2

αϵ
) private data

points and Õ(d/α) public data points. The results improve over the sample complexity

bound from [88] in the stronger realizable setting from Õ( d3/2

α3/2ϵ
) and Õ(d/α2) to Õ(d

3/2

αϵ
)

and Õ(d/α) respectively in the private and public data.

Remark 4.4.5 (Optimal choice of m) The upper bound above can be minimized by

choosing m∗ = (d4−5τn2τ ϵ2τ )
1

4−2τ . When number of available public data points m ≥ m∗,

then m is not a limiting factor and we should subsample these data points. When m < m∗,

then d/m is the leading factor, we should use all m data points.

There are two key observations behind the improvement. First, the teacher classifiers

do not have to agree on the labels y as in Lemma 4.3.4; all they have to do is to agree

on something for the majority of the data points. Conveniently, the Tsybakov noise

condition implies that the teacher classifiers agree on the Bayes optimal classifier h∗.

Second, when the teachers agree on h∗, the synthetic learning problem with the privately

released pseudo-labels is nearly realizable. These intuitions can be formalized with a few

lemmas, which will be used in the proof of Theorem 4.4.3.

Lemma 4.4.6 (Performance of teacher classifer w.r.t. h∗) With probability 1− γ

over the training data of ĥ1, ..., ĥK, assume h∗ ∈ H is the Bayes optimal classifier and

Tsybakov noise condition with parameter τ , then there is a universal constant C such

that for all k = 1, 2, 3, ..., K

Dis(ĥk, h
∗) ≤ C

(dK log(n/d) + log(K/γ)

n

) τ
2−τ

.
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Proof: By the equivalent definition of the Tsybakov noise condition and then the

learning bounds under TNC (Lemma A.0.9),

Dis(ĥk, h
∗) ≤ η(Err(ĥk, h

∗)− Err(h∗))τ ≤ C
(dK log(n/d) + log(K/γ)

n

) τ
2−τ

.

Lemma 4.4.7 (Total number of mistakes made by one teacher) Under the con-

dition of Lemma 4.4.6, with probability 1 − γ, for all k = 1, 2, ..., K the total number of

mistakes made by one teacher classifier ĥk with respect to h∗ can be bounded as:

m∑
j=1

1(ĥk(xj) ̸= h∗(xj)) ≤ O

(
max

{
mDis(ĥk, h

∗), log
(K
γ

)})
.

Proof: Number of mistakes made by ĥk with respect to h∗ is the empirical disagree-

ment between ĥk and h∗ on m data points, therefore, by Bernstein’s inequality (Lemma

A.0.6),

m∑
j=1

1(ĥk(xj) ̸= h∗(xj)) ≤ O

(
mDis(ĥk, h

∗) +

√
mDis(ĥk, h∗) log

(K
γ

)
+ log

(K
γ

))
≤ O

(
max

{
mDis(ĥk, h

∗), log
(K
γ

)})
.

Using the above two lemmas we establish a bound on the number of examples where

the differentially privately released labels differ from the prediction of h∗.

Lemma 4.4.8 (Total queries and cut-off budget) Let Algorithm 6 be run with the

number of teachers K and the cut-off parameter T chosen according to Theorem 4.4.3.

Assume the conditions of Lemma 4.4.6. Then with high probability (≥ 1 − β over the
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random coins of Algorithm 6 alone and conditioning on the high probability events of

Lemma 4.4.6 and Lemma 4.4.7 ), Algorithm 6 finishes all m queries without exhausting

the cut-off budget and that

m∑
j=1

1(ĥprivj ̸= h∗(xj)) ≤ T.

The Õ notation in the choice of K and T hides polynomial factors of log(K/γ), log(m/β)

where γ is from Lemma 4.4.6 and 4.4.7.

Proof: Denote the bound from Lemma 4.4.7 by B. By the same Pigeon hole prin-

ciple argument as in Lemma 4.3.4 (but with y replaced by h∗), we have that the number of

queries that have margin smaller thanK/6 is at most 3B = O(max{mDis(ĥk, h
∗), log(K/γ)}).

The choice of K ensures that with high probability, over the Laplace random variables

in Algorithm 5, in at least m− 3B queries where the answer ŷj = h∗(xj), i.e.,

m∑
j=1

1(ĥprivj ̸= h∗(xj)) ≤ 3B := T.

Now we are ready to put everything together and prove Theorem 4.4.3. Proof:

[Proof of Theorem 4.4.3] Denote h̃ = argminh∈H D̂is(h, h∗) where D̂is is the empirical

average of the disagreements over the data points that students have4. By the triangular

4Note that in this case we could take h̃ = h∗ since h∗ ∈ H. We are defining this more generally so
later we can substitute h∗ with other label vector that are not necessarily generated by any hypothesis
in H.
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inequality of the 0− 1 error,

Err(ĥS)− Err(h∗) ≤ Dis(ĥS, h∗)

≤ D̂is(ĥS, h∗) + 2

√
(d+ log(4/γ))D̂is(ĥS, h∗)

m
+

4(d+ log(4/γ))

m

≤ 2D̂is(ĥS, h∗) +
5(d+ log(4/γ))

m
, (4.3)

where the second line follows from the uniform Bernstein’s inequality — apply the first

statement Lemma A.0.7 in Appendix A with z = h∗(x) and the third line is due to

a+ 2
√
ab+ b ≤ 2a+ 2b for non-negative a, b.

By the triangular inequality, we have D̂is(ĥS, h∗) ≤ D̂is(ĥS, ĥpriv) + D̂is(ĥpriv, h∗),

therefore

(4.3) ≤ 2D̂is(ĥS, ĥpriv) + 2D̂is(ĥpriv, h∗) +
5(d+ log(4/γ))

m

≤ 2D̂is(h̃, ĥpriv) + 2D̂is(ĥpriv, h∗) +
5(d+ log(4/γ))

m

≤ 2D̂is(h̃, h∗) + 4D̂is(ĥpriv, h∗) +
5(d+ log(4/γ))

m

= 4D̂is(ĥpriv, h∗) +
5(d+ log(4/γ))

m
.

In the second line, we applied the fact that ĥS is the minimizer of D̂is(h, ĥpriv); in the third

line, we applied triangular inequality again and the last line is true because D̂is(h̃, h∗) = 0

since h̃ is the minimizer and that h∗ ∈ H.

Recall that T is the unstable cutoff in Algorithm 6. The proof completes by invoking

Lemma 4.4.8 which shows that the choice of T is appropriate such that D̂is(ĥpriv, h∗) ≤

T/m with high probability.

In the light of the above analysis, it is clear that the improvement from our analysis

under TNC are two-folds: (1) We worked with the disagreement with respect to h∗ rather
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than y. (2) We used a uniform Bernstein bound rather than a uniform Hoeffding bound

that leads to the faster rate in terms of the number of public data points needed.

Remark 4.4.9 (Reduction to ERM) The main challenge in the proof is to appropri-

ately take care of ĥpriv. Although we are denoting it as a classifier, it is in fact a vector

that is defined only on x1, ..., xm rather than a general classifier that can take any input x.

Since we are using the SVT-based Algorithm 5, ĥpriv is only well-defined for the student

dataset. Moreover, these privately released “pseudo-labels” are not independent, which

makes it infeasible to invoke a generic learning bound such as Lemma A.0.8. Our solution

is to work with the empirical risk minimizer (ERM, rather than a generic PAC learner as

a blackbox) and use uniform convergence (Lemma A.0.7) directly. This is without loss of

generality because all learnable problems are learnable by (asymptotic) ERM [108, 109].

4.4.2 Challenges and New Bounds under Agnostic Setting

In this section, we present a more refined analysis of the agnostic setting. We first

argue that agnostic learning with Algorithm 6 will not be consistent in general and

competing against the best classifier in H seems not the right comparator. The form of

the pseudo-labels mandate that ĥS is aiming to fit a labeling function that is inherently

a voting classifier. The literature on ensemble methods has taught us that the voting

classifier is qualitatively different from the individual voters. In particular, the error rate

of majority voting classifier can be significantly better, about the same, or significantly

worse than the average error rate of the individual voters. We illustrate this with two

examples.

Example 4.4.10 (Voting fails) Consider a uniform distribution on X = {x1, x2, x3, x4}

and that the corresponding label P(y = 1) = 1. Let the hypothesis class be H = {h1, h2, h3}

whose evaluation on X are given in Figure 4.1. Check that the classification error of all
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three classifiers is 0.5. Also note that the empirical risk minimizer ĥ will be a uniform dis-

tribution over h1, h2, h3. The majority voting classifiers, learned with iid data sets, will

perform significantly worse and converge to a classification error of 0.75 exponentially

quickly as the number of classifiers K goes to ∞.

x1 x2 x3 x4 Error
y 1 1 1 1 0
h1 1 1 0 0 0.5
h2 1 0 1 0 0.5
h3 1 0 0 1 0.5

ĥagg 1 0 0 0 0.75

Figure 4.1: An example where majority voting classifier is significantly worse than
the best classifier in H.

This example illustrates that the PATE framework cannot consistently learn a VC-class in

the agnostic setting in general. On a positive note, there are also cases where the majority

voting classifier boosts the classification accuracy significantly, such as the following

example.

Example 4.4.11 (Voting wins) If P[ĥ(x) ̸= y|x] ≤ 0.5−ξ, where ξ is a small constant,

for all x ∈ X , then by Hoeffding’s inequality,

P[ĥagg(x) ̸= y|x] = P
[ K∑

k=1

1(ĥk(x) ̸= y) ≥ k

2

∣∣∣x] ≤ e−2Kξ2 .

Thus the error goes to 0 exponentially as K →∞.

These cases call for an alternative distribution-dependent theory of learning that char-

acterizes the performance of Algorithm 6 more accurately.

Next, we propose two changes to the learning paradigms. First, we need to go beyond
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H and compare with the following infinite ensemble classifier

hagg∞ (x) := 1

(
E
[ 1
K

k∑
k=1

ĥk(x)
∣∣∣x] ≥ 1

2

)
= 1

(
E[ĥ1(x)|x] ≥

1

2

)
.

The classifier outputs the majority voting result of infinitely many independent teachers,

each trained on n/K i.i.d. data points. As discussed earlier, this classifier can be better

or worse than a single classifier ĥ1 that takes n/K data points, ĥ that trains on all n

data points or h∗ that is the optimal classifier in H. Note that this classifier also changes

as n/K gets larger.

Considering different centers for teacher classifiers to agree on is one of the key ideas

of this chapter. Figure 4.2 shows three kinds of centers for teachers ĥ1, ĥ2, ..., ĥ9 to agree

on. In [88], the center is the true label y in the realizable setting. In Section 4.4.1 under

TNC, we analyze the performance of PATE-PSQ, where the center is the best hypothesis

h∗. Now we are interested in the new center hagg∞ for teachers to agree on.

(a) True label y is the center
for in realizable setting.

(b) Best hypothesis h∗ is the
center under TNC.

(c) h
agg
∞ is our new

construction for agnostic
setting.

Figure 4.2: Centers for teachers ĥ1, ĥ2, ..., ĥ9 to agree on.

Second, we define the expected margin for a classifier ĥ1 trained on n i.i.d. samples

to be

∆n(x) :=
∣∣∣E[ĥ1(x)|x]− 1

2

∣∣∣. (4.4)

This quantity captures for a fixed x ∈ X , how likely the teachers will agree. For a
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fixed learning problem H,D and the number of i.i.d. data points ĥ1 is trained upon, the

expected margin is a function of x alone. The larger ∆n/K(x) is, the more likely that the

ensemble of K teachers agree on a prediction in Y with high-confidence. Note that unlike

in Example 4.4.11, we do not require the teachers to agree on y. Instead, it measures the

extent to which they agree on hagg∞ (x), which could be any label.

When the expected margin is bounded away from 0 for x, then the voting classifier

outputs hagg∞ (x) with probability converging exponentially to 1 as K gets larger. On the

technical level, this definition allows us to decouple the stability analysis and accuracy of

PATE as the latter relies on how good hagg∞ is.

Definition 4.4.12 (Approximate high margin) We say that a learning problem with

n i.i.d. samples satisfy (ν, ξ)-approximate high-margin condition if Px∼D[∆n(x) > ξ] ≤ ν.

This definition says that with high probability, except for O(νm) data points, all other

data points in the public dataset have an expected margin of at least ξ. Observe that

every learning problem has ξ that increases from 0 to 0.5 as we vary ν from 0 to 1. The

realizability assumption and the Tsybakov noise condition that we considered up to this

point imply upper bounds of ν at fixed ξ (see more details in Remark 4.4.16).

The following proposition shows that when a problem is approximate high-margin,

there are choices T and K under which the SVT-based PATE provably labels almost all

data points with the output of hagg∞ .

Proposition 4.4.13 Assume the learning problem with n/K i.i.d. data points satisfies

(ν, ξ)-approximate high-margin condition. Let Algorithm 5 be instantiated with parame-

ters

T ≥ νm+

√
2νm log

(3
γ

)
+

2

3
log
(3
γ

)
,

108



Disagreement-Based Active Learning for Privacy Protection Chapter 4

K ≥ max
{2 log(3m/γ)

ξ2
,
3λ
(
log(4m/δ) + log(3m/γ)

)
ξ

}
, 5

then with high probability (over the randomness of the n i.i.d. samples of the private

dataset, m i.i.d. samples of the public dataset, and that of the randomized algorithm),

Algorithm 5 finishes all m rounds and the output is the same as hagg∞ (xi) for all but T of

the i ∈ [m].

This proposition provides the utility guarantee to Algorithm 5 and generalizes Lemma 4.4.8

from fixing ξ = 1/6 into allowing much smaller ξ at a cost of increasing ν.

Next, we state the learning bounds under the approximate-high margin condition.

Theorem 4.4.14 Assume the learning problem with n/K i.i.d. data points satisfies

(ν, ξ)-approximate high-margin condition and let K,T be chosen according to Proposi-

tion 4.4.13, furthermore assume that the privacy parameter of choice ϵ ≤ log(2/δ), then

the output classifier ĥS of Algorithm 6 in the agnostic setting satisfies that with probability

≥ 1− 2γ,

Err(ĥS)− Err(hagg∞ ) ≤ min
h∈H

Dis(h, hagg∞ ) +
2T

m
+ Õ

(√ d

m

)
≤ min

h∈H
Dis(h, hagg∞ ) + 2ν + Õ

(√ d

m

)
.

The voting classifier ĥagg is usually not in the original hypothesis class H, so we can

take a wider view of the hypothesis class and define the voting hypothesis space Vote(H)

where the learning problem becomes realizable. Note if the VC dimension of H is d, then

the VC dimension of VoteK(H) ≤ Kd. In practice, this suggests using ensemble methods

such as AdaBoost for K iterations.

Theorem 4.4.15 Under the same assumption of Theorem 4.4.14, suppose we train an

5λ = (
√
2T (ϵ+ log(2/δ)) +

√
2T log(2/δ))/ϵ according to Algorithm 5.
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ensemble classifier within the voting hypothesis space VoteK(H) in the student domain,

then the output classifier ĥS of Algorithm 6 in the agnostic setting satisfies that with

probability ≥ 1− 2γ,

Err(ĥS)− Err(hagg∞ ) ≤ 4T

m
+

5(Kd+ log(4/γ))

m
= Õ

(
ν +

log(4/γ)

m
+
d
√
ν

ξ
√
m

)
.

Remark 4.4.16 Whether the bounds in Theorem 4.4.14 and 4.4.15 will vanish asm,n→

∞ depends strongly on how parameter ν and ξ change as n/K gets larger. Intuitively, if

the learner converges to a single classifier h∗, as in the realizable case or under TNC, then

we can show that the learning problem satisfy (ν, ξ)-approximate high-margin condition

with ξ = 1/6 and ν ≤ Õ((dK/n)
τ

2−τ ). Substituting this quantities into Theorem 4.4.14

and using the fact that ν also bounds the disagreement between h∗ and hagg∞ allows us

obtain a bound that vanishes as n gets larger. More generally, in the agnostic case, it is

reasonable to assume that the “teachers” will get more confident in their individual pre-

diction for most data points as n/K →∞. We argue this is a more modest requirement

than requiring the “teachers” to get more accurate.

4.4.3 PATE with Active Student Queries

In previous subsections, we have proved stronger learning bounds for PATE framework

under TNC and in agnostic setting. However, all these results are based on the variants

of PATE that aim at passively releasing almost all student queries. In this section we

address the following question:

Can we do even better if we cherry-pick queries to label?

The hope is that this allows us to spend privacy budget only on those queries that

add new information for the interest of training a classifier, hence resulting in a more
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favorable privacy-utility tradeoff. Without privacy constraints, this problem is known

as active learning and it is often possible to save exponentially in the number of labels

needed comparing to the passive learning model.

In Algorithm 8, we propose a new algorithm called PATE with Active Student Queries

(PATE-ASQ) which uses the disagreement-based active learning algorithm (Algorithm

7) as the subroutine. Then we provide its utility guarantee.

Algorithm 8 PATE-ASQ

Input: Labeled private teacher datasetDT , unlabeled public student datasetDS, privacy
parameters ϵ, δ > 0, number of splitsK, maximum number of queries ℓ, failure probability
γ.

1: Randomly and evenly split the teacher dataset DT into K parts DT
k ⊆ DT where

k ∈ [K]
2: Train K classifiers ĥk ∈ H, one from each part DT

k .

3: Declare “Labeling Service”← Algorithm 4 with ĥ1, ..., ĥK , ℓ, ϵ, δ, with an unspecified
“nature”.

4: Initiate an active learning oracle (e.g., Algorithm 7) with an iterator over DS being
the “data stream”, hypothesis classH, failure probability γ. Set the “labeling service”
to be Algorithm 4 with parameter ĥ1, ..., ĥK , ℓ, ϵ, δ, and set the “nature” to be the
“request for label” calls in the active learning oracle.

5: Set ĥS to be the “current output” from active learning oracle.

Output: Return ĥS.

Theorem 4.4.17 (Utility guarantee of Algorithm 8) With probability at least 1 −

γ, there exists universal constants C1, C2 such that for all

α ≥ C1max

{
η

2
2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

,
d log((m+ n)/d) + log(2/γ)

m

}
,

the output ĥS of Algorithm 8 with parameter ℓ,K satisfying

ℓ = C2θ(α)
(
1 + log

( 1
α

))(
d log(θ(α)) + log

( log(1/α)
γ/2

))
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K =
6
√

log(2n)(
√
ℓ log(1/δ) +

√
ℓ log(1/δ) + ϵℓ)

ϵ

obeys that

Err(ĥS)− Err(h∗) ≤ α.

Specifically, when we choose

α = C1max

{
η

2
2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

,
d log((m+ n)/d) + log(2/γ)

m

}
,

and also ϵ ≤ log(1/δ), then it follows that

Err(ĥS)− Err(h∗) = Õ

(
max

{(d1.5√θ(α) log(1/δ)

nϵ

) τ
2−τ ,

d

m

})
,

where Õ hides logarithmic factors in m,n, 1/γ.

Remark 4.4.18 The bound above resembles the learning bound we obtain using the pas-

sive student queries with Algorithm 5 as the privacy procedure, except for the additional

dependence on the disagreement coefficients. Interestingly, active learning achieves this

bound without using the sophisticated (and often not practical) algorithmic components

from DP, such as sparse sector technique to save privacy losses. Instead, we can get away

with using simple Gaussian mechanism as in Algorithm 4.

Remark 4.4.19 (Blackbox reduction, revisited) In contrary to our discussion in

Remark 4.4.9, notice that we are using Algorithm 4 instead of Algorithm 5 as the labeling

services, which allows us to reduce to any learner as a blackbox. This makes it possible

to state formally results even for deep neural networks or other family of methods where

obtaining ERM is hard but learning is conjectured to be easy in theory and in practice.

Remark 4.4.20 (Relationships between SVT and active learning) There is an in-
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triguing analogy between the Algorithm 5 which simply labels all queries with an advanced

DP mechanism and Algorithm 4 which uses active learning with a simple DP mechanism.

On a high level, both approaches are doing selection. Active learning selects those queries

that are near the decision boundary to be informative for learning; the sparse-vector-

technique approach essentially selects those queries that are not stable to spend privacy

budget on.

One curious question is whether the two sets of selected data points are substantially

overlapping. If not, then we might be able to combine the two and achieve even better

private-utility tradeoff.

4.5 Experiments

In this section, we present our empirical studies of PATE-PSQ and PATE-ASQ algo-

rithms. Section 4.5.1 describes how we set up our experiments, and Section 4.5.2 show

our results.

4.5.1 Experimental Settings

Algorithms compared. We focus on comparing the classification accuracy of the

passive and active learning versions of PATE on a holdout test set (“Utility”) when both

algorithms are calibrated to the same privacy budget ϵ (“privacy”). To set baselines, we

also compare them with non-private versions of them (no noise added to the votes, or

ϵ = +∞), denoted by PATE-PSQ-NP and PATE-ASQ-NP. We remark that the PATE-

PSQ we implement is the Gaussian mechanism version [86]. While we have shown that it

has higher asymptotic sample complexity comparing to the more advanced version based

on SVT [88] (Section 4.4.1), we found that the Gaussian mechanism version performs

better for the realistically-sized datasets that we considered. Linear models are used
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for all of these algorithms for simplicity. For active learning, we follow the practical

implementation of the disagreement-based active learning by [110], which does not require

the learner to explicitly maintain the (exponentially large) region of disagreement.

Datasets. We do our experiments on three binary classification datasets, mushroom,

a9a, and real-sim. All of them are obtained from LIBSVM dataset website 6. See Table

4.3 for the statistics of them. If a dataset had been previously split into training and

testing parts, we combine them together and record the total number of all data points.

For all datasets, 80% of all data points are randomly selected to be considered private

and used to train teacher classifiers. 2% of all data points are randomly selected as public

student unlabeled data points. The remaining 18% data points are reserved for testing.

We repeat these random selection processes for 30 times.

Table 4.3: Statistics of datasets.

Dataset # All # Train # Unlabeled # Budget # Test # Dimension

mushroom 8, 124 6, 499 163 49 1, 462 112

a9a 48, 842 39, 073 977 293 8, 792 123

real-sim 72, 309 57, 847 1, 447 434 13, 015 20, 958

Parameter settings. Number of teachers K is set on all datasets so that each teacher

classifier gets trained with approximately 100 data points. 30% of student unlabeled

data points are set as the total budget of queries for PATE-ASQ and PATE-ASQ-NP.

See Table 4.3. ϵ = 0.5, 1.0, 2.0 and δ = 1/n are set as privacy parameters for all datasets,

where n is number of private teacher data points. All privacy accounting and calibration

are conducted via AutoDP [111], and the tight analytical calibration and composition of

Gaussian mechanisms are due to [112].

6https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Privacy loss vs. privacy budget. Besides the privacy budget parameter ϵ that the

algorithms receive as an input, it is often the case that the active learning algorithm halts

before exhausting the query budget of (30% of the total number of unlabeled data points).

Therefore the privacy loss incurred after running PATE-ASQ might be smaller than the

prescribed privacy budget. We refer to the privacy loss ϵex post, since it is determined by

the output.

4.5.2 Experimental Results

The results are presented in Table 4.4, where both utility (classification accuracy on

the test set) and privacy (privacy budget ϵ and privacy loss ϵex post) metrics are reported.

Best results in each category are marked in bold fonts. We make a few observations of

the results below.

1. Given the same privacy budget, ASQ performs substantially better than PSQ in

most cases. The improvement is sometimes 10% (real-sim / ϵ = 0.5). The only

exception is when ϵ = 2.0 on the “mushroom” dataset, in which the active learning

performed substantially worse than the passive-learning counterpart in the non-

private baseline as well.

2. ASQ incurs a smaller private loss ϵex post than PSQ, due to possibly fewer queries

being selected by the active learning algorithm than the pre-specified query budget.

3. As ϵ increases, less noise is injected by the Gaussian mechanisms, and the perfor-

mance improves for both PSQ and ASQ. In the regime of small ϵ (stronger privacy),

we often see a greater improvement in ASQ.

4. ASQ requires privately releasing a much smaller number of labels while maintaining

comparable performances as PSQ. Although ASQ algorithms use up all labeling
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Table 4.4: Utility and privacy results of different PATE models. # Queries shows
the number of queries actually answered in experiments. Accuracy is reported as
mean ± 1.96 × standard error/

√
30, i.e., 98% asymptotic confidence interval of the

expected accuracy based on inverting Wald’s test. All “PATE-” prefixes of methods
are omitted to improve readability.

Dataset Method # Queries ϵ ϵex post Accuracy

mushroom

PSQ-NP 163 +∞ +∞ 0.9773± 0.0006
ASQ-NP 47.3± 0.2 +∞ +∞ 0.9146± 0.0036
PSQ 163 0.5 0.5 0.6416± 0.0036
ASQ 40.1± 0.7 0.5 0.4461 0.6418± 0.0091
PSQ 163 1.0 1.0 0.7534± 0.0045
ASQ 42.9± 0.5 1.0 0.9267 0.7727± 0.0098
PSQ 163 2.0 2.0 0.8974± 0.0027
ASQ 46.5± 0.3 2.0 1.9410 0.8858± 0.0059

a9a

PSQ-NP 977 +∞ +∞ 0.5555± 0.0157
ASQ-NP 225.6± 5.0 +∞ +∞ 0.5461± 0.0160
PSQ 977 0.5 0.5 0.5040± 0.0034
ASQ 293 0.5 0.5 0.5212± 0.0088
PSQ 977 1.0 1.0 0.5171± 0.0050
ASQ 290.8± 0.8 1.0 0.9958 0.5369± 0.0103
PSQ 977 2.0 2.0 0.5176± 0.0070
ASQ 290.3± 0.9 2.0 1.9896 0.5543± 0.0089

real-sim

PSQ-NP 1, 447 +∞ +∞ 0.8234± 0.0014
ASQ-NP 434 +∞ +∞ 0.8289± 0.0008
PSQ 1, 447 0.5 0.5 0.6355± 0.0065
ASQ 434 0.5 0.5 0.7389± 0.0014
PSQ 1, 447 1.0 1.0 0.7550± 0.0058
ASQ 434 1.0 1.0 0.8040± 0.0009
PSQ 1, 447 2.0 2.0 0.8025± 0.0037
ASQ 434 2.0 2.0 0.8231± 0.0009
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budget on real-sim datasets, ASQ algorithms do not run out of them on mushroom

and a9a datasets in most cases.

5. ASQ-NP does not always perform better than PSQ-NP algorithms, which meets

our understanding from active learning literature. It only performs better than

PSQ-NP on real-sim datasets.

4.6 Conclusions

Existing theoretical analysis shows that PATE framework consistently learns any VC-

classes in the realizable setting, but not in the more general cases. We show that PATE

learns any VC-classes under Tsybakov noise condition (TNC) with fast rates. When

specializing to the realizable case, our results improve the best known sample complexity

bound for both the public and private data. We show that PATE is incompatible with

the agnostic learning setting because it is essentially trying to learn a different class of

voting classifiers which could be better, worse, or comparable to the best classifier in the

base-class. Lastly, we investigated the PATE framework with active learning and showed

that simple Gaussian mechanism suffices for obtaining the same fast rates under TNC.

In addition, our experiments on PATE-ASQ show it works as an efficient algorithm in

practice.

Future work includes understanding different selections made by sparse vector tech-

nique and active learning, as well as addressing the open theoretical problem at large

— developing ERM-oracle efficient algorithm for the private agnostic learning when a

public unlabeled dataset is available.
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4.7 Complete Proofs

4.7.1 Proofs of Existing Results

In this subsection, we provide the privacy analysis as well as reproving the results of

[88] in our notation so that it becomes clear where the improvement is coming from.

Theorem 4.7.1 (Restatement of Theorem 4.3.2) Algorithm 4 and 5 are both (ϵ, δ)-

DP.

The proof for Algorithm 4 follows straightforwardly from Gaussian mechanism be-

cause the number of “teachers” who predict 1 will have a global sensitivity of 1. The

proof for Algorithm 5 is more delicate. It follows the arguments in the proof of Theorem

3.6 of [106] for the most part, which combines the sparse vector technique (SVT) [113]

with the distance to stability approach from [114]. The only difference in the stated

result here is that we used the modern CDP approach to handle the composition which

provides tighter constants.

Proof: First note that the global sensitivity (Definition B.0.2) of the vote count

is 1. Algorithm 4 is a straightforward adaptive composition of ℓ Gaussian mechanisms

(Lemma B.0.5), which satisfies ℓ
2σ2 -zCDP. By Lemma B.0.12, we get that the choice of

σ gives us (ϵ, δ)-differential privacy.

Let us now address Algorithm 5. First note that ∆̂(xj) as a function of the input

dataset D has a global sensitivity of 2 for all xj, thus distj has a global sensitivity

of 1. Following the proof of Theorem 3.6 of [106], Algorithm 5 can be considered a

composition of Sparse Vector Technique (SVT) (Algorithm 9), which outputs a binary

vector of {⊥,⊤} indicating the failures and successes of passing the screening by SVT,

and the distance-to-stability mechanism (Algorithm 10) which outputs {ĥagg(xj)} for all

coordinates where the output is ⊥. Check that the length of this binary vector is random
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and is between T and ℓ. The number of ⊤ is smaller than T . If {ĥagg(xj)} is not revealed,

then this would be the standard SVT, and the challenge is to add the additional outputs.

The key trick of the proof inspired from the privacy analysis (Lemma B.0.9) of the

distance-to-stability is to discuss the two cases. In the first case, assume for all j such

that the output is ⊥, ĥagg(xj) remains the same over D,D′, then adding ĥagg(xj) to

the output obeys 0-DP; in the second case, assume that there exists some j where we

output ⊥ such that, ĥagg(xj) is different under D and D′, then for all these j we know

that distj = 0 for both D and D′. By the choice of λ,w, we know that the second

case happens with probability at most δ/2 using the tail of Laplace distribution and a

union bound over all ℓ+ T independent Laplace random variables. Note that this holds

uniformly over all possible adaptive choices of the nature, since this depends only on the

added noise.

Conditioning on the event that the second case does not happen, the output of the

algorithm is only the binary vector of {⊥,⊤} from SVT. The SVT with cutoff T is an

adaptive composition of T SVTs with cutoff= 1. By our choice of parameter λ, each such

SVT with cutoff= 1 obeys pure-DP with privacy parameter 2/λ, hence also satisfy CDP

with parameter 2/λ2 by Proposition 1.4 of [105]. Composing over T SVTs, we get a CDP

parameter of 2T/λ2. By Proposition 1.3 of [105] (Lemma B.0.12), we can convert CDP

to DP. The choice of λ is chosen such that the composed mechanism obeys (ϵ, δ/2)-DP.

Combining with the second case above, this establishes the (ϵ, δ)-DP of Algorithm 5.

Theorem 4.7.2 (Restatement of Theorem 4.3.5) Set

T = 3
(
E[Err(ĥ1)]m+

√
m log(m/β)

2

)
,

K = O
( log(mT/min(δ, β))

√
T log(1/δ)

ϵ

)
.
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Let ĥS be the output of Algorithm 6 that uses Algorithm 5 for privacy aggregation. With

probability at least 1 − β (over the randomness of the algorithm and the randomness of

all data points drawn i.i.d.), we have

Err(ĥS) ≤ Õ
(d2m log(1/δ)

n2ϵ2
+

√
d

m

)

for the realizable case, and

Err(ĥS) ≤ 13Err(h∗) + Õ
(m1/3d2/3

n2/3ϵ2/3
+

√
d

m

)

for the agnostic case.

Proof: The analysis essentially follows the proof of Theorem 4.4.3 by replacing

h∗ with y. First, by Hoeffding’s inequality, with probability 1 − β over the teacher

data points, the total number of mistakes made by each teacher classifier is at most

mE[Err(ĥ1)]+
√
m log(m/β)/2, which is B in Lemma 4.3.4. Then following Lemma 4.3.4,

by choose T = 3B = 3(mE[Err(ĥ1)] +
√
m log(m/β)/2), we ensure that the majority

voting classifiers are correct and have high margin in at least m− T examples.

In the realizable setting. Since Err(h∗) = 0 and by standard statistical learning

theory in the realizable case (Lemma A.0.8), for each teacher classifier ĥk we have

Err(ĥk) ≤ 4
d log(n/K) + log(4/γ)

n/K
.

Substitute our choice of K = Õ(
√
T log(1/δ)/ϵ) as in Lemma 4.3.3 we get that w.h.p.

Err(ĥk) ≤ Õ
(d√T log(1/δ)

nϵ

)
.
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Plug in the bound into our choice of T = 3(mE[Err(ĥ1)] +
√
m log(m/β)/2), we get

T ≤ Õ
(dm√T log(1/δ)

nϵ
+

√
m log(m/β)

2

)
.

By solving the quadratic inequality, we get that T obeys

T ≤ Õ
(d2m2 log(1/δ)

n2ϵ2
+
√
m
)
.

Recall that this choice of K and T ensures that Algorithm 5 will have at most T unstable

queries during the m rounds, which implies that with high probability, the privately

released pseudo-labels to those “stable” queries are the same as the corresponding true

labels.

Now the next technical subtlety is to deal with the dependence in the student learning

problem created by the pseudo-labels via a reduction to an ERM learner. By the standard

Hoeffding-style uniform convergence bound (Lemma A.0.7),

Err(ĥS) ≤ Êrr(ĥS) + Õ
(√ d

m

)
≤ Êrr(ĥpriv) + D̂is(ĥpriv, ĥS) + Õ

(√ d

m

)
≤ 2Êrr(ĥpriv) + Õ

(√ d

m

)
≤ 2T

m
+ Õ

(√ d

m

)
= Õ

(d2m log(1/δ)

n2ϵ2
+

√
d

m

)
. (4.5)

where we applied the triangular inequality in the second line, used that ĥS is the mini-

mizer of D̂is(ĥpriv, ·) in the third line, and then combined Lemma 4.3.3 and Lemma 4.3.4

to show that under the appropriate choice of T and K with high probability, ĥpriv(xj)
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correctly returns yj except for up to T example. Finally, the choice of T is substituted.

In agnostic setting. By Lemma A.0.8, with high probability, for all teacher classifier

ĥk for k = 1, ..., K, we have

Err(ĥk)− Err(h∗) ≤ Õ
(√d log(n/K) + log(4/γ)

n/K

)
.

Substitute the choice of K = Õ(
√
T log(1/δ)/ϵ) from Lemma 4.3.3, we get

Err(ĥk) ≤ Err(h∗) + Õ
(d1/2T 1/4

n1/2ϵ1/2

)
.

Plug in the above bound into our choice T = 3(mE[Err(ĥ1)] +
√
m log(m/β)/2), we get

that

T ≤ 3mErr(h∗) + Õ(
√
m) + Õ

(md1/2T 1/4

n1/2ϵ1/2

)
. (4.6)

Further, we can write

T ≤ 2(3mErr(h∗) + Õ(
√
m)) · 1

(
Õ
(md1/2T 1/4

n1/2ϵ1/2

)
≤ T

2

)
+

(
2Õ
( md1/2

n1/2ϵ1/2

))4/3

· 1
(
Õ
(md1/2T 1/4

n1/2ϵ1/2

)
>
T

2

)
≤ 6mErr(h∗) + Õ(

√
m) + Õ

(m4/3d2/3

n2/3ϵ2/3

)
, (4.7)

where the first line talks about two cases of Inequality (4.6): (1) T/2 ≤ T−Õ(md1/2T 1/4

n1/2ϵ1/2
) ≤

3mErr(h∗)+Õ(
√
m) if Õ(md1/2T 1/4

n1/2ϵ1/2
) ≤ T/2, and (2) T 3/4 ≤ 2Õ(md1/2T 1/4

n1/2ϵ1/2
) if Õ(md1/2T 1/4

n1/2ϵ1/2
) >

T/2; The second line is due to the indicator function is always ≤ 1.

Similar to the realizable case, now we apply a reduction to ERM. By the Hoeffding’s
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style uniform convergence bound (implied by Lemma A.0.7)

Err(ĥS) ≤ Êrr(ĥS) + Õ
(√ d

m

)
≤ Êrr(ĥpriv) + D̂is(ĥpriv, ĥS) + Õ

(√ d

m

)
≤ Êrr(ĥpriv) + D̂is(ĥpriv, ĥ1) + Õ

(√ d

m

)
≤ 2Êrr(ĥpriv) + Êrr(ĥ1) + Õ

(√ d

m

)
≤ 2T

m
+ Err(h∗) + Õ

(√ d

m

)
≤ 13Err(h∗) + Õ

(m1/3d2/3

n2/3ϵ2/3
+

√
d

m

)
.

where the second and fourth lines use the triangular inequality of 0− 1 error, the third

line uses the fact that ĥS is the empirical risk minimizer of the student learning problem

with labels ĥpriv and the fact that h1 ∈ H. The second last line follows from the fact

that in those stable queries ĥpriv(xj) outputs yj, and a standard agnostic learning bound.

Finally, in the last line, we obtain the stated result by substituting the upper bound of

T from (4.7).

The results stated in Table 4.1 are obtained by minimizing the bound by choosing a

random subset of data points to privately release labels.

4.7.2 Learning bound for PATE with Gaussian Mechanism

In this subsection, we provide a theoretical analysis of the version of PATE from

[85, 86] that uses Gaussian mechanism to release the aggregated teacher labels. We will

focus on the setting assuming τ -TNC. Though this result is not our main contribution, we

note that standard PATE is a practical algorithm and this is the first learning-theoretic

guarantees of PATE.
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Theorem 4.7.3 (Utility guarantee of Algorithm 4) Assume the data distribution

D and the hypothesis class H obey the Tsybakov noise condition with parameter τ , then

with probability at least 1− γ, there exists universal constant C such that the output ĥS

of Algorithm 4 with parameter K satisfying

K =
6
√
log(2n)(

√
m log(1/δ) +

√
m log(1/δ) + ϵm)

ϵ

obeys that

Err(ĥS)− Err(h∗) ≤ Õ

(
d

m
+
(d√m

nϵ

) τ
2−τ

)
.

Specifically, in the realizable setting, then it follows that

Err(ĥS)− Err(h∗) ≤ Õ
( d
m

+
d
√
m

nϵ

)
.

Proof: By the triangular inequality of the 0− 1 error,

Err(ĥS)− Err(h∗) ≤ Dis(ĥS, h∗)

≤ Dis(ĥS, h̃priv) + Dis(h̃priv, h∗)

≤ 2Dis(h̃priv, h∗) + 2

√
(d+ log(4/γ))Dis(h̃priv, h∗)

m
+

4(d+ log(4/γ))

m

≤ 4Dis(h̃priv, h∗) + Õ
( d
m

)
(4.8)

where the third line follows from the learning bound (Lemma A.0.8) with h̃priv being the

labeling function for the student dataset. The last line is due to a+ 2
√
ab+ b ≤ 2a+ 2b

for non-negative a, b.

The remaining problem would be finding the upper bound of Dis(h̃priv, h∗). First by
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Lemma 4.4.6, with probability at least 1− γ/2, ∀k ∈ [K] we have

Dis(ĥk, h
∗) ≲ η

2
2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

.

Next, conditioning on the teachers, h̃priv is independent for each input and well-

defined for all input. Let Z ∼ N (0, σ2). By Gaussian-tail bound and Markov’s inequality,

Dis(h̃priv, h∗)

≤ P
[
|Z| ≤ σ

√
2 log

( 2
β

)]
P
[ K∑

k=1

1(ĥk(x) ̸= h∗(x)) ≥ K

2
− |Z|

∣∣∣∣|Z| ≤ σ

√
2 log

( 2
β

)]
+ P

[
|Z| > σ

√
2 log

( 2
β

)]
≤ 1

K/2− σ
√

2 log(2/β)

K∑
k=1

E[1(ĥk(x) ̸= h∗(x))] + β

≤ 3

K

K∑
k=1

Dis(ĥk, h
∗) +

1

n

≲ η
2

2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

.

In the last line, we choose β = 1/n and applied the assumption that K ≥ 6σ
√

2 log(2n).

Note that our choice of σ satisfies that

√
2m log(1/δ)

σ2
+

m

2σ2
= ϵ.

Solve the equation and we find that

σ =

√
2m log(1/δ) +

√
2m log(1/δ) + 2ϵm

2ϵ
.
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Therefore, the choice of K is

K =
6
√

log(2n)(
√
m log(1/δ) +

√
m log(1/δ) + ϵm)

ϵ
= Õ

(√m
ϵ

)
,

where ϵ is assumed to be small. Put everything together, and the excess risk bound is

Err(ĥS)− Err(h∗) ≤ Õ

(
d

m
+
(d√m

nϵ

) τ
2−τ

)
.

Remark 4.7.4 When m is sufficient large ( d
m
<
(

d
√
m

nϵ

) τ
2−τ

), it suffices to use a subset

of randomly chosen data points to optimize the bound and we obtain an excess risk bound

of Õ
((

d3/2

nϵ

) 2τ
4−τ

)
. When τ = 1, this yields the d

(nϵ)2/3
rate that matches [88]’s analysis

of SVT-based PATE. To avoid any confusions, Gaussian mechanism-based PATE is still

theoretically inferior comparing to SVT-based PATE as we established in Theorem 4.4.3.

4.7.3 Deferred Proofs of Results in Main Sections

In this subsection, we present full proofs of our results shown in main sections.

Proposition 4.7.5 (Restatement of Proposition 4.4.13) Assume the learning prob-

lem with n/K i.i.d. data points satisfies (ν, ξ)-approximate high-margin condition. Let

Algorithm 5 be instantiated with parameters

T ≥ νm+

√
2νm log

(3
γ

)
+

2

3
log
(3
γ

)

K ≥ max
{2 log(3m/γ)

ξ2
,
3λ
(
log(4m/δ) + log(3m/γ)

)
ξ

}
, 7

7λ = (
√
2T (ϵ+ log(2/δ)) +

√
2T log(2/δ))/ϵ according to Algorithm 5.

126



Disagreement-Based Active Learning for Privacy Protection Chapter 4

then with high probability (over the randomness of the n i.i.d. samples of the private

dataset, m i.i.d. samples of the public dataset, and that of the randomized algorithm),

Algorithm 5 finishes all m rounds and the output is the same as hagg∞ (xi) for all but T of

the i ∈ [m].

Proof: By the Bernstein’s inequality, with probability ≥ 1 − γ2 over the i.i.d.

samples of the public data, the number of queries j ∈ [m] with ∆n/K(xj) ≤ ξ is smaller

than νm+
√
2νm log(1/γ2) +

2
3
log(1/γ2). T is an upper bound of the above quantity if

we choose γ2 = γ/3.

Conditioning on the above event, by Hoeffding’s inequality and a union bound, with

probability ≥ 1−γ3 over the i.i.d. samples of the private data (hence the K i.i.d. teacher

classifiers), for allm−T queries with ∆n/K(xi) larger than ξ, the realized margin (defined

in (4.1)) obeys that

∆̂(xj) ≥ E[∆̂(xj)|xj]−
√

2K log
(m
γ3

)
= 2K∆n/K(xi)−

√
2K log

(m
γ3

)
≥ 2Kξ −

√
2K log

(m
γ3

)
.

It remains to check that under our choice of T,K, d̂istj > ŵ for all j ∈ [m] except

the (up to) T exceptions.

By the tail of Laplace distribution and a union bound, with probability ≥ 1− γ1, all

m Laplace random variables that perturb the distance to stability d̂istj in Algorithm 10

is larger than −2λ log((m + T )/(2γ1)) and all T Laplace random variables that perturb

the threshold w is smaller than λ log((m + T )/(2γ1)), where λ is chosen according to

Algorithm 5. We simplify the above bound by using T < m.
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It suffices that K is chosen such that

2Kξ −
√

2K log
(m
γ3

)
− 2λ log

(m
γ1

)
> w + λ log

(m
γ1

)
.

Substitute Algorithm 5’s choice w = 3λ log(2(m + T )/δ) ≤ 3λ log(4m/δ). Assume K ≥

2 log(m/γ3)/ξ
2, we have 2Kξ−

√
2K log(m/γ3) ≥ Kξ, thus it suffices that further Kξ >

3λ
(
log(4m/δ) + log(m/γ1)

)
.

The proof is complete by taking γ2 = γ3 = γ/3 and take union bound over all high

probability events described above.

Theorem 4.7.6 (Restatement of Theorem 4.4.14) Assume the learning problem with

n/K i.i.d. data points satisfies (ν, ξ)-approximate high-margin condition and let K,T be

chosen according to Proposition 4.4.13, furthermore assume that the privacy parameter

of choice ϵ ≤ log(2/δ), then the output classifier ĥS of Algorithm 6 in the agnostic setting

satisfies that with probability ≥ 1− 2γ,

Err(ĥS)− Err(hagg∞ ) ≤ min
h∈H

Dis(h, hagg∞ ) +
2T

m
+ Õ

(√ d

m

)
≤ min

h∈H
Dis(h, hagg∞ ) + 2ν + Õ

(√ d

m

)
.

Proof: We follow a similar argument as in the proof of Theorem 4.4.3, but replace

h∗ with hagg∞ . Define h̃ = argminh∈H D̂is(h, hagg∞ ). By the triangular inequality of the 0−1

error and Lemma A.0.7 in Appendix A,

Err(ĥS)− Err(hagg∞ ) ≤ Dis(ĥS, hagg∞ ) ≤ D̂is(ĥS, hagg∞ ) + Õ
(√ d

m

)
. (4.9)

By the triangular inequality, we have D̂is(ĥS, hagg∞ ) ≤ D̂is(ĥS, ĥpriv) + D̂is(ĥpriv, hagg∞ ),
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therefore,

(4.9) ≤ D̂is(ĥS, ĥpriv) + D̂is(ĥpriv, hagg∞ ) + Õ
(√ d

m

)
≤ D̂is(h̃, ĥpriv) + D̂is(ĥpriv, hagg∞ ) + Õ

(√ d

m

)
≤ D̂is(h̃, hagg∞ ) + 2D̂is(ĥpriv, hagg∞ ) + Õ

(√ d

m

)
≤ min

h∈H
Dis(h, hagg∞ ) + 2D̂is(ĥpriv, hagg∞ ) + Õ

(√ d

m

)
.

In the second line, we applied the fact that ĥS = argminh∈H D̂is(h, ĥpriv); in the third line,

we applied triangular inequality again and the last line is true because h̃ = argminh∈H D̂is(h, hagg∞ ).

Recall that T is the unstable cutoff in Algorithm 6. The proof completes by invoking

Proposition 4.4.13 which implies that D̂is(ĥpriv, hagg∞ ) ≤ T/m with high probability.

Theorem 4.7.7 (Restatement of Theorem 4.4.15) Under the same assumption of

Theorem 4.4.14, suppose we train an ensemble classifier within the voting hypothesis

space VoteK(H) in the student domain, then the output classifier ĥS of Algorithm 6 in

the agnostic setting satisfies that with probability ≥ 1− 2γ,

Err(ĥS)− Err(hagg∞ ) ≤ 4T

m
+

5(Kd+ log(4/γ))

m
= Õ

(
ν +

log(4/γ)

m
+
d
√
ν

ξ
√
m

)
.

Proof: Define ĥS = argminh∈VoteK(H) D̂is(h, ĥ
priv) and h̃ = argminh∈VoteK(H) D̂is(h, h

agg
∞ ).
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By the triangular inequality of the 0− 1 error,

Err(ĥS)− Err(hagg∞ ) ≤ Dis(ĥS, hagg∞ )

≤ D̂is(ĥS, hagg∞ ) + 2

√
(Kd+ log(4/γ))D̂is(ĥS, hagg∞ )

m
+

4(Kd+ log(4/γ))

m

≤ 2D̂is(ĥS, hagg∞ ) +
5(Kd+ log(4/γ))

m
, (4.10)

where the second line follows from the first statement of Lemma A.0.7 in Appendix A

with z = hagg∞ (x) and the third line is due to a+2
√
ab+ b ≤ 2a+2b for non-negative a, b.

By the triangular inequality, we have D̂is(ĥS, hagg∞ ) ≤ D̂is(ĥS, ĥpriv)+ D̂is(ĥpriv, hagg∞ ),

therefore,

(4.10) ≤ 2D̂is(ĥS, ĥpriv) + 2D̂is(ĥpriv, hagg∞ ) +
5(Kd+ log(4/γ))

m

≤ 2D̂is(h̃, ĥpriv) + 2D̂is(ĥpriv, hagg∞ ) +
5(Kd+ log(4/γ))

m

≤ 2D̂is(h̃, hagg∞ ) + 4D̂is(ĥpriv, hagg∞ ) +
5(Kd+ log(4/γ))

m

≤ 4D̂is(ĥpriv, hagg∞ ) +
5(Kd+ log(4/γ))

m
.

In the second line, we applied the fact that ĥS = argminh∈VoteK(H) D̂is(h, ĥ
priv); in

the third line, we applied triangular inequality again and the last line is true because

D̂is(h̃, hagg∞ ) = 0 since h̃ is the minimizer and that hagg∞ ∈ VoteK(H).

Recall that T is the unstable cutoff in Algorithm 6. The proof completes by using

that D̂is(ĥpriv, hagg∞ ) ≤ T/m with probability 1 − γ according to Proposition 4.4.13 and

substitute the choices of T and K accordingly.

Lemma 4.7.8 If the disagreement-based agnostic active learning algorithm is given a

stream of m unlabeled data points, then with probability at least 1 − γ, the algorithm
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returns a hypothesis h obeying that,

Err(h)− Err(h∗) ≲
d log(θ(d/m)) + log(1/γ)

m
+

√
Err(h∗)(d log(θ(Err(h∗)) + log(1/γ))

m
.

Proof: From Lemma 3.1 of [93], we learn that for any hypothesis h survive in version

space V must satisfy

Err(h)− Err(h∗) ≤ 2U(m, γ).

Then by the definition of U(m, γ) shown in Algorithm 7, we have

Err(h)− Err(h∗) ≲
d log(θ(d/m)) + log(1/γ)

m
+

√
Err(h∗)(d log(θ(Err(h∗)) + log(1/γ))

m
.

Theorem 4.7.9 (Restatement of Theorem 4.4.17) With probability at least 1 − γ,

there exists universal constants C1, C2 such that for all

α ≥ C1max

{
η

2
2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

,
d log((m+ n)/d) + log(2/γ)

m

}
,

the output ĥS of Algorithm 8 with parameter ℓ,K satisfying

ℓ = C2θ(α)
(
1 + log

( 1
α

))(
d log(θ(α)) + log

( log(1/α)
γ/2

))

K =
6
√
log(2n)(

√
ℓ log(1/δ) +

√
ℓ log(1/δ) + ϵℓ)

ϵ

obeys that

Err(ĥS)− Err(h∗) ≤ α.
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Specifically, when we choose

α = C1max

{
η

2
2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

,
d log((m+ n)/d) + log(2/γ)

m

}
,

and also ϵ ≤ log(1/δ), then it follows that

Err(ĥS)− Err(h∗) = Õ

(
max

{(d1.5√θ(α) log(1/δ)

nϵ

) τ
2−τ ,

d

m

})
,

where Õ hides logarithmic factors in m,n, 1/γ.

Proof: Step 1: Teachers are good. By Lemma 4.4.6, with probability at least

1− γ/2, ∀k ∈ [K] we have

Dis(ĥk, h
∗) ≲ η

2
2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

.

Step 2: PATE is just as good. Let h̃priv be a randomized classifier from Line 4 of

Algorithm 4. Conditioning on the teachers, this classifier is independent for each input

and well-defined for all input. Note that ĥpriv that uses Algorithm 5 do not have these
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properties. Let Z ∼ N (0, σ2). By Gaussian-tail bound and Markov’s inequality,

Dis(h̃priv, h∗)

≤ P
[
|Z| ≤ σ

√
2 log

( 2
β

)]
P
[ K∑

k=1

1(ĥk(x) ̸= h∗(x)) ≥ K

2
− |Z|

∣∣∣∣|Z| ≤ σ

√
2 log

( 2
β

)]
+ P

[
|Z| > σ

√
2 log

( 2
β

)]
≤ 1

K/2− σ
√

2 log(2/β)

K∑
k=1

E[1(ĥk(x) ̸= h∗(x))] + β

≤ 3

K

K∑
k=1

Dis(ĥk, h
∗) +

1

n

≲ η
2

2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

.

In the last line, we choose β = 1/n and applied the assumption that K ≥ 6σ
√

2 log(2n).

Step 3: Oracle reduction to active learning bounds. Note that h̃priv is the

labeling function in the student learning problem. So the above implies that the student

learning problem is close to realizable:

min
h∈H

Dis(h̃priv, h) ≤ Dis(h̃priv, h∗) ≲ η
2

2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

.

By the above, and the agnostic active learning bounds in Lemma A.0.10, to achieve

an excess risk bound of α ≥ Dis(h̃priv, h∗) := Err∗ in the student learning problem with

probability at least 1− γ/2, with unbounded m, it suffices to choose ℓ to be

Cθ(Err∗ + α)

(
(Err∗)2

α2
+ log

( 1
α

))(
d log(θ(Err∗ + α)) + log

( log(1/α)
γ

))
≤ Cθ(α)(1 + log(1/α))

(
d log(θ(α)) + log

( log(1/α)
γ

))
.
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This implies an error bound of

Dis(ĥS, h̃
priv) ≤ min

h∈H
Dis(h̃priv, h) + α

≤ Dis(h̃priv, h∗) + α ≤ 2α.

When m is small, we might not have enough data points to obtain α = O(Dis(h̃priv, h∗))

in this case the error is dominated by our bounds in Lemma 4.7.8, which says that we

can take

α = Cmax
{
Err∗,

d log(m/d) + log(2/γ)

m

}
.

Step 4 Putting everything together.

Err(ĥS)− Err(h∗) ≤ Dis(ĥS, h̃priv) + Dis(h̃priv, h∗)

≲ Dis(h̃priv, h∗) + α

≲ η
2

2−τ

(dK log(n/d) + log(2K/γ)

n

) τ
2−τ

+ α.

The proof is complete by substituting our choice of K = 6σ
√
2 log(2n), and furthermore

by the standard privacy calibration of the Gaussian mechanism, our choice of σ satisfies

that

√
2ℓ log(1/δ)

σ2
+

ℓ

2σ2
= ϵ.

following the specification of Algorithm 4. Solve the equation and we find that

σ =

√
2ℓ log(1/δ) +

√
2ℓ log(1/δ) + 2ϵℓ

2ϵ
,

where ϵ is assumed to be small.
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Chapter 5

Active Sample Selection for Video

Semantic Segmentation

Accurate per-pixel semantic class annotations of the entire video are crucial for designing

and evaluating video semantic segmentation algorithms. However, the annotations are

usually limited to a small subset of the video frames due to the high annotation cost

and limited budget in practice. In this chapter, we propose a novel human-in-the-loop

framework called HVSA to generate semantic segmentation annotations for the entire

video using only a small annotation budget. Our method alternates between active

sample selection and test-time fine-tuning algorithms until annotation quality is satisfied.

In particular, the active sample selection algorithm picks the most important samples

to get manual annotations, where the sample can be a video frame, a rectangle, or

even a super-pixel. Further, the test-time fine-tuning algorithm propagates the manual

annotations of selected samples to the entire video. Real-world experiments show that

our method generates highly accurate and consistent semantic segmentation annotations

while simultaneously enjoys significantly small annotation cost.
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5.1 Introduction

Video-level segmentation annotations are important in multiple applications such

as autonomous driving [115], flight [116], and augmented reality [117]. They also fa-

cilitate model training in other tasks like video deblurring/dehazing [118, 119], action

recognition [120], and 3D reconstruction [121]. However, manually annotating per-pixel

semantic segmentation labels for the entire video is usually expensive [122]. There-

fore, a typical method is to only sample a subset of video frames to get human annota-

tions [122, 123]. And then given sparsely annotated frames, the method applies Label

Propagation (LP) to populate annotations on selected frames to all frames to get dense

annotations [124, 125, 126]. Unfortunately, these annotate-once-then-propagate methods

do not utilize annotation budget efficiently.

Figure 5.1: Performance of HVSA after 2 iterations. The method actively selects the
most important samples to get human annotations in each iteration, then propagates
the annotations to the entire video by jointly considering spatial-temporal consistency
and semantic information of the video. Thus less human effort is required to obtain
the high-quality pixel-level segmentation.
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Figure 5.2: Overview of the HVSA framework. Active sample selection searches for
uncertain and diverse samples from the input video. Test-time fine-tuning fine-tunes
the image-based semantic segmentation network from the previous iteration by min-
imizing two complementary losses (a & b). The whole process repeats until high
quality semantic segmentation is satisfied.

To annotate the entire video with semantic segmentation labels at a low cost, we

propose the Human-in-the-loop Video Semantic segmentation Auto-annotation (HVSA)

framework. Unlike most work that annotates sampled frames only once, our HVSA

framework works iteratively, keeping collecting annotations and updating segmentation

models at the same time unitl high quality of segmentation is satisfied. See Figure 5.2.

In each iteration of HVSA, samples are actively selected to be manually annotated and

then a video-specific network is fine-tuned based on the accumulated manual annotations.

The updated outputs of the network can be used in the next iteration to decide which

sample to select for human annotations. Finally, the well fine-tuned network is used to

generate segmentation annotations for the entire video. To the best of our knowledge,

HVSA is the first human-in-the-loop framework that applies active sample selection for

efficient video semantic segmentation auto-annotation. See Figure 5.1.

To select video frames for annotation, most existing work only uses naive strate-

gies, e.g., the first few frames, uniformly random sampling, or arbitrarily random sam-

pling [125, 127, 126]. These strategies do not consider the video content or domain

knowledge, leading to low utilization of the limited manual annotation budget. Instead,
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in our HVSA framework, we propose Active Sample Selection (ASS) method, which takes

both video content and semantic segmentation network into consideration. In detail, we

evaluate the prediction uncertainty of the network and try to select samples with least

prediction confidence. Also, we generate features of all samples and try to select the most

representative samples. In this way, our ASS method not only samples by uncertainty

but also by diversity, so it is able to improve the utilization of manual annotation budget

and boost the label propagation accuracy.

Curious readers may find that we are doing active sample selection, rather than active

frame selection as in previous work. This is because one of the critical considerations in

semantic segmentation is the granularity of the annotation unit. It has been studied in

the image semantic segmentation tasks, including frame-based [128, 129, 130], rectangle-

based [131, 132, 133], and super pixel-based [134, 135] work. The recent work [135]

suggests that super pixel-based annotation is the most efficient for image segmentation

tasks. In our ASS method, the sample can be a frame, a rectangle of frame, or even

a super pixel. Moreover, to resemble real-world manual annotation process, we first

adopt the click-based annotation measurement [131, 133] to simulate annotation cost,

then generate “manual annotations” based on clicks and use them in the evaluation.

Our experiment results show that optimal granularity in video annotation task is not

determined but depends on desired level of annotation quality.

Traditional LP methods [124, 125, 126] propagate manual annotations of selected

frames to the entire video only using spatial-temporal information. Therefore, they do

not take advantage of semantic information captured in existing semantic segmentation

models or manual annotations, leading more manual annotations to fill where the spatial-

temporal constraints do not cover. In Test-time Fine-Tuning (TFT) method of our HVSA

framework, we design a new loss function considering both spatial-temporal consistency

and semantic information in model fine-tuning. It further improves label propagation
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quality and saves annotation cost.

In summary, our contributions include:

1. A novel human-in-the-loop framework HVSA, alternating between active sample

selection and test-time fine-tuning methods, is proposed for video semantic seg-

mentation auto-annotation at a low annotation cost.

2. In active sample selection, the sample can be a frame, a rectangle of frame, or even

a super-pixel. And samples are selected by both uncertainty of the network and

the diversity among samples, taking advantage of information from both network

and video.

3. In test-time fine-tuning, we propose a new loss function combining both the seman-

tic knowledge and the spatial-temporal information.

4. We study the desired granularity for the video semantic segmentation auto-annotation

problem. Our results give insights to the future work along the line in terms of

selecting the annotation unit.

5. Real-world experiments, e.g., Figure 5.1, demonstrate that our method generates

highly accurate and consistent semantic segmentation annotations of the whole

video at a low annotation cost.

5.2 Related Work

In this section, we briefly summarize related work.

Video semantic auto-annotation. Pseudo-labeling and semi-supervised learning are

the two popular types of methods for automating video semantic segmentation annota-

tions. The pseudo-labeling approaches [136] use a pre-trained teacher model to generate

labels for the test video sequences. However, these approaches are typically frame-based

and do not consider the rich temporal constraints in the videos. Therefore, the pseudo-
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labels are inevitably noisy, especially when the pre-trained model is trained with the data

from a different domain from the input video. This work proposes a novel test-time fine-

tuning method to adapt the pre-trained model to the specific video to generate pseudo

labels more accurately.

Among the semi-supervised learning approaches, Label Propagation (LP) is widely

adapted [125, 127, 137, 138, 139]. Most work uses optical flow to guide the LP pro-

cess. These methods rely on accurate optical flow estimation, which is difficult to obtain.

Otherwise, the erroneous flow estimation can result in propagated labels that are mis-

aligned with their corresponding frames. Rather than conducting direct LP, our method

uses the optical flow to generate consistency constraints as a loss to fine-tune the seg-

mentation model, which makes it more robust to flow noise. Moreover, the proposed

fine-tuning considers both semantic and temporal information to predict temporally con-

sistent semantic annotations across the full video without the limitations of traditional

LP methods. Instead, our test-time fine-tuning is optimizing a new loss that takes both

semantic and temporal information into consideration and predicts temporally consis-

tent semantic annotations across the full video without the limitations of traditional LP

methods.

Active learning. Rooted in traditional machine learning, active learning [140] allows

learners to actively query the specific labels they want to obtain, saving labeling costs

dramatically. Inspired by the success of active learning, previous methods [141, 134]

studied how to select instances to refine a network for segmentation tasks. Our frame-

work’s objective is different from them, as we are querying samples from a video such

that their annotations could boost the label propagation accuracy on the input video.

There is one work [142] studies the active frame selection problem for label propagation.

Our work is different in two ways: First, the method in [142] selects frames for just once,

while our method could select video frames, rectangles of frames, or even super-pixels in
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a human-in-the-loop manner for multiple iterations. Second, the existing method closely

ties with a particular LP technique and does not comply with modern deep networks.

Our method is generic and can work with different segmentation networks.

Human-in-the-loop for visual annotations. There exists some work [143, 144] try-

ing to reduce the annotation cost in human-in-the-loop model learning. And [145, 146]

studied the interactive video object segmentation frameworks. However, solving video

semantic segmentation problem in the human-in-the-loop framework has never been stud-

ied.

5.3 Methods

In this section, we describe our HVSA framework (Figure 5.2) in detail, including

pre-processing, active sample selection, test-time fine-tuning, and cost calculation.

5.3.1 Pre-Processing

Granularity of samples. A suitable sample granularity needs to be carefully chosen

to minimize the human annotation effort. We investigate three types of annotation unit:

frame, rectangle, and super-pixel, which are typically used in image semantic segmentation

tasks. Figure 5.3 shows example of three units. To get rectangle units, we uniformly crop

each frame to non-overlapping rectangles. And we use DMMSS-FCN [147] to generate

super-pixel units. The n-th sample from the t-th frame is denoted as snt . For frame

samples, n is always 0. All samples are prepared in the unlabeled sample pool at the

beginning of our framework.

Build temporal correspondence. We rely on correspondences between frames to

leverage video temporal information. Here we extract the dense correspondences by

estimating optical flow [148], Ot→t′ , of a frame pair from frame t to t′. Computing
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(a) Frame (b) Rec100 (c) Rec16 (d) SP

Figure 5.3: When annotating a video, user could annotate samples of frame (a),
rectangle (b) (c), or even super-pixel [147] (d). Segments in (b) and (c) are of size
100 and 16 respectively. There are similar number of segments in (c) and (d).

optical flow for all frame pairs is expensive, thus we limit the distance between frames

to be smaller than 3. We further apply a forward-backward consistency check to cope

with occlusion/dis-occlusions to extract only reliable correspondences. As a result, each

optical flow Ot→t′ will have a binary mask Mt→t′ , where pixels with forward-backward

flow difference larger than 1 pixel are set to 0.

5.3.2 Active Sample Selection

To reduce annotation cost, we propose the active sample selection (ASS) to actively

select the most important samples for manual annotations in each iteration. The ASS

method takes both the network and the video content into consideration, which involves

uncertainty sampling and diversity sampling and their combination.

Margin of confidence and uncertainty sampling. The motivation behind uncer-

tainty sampling is that if a network predicts on a sample with little confidence, this

sample needs to be selected for manual annotation. To capture confidence, we use the

margin of confidence [8]. For each pixel, its margin of confidence is defined as the differ-

ence between the prediction scores of top-1 and top-2 label predictions from the model

trained in each iteration. Intuitively, large margin means large prediction confidence.

After being subtracted from 1, the pixel margin of confidence is converted to the pixel
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uncertainty. The uncertainty of sample snt is then defined as the summation of pixel

uncertainties within the sample region:

u(snt ) =
∑
x∈snt

Pθk−1
(y∗1,x|It)− Pθk−1

(y∗2,x|It), (5.1)

where It is the input frame, y∗ is the prediction from softmax, x is a pixel position within

snt , and θk−1 is the previous model. By applying uncertainty sampling, the ASS method

knows what are the samples that the current network is unsure about its prediction and

then theses samples will be selected accordingly.

However, uncertainty sampling has a shortcoming in isolation. It might focus on one

part of the decision boundary and select similar samples, causing a waste of human effort.

To make the selection strategy comprehensive, we further require the method to samples

that are different from each other, which refers to the diversity sampling.

Deep feature and diversity sampling. Clustering-based sampling naturally targets

a diverse selection of samples. We first conduct clustering on unlabeled samples then

select centroid samples for annotation. We re-use the downstream segmentation model

as a feature extractor. Specifically, we transform each frame It to a feature map Ft using

the previous model backbone network without segmentation head. Then the sample

feature fnt is defined as the average along the spatial dimensions of Ft within s
n
t region:

Ft = ψθk−1
(It),

fnt = MeanPoolx∈snt (Ft,x),

(5.2)

where ψ denotes the segmentation network backbone. We employ the k-Means algorithm

with Euclidean distance on f for clustering.

Combining uncertainty and diversity sampling. In first iteration of our frame-

work, as the network hasn’t been fine-tuned, we only apply diversity sampling. Later
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Figure 5.4: Visualization of model uncertainty and annotation selections on VEIS.
After fine-tuning on the high uncertainty sample, the generated annotation in the sec-
ond iteration improves significantly within sample regions across all neighbor frames.

in iterations, we first selects half of the most uncertain samples and cluster them into

b clusters, where b is the annotation budget in one iteration. Then, b cluster centroids

are selected and sent to human annotators. In this way, selected samples are of high

uncertainty and are relatively different from each other. See Figure 5.4 for an example.

5.3.3 Test-time Fine-tuning on Input Video

While a network may be pre-trained on relevant datasets, directly applying it to an

arbitrary video would lead to inferior results, e.g., Figure 5.5. To progressively adapt it

to a video, in each iteration, we fine-tune the model leveraging two different information

sources, inspired by how human annotators handle the video annotation tasks. Given a

target frame and the video, an annotator will naturally analyze its neighbor frames to

decide the correct categories of the objects in the scene; The annotator will also refer

to the existing annotations within the same video. Moreover, we propose a new loss

designed from the two information sources, and show how we optimize it.

Temporal consistency loss. Our temporal consistency loss, Ltc, encourages consis-

tent predictions across corresponding pixels on different frames. Unlike other meth-

ods [149, 126] which directly propagate labels between frames, we propagate predicted
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Figure 5.5: The model pre-trained on NYU-V2 performs poorly on new out-of-domain
input video as in (c). (d) Our framework adapts the model to the input video and
produces better results.

class probabilities from the model. More specifically, we penalize the difference between

predicted class probabilities qt and q′
t of frame t and t′ at pixel position x as:

Ltc,t→t′(x) =Mt→t′(x) ∥qt(x)− q̂t′→t(x)∥22 , (5.3)

where q̂t′→t(x) is the warped prediction score from frame t′ to t using the pre-computed

flow Ft→t′ and Mt→t′ is the mask associated with Ft→t′ .

Here we illustrate why and how we have the mask Mt→t′ . We apply a forward-

backward consistency check to cope with occlusion/dis-occlusions to extract only reliable

correspondences. As a result, each optical flow Ot→t′ will have a binary mask Mt→t′ ,

where pixels with forward-backward flow difference larger than 1 pixel are marked as 0.

Mt→t′ at position x can be formulated as

M
(x)
t→t′ = 1

[∥∥∥O(x)
t→t′ − Ô

(x)
t′→t

∥∥∥2
2
< 1

]
, (5.4)

where Ôt′→t is the warped version of Ot′→t using flow Ot→t′ . So that the position of Ot→t′

and Ôt′→t is aligned and they can be compared directly.

Unlike the existing approaches [149] which only consider the temporal relation be-

tween annotated frames and their neighbors, we apply the temporal consistency loss to
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even unlabeled image pairs. As a result, labeled image information transforms to more

than 3 frames away, which is the distance limitation of optical flow.

Semantic loss. Temporal constraints tell the model which pixel to share labels with

but not where to hold. This semantic information will have to come from the annotated

samples on the input video. We compute the regular cross-entropy loss, Lce, for any

frame or frame region with manual annotations:

Lce,t = LCE(qt, Lt), (5.5)

Lt denotes the semantic label at frame t, where unlabeled region is set to a special

“ignored index”.

Optimization. In the test-time fine-tuning, each training sample consists of two frames

that pass through the single-frame model in parallel, giving two sets of class probability

predictions. The two predictions are then used to compute the temporal loss Ltc. If

any frame region of the pair has manual annotations, the cross-entropy loss Lce will

be calculated as well. In summary, we fine-tune the single-frame segmentation network

weights using standard backpropagation during test-time fine-tuning by minimizing:

L = λLtc + Lce. (5.6)

We initialize the network weights using the pre-trained model in the first selection itera-

tion. In later iterations, the network fine-tunes from the previous checkpoint, and then

predicts segmentation labels on all the frames.
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5.3.4 Annotation Cost Calculation

In practice, the annotation cost is measured by expense or human labeling time. Some

conventional semantic segmentation AL work [134] uses percentage of labeled pixels to

represent manual effort. We follow some recent work [131, 133, 135] to measure cost by

annotation clicks, which is more realistic. Semantic segmentation label mask is pixel-level,

while in actual labeling tasks, human annotators usually use a polygon-based tool [133].

Annotators first click on several vertices on the boundary of the one object to form a

closed polygon (“Boundary click”), then select the object type by clicking once (“Class

click”). In this way, all pixels within this polygon get the label of this class.

Here we introduce how we use algorithm to mimic human annotator to locate the

“Boundary click” positions from the existing segmentation labels, and calculate the total

clicks as the annotation cost. For each connect component of a single class object, we

find its contour pixels, and simplify the contour pixels into some polygon vertices using

Ramer–Douglas–Peucker (RDP) algorithm. Each polygon vertex costs one “Boundary

click”. In addition, each polygon costs one “Class click” to specify its class label. Fig-

ure 5.6 shows an example.

For rectangle-based and super-pixel-based annotations, there are no clicks required

on the sample boundary. If a sample only consists of a single class object, the required

number of clicks is one “Class click”. For super-pixel, unlike [135], we do not assign

the dominant label to the entire super-pixel since the error label will be propagated to

neighbor frames, hurting the final annotation quality.

Mimic “manual annotation”. [135] uses a similar method to estimate annotation

clicks, while using the GT labels provided by the dataset as training labels. However, this

is not appropriate, as the RDP algorithm simplifies the object polygon boundaries, which

leads to a rougher annotation of GT. In their case, the click-based cost is underestimated
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Figure 5.6: Example of annotating the center rectangle sample in (a). The red
“Boundary click” are generated by the RDP algorithm from the original object con-
tour. No clicks are needed in the boundaries of the sample to enclose the polygon.
The green “Class click” specifies Bed and Floor class in this example. (b) is the seg-
mentation label annotated by the shown 9 clicks.

Figure 5.7: Active sample selection results on SceneNet RGB-D: (a),(b),(d) show the
generated annotation mIoU and the normalized boundary-IoU in annotation clicks
%, and (b) is a zoom-in version of (a). (c) shows the generated annotation mIoU in
annotated pixel %.

compared to the training label quality. On the contrary, we mimic manual annotation

(MA) by converting the simplified polygons back to label masks. We use MA rather than

GT in fine-tuning models, which better fits the video segmentation annotation tasks in

practice.

5.4 Experiments

In this section, we conduct experiments on two datasets with dense segmentation GT

on every frame to support the evaluation of the framework. We first compare the proposed
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ASS method with different frame selection baselines using various sample granularities.

Then, we study the effectiveness of the proposed test-time fine-tuning by comparing it

with other label propagation methods. Finally, we envision the generated annotations to

show more details of the outputs from the proposed framework.

5.4.1 Experimental Settings

Training settings

We perform three iterations of ASS for each testing sequence. The annotation budget

for each iteration is divided equally from the total budget.

We use the HRNet-W48 [150] as the backbone network (other networks can be easily

incorporated). We set the consistency loss weight λ = 1. The initial learning rate in

each iteration is 0.004. In each iteration, we fine-tune the network for 15 epochs with

a learning rate of 0.004 and SGD optimizer [151] with momentum 0.9. We follow the

“poly” learning rate policy to reduce the learning rate gradually. The batch size is 14 for

SceneNet RGB-D [152] dataset, and 2 for VEIS [153] dataset.

In the ASS diversity sampling, we transform each frame to feature space using the

previous iteration backbone network without segmentation head:

Ft = ψθk−1
(It), (5.7)

where ψ denotes the segmentation network backbone. More concretely, the feature map

Ft is the concatenation of four feature maps after the fourth stage of HRNet-W48. The

number of channels of Ft is 720.

We use the RAFT-things checkpoint [148] to generate the flow correspondence and

use SpixelFCN-bsd checkpoint [147] to generate the super-pixels. All the settings in
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RAFT and SpixelFCN are as default. We use openCV [154] connectedComponents,

findContours, and approxPolyDP functions to estimate the “Boundary Click” positions.

The parameter ϵ in approxPolyDP controlling the fineness of simplified polygons is set

to 1.

For HRNet backbone, RAFT and SpixelFCN, we use the code from their official

implementation in Pytorch [155]. All the experiments run on machines with 4×Nvidia

1080s.

Evaluation and metrics

We use four metrics to evaluate our method thoroughly, which are pixel accuracy,

mean Intersection over Union (mIoU), boundary Intersection over Union (Boundary-

IoU), and temporal consistency. The first two are commonly used in segmentation tasks

to measure the accuracy of predictions. Here we only illustrate the last two metrics in

detail.

Boundary-IoU. The boundary-IoU is proposed in [156]. The boundary-IoU between

our prediction Q and ground-truth G is calculated as:

boundary-IoU (G,Q) =
|(Gd ∩G) ∩ (Qd ∩Q)|
|(Gd ∩G) ∪ (Qd ∩Q)|

, (5.8)

where Gd and Qd are the sets of pixels in the boundary region of the ground-truth mask

and the prediction mask respectively. d is the pixel width of the boundary region. We

set d to 2 in all experiments.

Temporal consistency (TC). We also measure the temporal consistency (TC) of the

generated annotations by measuring the mIoU between two consecutive predictions sim-

ilar to [157].

We measure the temporal consistency (TC) of the generated annotations by measuring
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the mIoU between two consecutive predictions similar to [157]. The TC between frame

t and frame t− 1:

TC (Qt−1,Qt) =
|Qt ∩ Q̂

(M)
t−1 |

|Qt ∪ Q̂
(M)
t−1 |

, (5.9)

where Qt is the prediction of frame t, Qt−1 is the prediction of frame t − 1. Q̂
(M)
t−1 is

the warped prediction from frame t − 1 to frame t, and pixels where does not pass the

forward-backward checkMt−1→t will be marked as ignored label in Q̂
(M)
t−1 . The calculation

of TC (Qt−1,Qt) is very similar with calculating the standard IoU in the segmentation

task, where we treat prediction as Qt, and ground truth as Q̂
(M)
t−1 . So the TC on all

the test sequences can be calculated similar to IoU and mIoU on the whole test set in a

segmentation task.

5.4.2 Comparative Assessment

SceneNet RGB-D

We use the SceneNet RGB-D [152], which is a photorealistic indoor trajectory dataset

with semantic segmentation annotations for every video frame to evaluate the overall

system performance. Unlike regular indoor scene datasets [158, 159], the room lay-

outs/object placements of the ScenNet RGB-D dataset are generated randomly. We train

a 14-class HRNet-W48 model using the NYU-V2 [159] training set as the pre-trained

model, which has only 15.04% mean-Intersection-over-Union (mIoU) on the SceneNet

testing videos. We will demonstrate that our test-time fine-tuning method adapts the

segmentation model to randomly generated scenes and achieves more satisfying results

(examples in Figure 5.5). We randomly picked five sequences from the SceneNet test set

in our experiments, each containing 300 frames. We test four granularity settings: frame,

40×40-pixel rectangle, 16×16-pixel rectangle and super-pixel, denoted as Frame, Rec40,
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Rec16, and SP respectively. Given the SceneNet frame resolution of 240×320, Rec40 and

Rec16 split a frame into 56 and 300 segments respectively. We let SP split a frame into

about 300 segments.

We evaluate the generated annotations by measuring their mIoU with the GT. Fig-

ure 5.7 compares the generated label quality from different selection methods and an-

notation sample granularities. The “Annotation Clicks %” (shown in log scale) is the

number of annotation clicks normalized by the number of clicks to annotate the whole

video. We can see from (a) that the proposed ASS method outperforms random se-

lection baselines in all sample granularity. Rec16 gives the best annotation mIoU with

fewer clicks among all the granularities because it provides better sample diversity than

larger samples. This diversity favors model fine-tuning when annotations are limited. As

annotation clicks increase, the gap between all the settings becomes smaller, so we zoom

in on the curves in this part in (b).

Annotating Frame surpasses others when the percentage of clicks is over 20%. The

reason is that the sample diversity saturates with more manually annotated samples. In

this stage, annotating more pixels keep improving final outputs quality by label propaga-

tion. Annotating frames obtains the most labeled pixels per click compared to smaller-

sized samples, due to the effort to handle truncated object contours or the dividing

objects merged by imperfect super-pixels. As a result, a larger granularity annotation

sample achieves higher label quality faster. To this end, we suggest users choose a proper

sample granularity to annotate depending on their desired label quality.

Click cost for label quality benchmarks. In Table 5.1 we list the least annotation

clicks required to generate 80%, 85%, 90%, and 95% mIoU labels, and the corresponding

sample granularity. The last row represents the manual labeling of the full video. An-

notating Rec16 samples first achieves 80% and 85% mIoU, the annotation click cost is

1.5% and 2.5%. Rec40 first achieves 90% mIoU with 5% of annotation clicks. Annotating
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Table 5.1: This table shows the most efficient sample granularity for different mIoU
benchmarks in SceneNet. The last row represents manually annotating all the frames.

Annotation mIoU Granularity Anno. Clicks Anno. Pixel

80% Rec16 1.5% 0.2%
85% Rec16 2.5% 0.3%
90% Rec40 5.0% 1.4%
95% Frame 27% 23%

99% Frame 100% 100%

Frame first achieves 95% mIoU with 27% annotation clicks, which is over five times the

clicks to achieve 90% mIoU. This observation shows the mIoU gain is sub-linear to the an-

notation clicks. However, it still saves 73% annotation effort compared to annotating the

full video, demonstrating the proposed method generates very high-quality annotations

while saving human effort significantly. It is worth mentioning that the pre-trained model

performs poorly on testing sequences (Figure 5.5), which shows the proposed framework

can adapt to the target sequence by learning from selected samples and leveraging the

temporal information.

Figure 5.7 (c) shows the comparison under the traditional pixel-based annotation

cost measurement. The observation is very different from (a), as annotating Frame is

always the worst. We believe that the traditional pixel-based cost measurement could be

misleading in Segmentation AL tasks.

Comparison of boundary-IoU. Object boundary quality is crucial in segmentation an-

notations. In Figure 5.7 (d), we show the boundary-Intersection-over-Union (boundary-

IoU) [156] normalized by mIoU, which reflects the boundary annotation accuracy. Models

trained on frame samples outperform the others with no exceptions. The reason is frame

level annotation provides the richest semantic/boundary information. On the contrary,

the super-pixel-based selection is usually composed of pixels of the same object, which
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Figure 5.8: Active sample selection results on VEIS: (a),(b),(d) show the generated
annotation mIoU and the normalized boundary-IoU in annotation clicks %, and (b)
is a zoom-in version of (a). (c) shows the generated annotation mIoU in annotated
pixel %.

Table 5.2: Comparison of the overall performance on SceneNet [152] with manual
annotations selected by ASS method. Given the same information from annotated
frames, our method outperforms the other two and shows advantages at lower anno-
tation cost.

2% clicks 4.6% clicks 7.1% clicks 9.3% clicks

mIoU P-Acc. TC mIoU P-Acc. TC mIoU P-Acc. TC mIoU P-Acc. TC

Fine-tune only 45.72 76.57 61.98 64.73 88.90 76.86 70.76 91.76 81.20 81.31 94.72 87.09
LP [126] 48.57 76.46 66.09 59.5 85.06 84.68 68.2 87.66 86.97 76.34 91.41 86.66
Ours 63.67 88.71 84.43 79.54 95.15 89.33 86.07 96.90 93.45 89.96 97.28 94.70

lacks the information of the object boundaries. So its boundary prediction accuracy is the

worst. For rectangle samples, larger granularity samples give better predictions on the

boundary. If the user has high requirements on the label boundary quality, annotating

whole frames is the best choice.

VEIS

For more extensive experiments, we conducted auto-annotation experiments on an

outdoor-scene synthetic dataset VEIS [153]. It includes semantic segmentation ground-

truth for every video frame with the object classes of standard real urban scene datasets,

such as CamVid [123] and Cityscapes [122]. We randomly pick six video clips from the

full VEIS sequence, each of which contains 200 frames. The pre-trained model is trained

with Cityscapes training set from an ImageNet pre-trained checkpoint with mIoU of
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Figure 5.9: Visualization of our generated annotations in SceneNet RGB-D. (a) is the
video frame, (b) costs about 5.0% clicks with annotating Rec40, and (c) costs about
27% clicks with annotating Frame. (d) is the mimic manual annotation, and (e) is
the ground-truth.

32.56% on all the testing videos. We tested four granularity settings: Frame, Rec100,

Rec40, and SP. As the resolution of VEIS frames is 600×800, Rec100 and Rec40 split a

frame into 48 and 200 segments, respectively. We let SP split a frame into about 200

segments.

Figure 5.8 (a) compares the generated label mIoU given annotation clicks, and (b)

zooms in the high mIoU plots. The observations are very similar to the SceneNet results.

First, the ASS method always outperforms random selection baselines. Second, larger

granularity annotation samples achieve higher label quality faster. When annotation

clicks are small, annotating Rec40 samples leads to the best-generated annotations. After

the annotation cost in clicks is greater than 10%, annotating Frame outperforms all

others.

5.4.3 Analysis

Model uncertainty and selected samples. Figure 5.4 illustrates how the proposed

framework selects sample and learns from it. This VEIS example is of annotating Rec100

with about 3.3% annotation clicks. The first two rows are the model uncertainty and
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generated annotation after the first iteration. The ASS method selects a sample that are

of high uncertainty and inferior prediction. The similar regions in other frames are not

selected, as the proposed ASS considers both sample uncertainty and diversity. The last

two rows show the model results after fine-tuning with the selected sample. The regions’

annotation quality in all the neighbor frames is improved significantly, demonstrating the

effectiveness of the test-time fine-tuning component.

Effectiveness of label propagation module. We compare the proposed test-time

fine-tuning method with it’s ablated version by removing temporal consistency loss (Fine-

tune only) and LP [126]. LP is a well known label propagation algorithm, which can be

directly applied to new target domain videos to propagate sparse annotations. Here we

use our ASS method to select manual annotated samples. Table 5.2 shows generated

label’s mIoU, pixel accuracy, and Temporal consistency (TC). TC measures the mIoU

between two consecutive predictions similar to [157]. Given the same selected samples,

our method outperforms the Fine-tune only and LP methods by a large margin in mIoU

and TC at various annotation clicks percentages. The results prove the effectiveness of

consistency loss and test-time fine-tuning method. The benefit is even more significant

when the sample rates are lower, as our method incorporates both motion and semantic

cues to the test sequences.

Impact of number of ASS iteration. We conduct experiments to understand the

impact of the number of iterations to the segmentation quality on SceneNet RGB-D.

We feed 0.3% clicks of annotations per iteration, and fine-tune the model up to nine

iterations. The mIoU gains per iteration are 6.91%, 1.32%, 0.89%, 0.35%, 0.16%, 0.43%,

0.07%, 0.31%, and 0.03%. Starting from the fourth iteration, the mIoU gain becomes

negligible. As a result, we use three iterations for ASS.

Error pattern in high quality generated annotations. We conduct experiments to

investigate where the remaining errors are when the generated annotation is already of
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high quality. On SceneNet RGB-D, the 100% manual annotation mIoU is 98.56%. When

our method achieves 97.46% mIoU, the boundary IoU is only 83.44%, indicating errors

appear in the object boundaries. Categories with high boundary-to-area ratio have the

largest impact from the imperfect boundary predictions. This can be reflected from their

below-average per-class IoU. In SceneNet, they are ”Object”, ”Chair”, and ”Table”. In

VEIS, they are ”Pole”, ”Traffic Light”, and ”Rider”. With the error pattern in mind,

users could use the generated annotations more confidently.

Generated annotation visualization. In Figure 5.9 we show our generated annota-

tions in SceneNet. The 90% mIoU annotations in (b) only cost about 5.0% clicks; The

95% mIoU annotations in (c) cost about 27% clicks.

Model computation time. The model computation time for one ASS iteration is

mainly from sample selection and test-time training steps. The test time fine-tuning

computation time depends on image resolution and video sequence length. For SceneNet

RGB-D, a sequence of 300 frames with resolution 320×240 takes 20 minutes for one iter-

ation on average. For VEIS, a sequence of 200 frames with resolution 800×600 takes 33.3

minutes for one iteration on average. Our experiments runs on 4×Nvidia 1080s. The 9

seconds sample selection CPU runtime can be neglected. The dozens of minutes compu-

tation time prevents the annotators from labeling the next batch of samples immediately.

However, this can be easily mitigated by multitasking arrangements in practice.

Table 5.3: This table shows the most efficient sample granularity for different mIoU
benchmarks in VEIS. The last row represents manually annotating all the frames.

Annotation mIoU Granularity Anno. Clicks Anno. Pixel

80% Rec40 4.3% 1.3%
85% Frame 10.4% 10%
90% Frame 44% 51%

96% Frame 100% 100%
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Figure 5.10: Visualization of our generated annotations in VEIS. (a) is the video
frame, (b) costs about 10.4% clicks with annotating Frame, and (c) costs about 44%
clicks with annotating Frame. (d) is the mimic manual annotation, and (e) is the
ground-truth.

Click Cost for Label Quality Benchmarks. Table 5.3 lists the least annotation clicks

required to generate 80%, 85%, and 90% mIoU labels, and the corresponding sample

granularity. Notice that in the VEIS dataset, the mIoU for fully manual annotation is

96%, which is lower than 99% of SceneNet. This difference is mainly because the RDP

algorithm simplifies the over-detailed “bicycle” ground-truth in VEIS. As a result, we

test up to 90% mIoU annotation quality. Annotating Rec40 makes the model generate

80% mIoU annotations with the least clicks, which is only 4.3%. Annotating frames

outperforms other granularity settings when targeting 85% and 90% mIoU annotations.

The percentages of clicks are 10.4% and 44% respectively.

We noticed that the percentage of clicks needed in VEIS is much larger than in

SceneNet. This is mainly because VEIS images are of higher resolution, and objects

include more details. This leads to more clicks in segmentation annotation.

Comparison of Boundary-IoU. In VEIS, the observation is similar to it in SceneNet:

Larger granularity samples give better predictions on the boundary, and training on SP

gives the worst boundary quality.

Generated annotation visualization. Figure 5.10 shows the visualizations in VEIS.
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The 85% mIoU annotations in (b) cost 10.4% clicks, and only details of “tree” are im-

perfect. The 90% mIoU annotations in (c) cost 44% clicks and are without a significant

visual difference to MA.

5.5 Conclusions

We propose a human-in-the-loop framework HVSA to generate video semantic seg-

mentation annotations. It actively selects annotation samples at each iteration that bring

the most information for annotating. After selected samples get manual annotations, our

method leverages both semantic knowledge and temporal constraints to fine-tune a video-

specific semantic segmentation model. Finally, the model is used to generate annotations

for the entire video. We conducte experiments on two datasets to show HVSA can gen-

erate close-to-perfect annotations at a low cost, even without good pre-trained networks.

Each iteration of HVSA takes dozens of minutes, which can be further optimized using

multi-task parallelization.
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Conclusions

In this thesis, I presented my research on global black-box optimization, misspecified

linear bandits, active learning for privacy protection, and active sample selection for video

semantic segmentation, all under the adaptive sequential decision making framework. In

the future, there are still many interesting research directions that readers can pursue.

Global black-box function optimization with structured bandit feedback. In

material science, sometimes absolute material performance cannot be quantitatively mea-

sured, but relative performance can be easily obtained. For example, if mineral A

scratches mineral B and mineral B cannot scratch mineral A, then mineral A is harder

than B. It motivates the challenging global optimization with comparison feedback prob-

lem. Although there is a line of existing work called preferential Bayesian optimization

[160] studying this problem, however, its modeling capacity is significantly limited by

preferential function being assumed to be logistic function only. Solving a generic global

optimization with comparison feedback problem requires substantial novelty and has

strong real-world impacts.

Also, modern cutting edge material design usually requires expensive experiments

which cannot be conducted without team work. However, if multiple scientists are in-
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volved in the same task at the same time, communication between them raises a new

challenge. It motivates the distributed global optimization problem where at each round

multiple actions are taken and multiple observations are received. The key problem is how

to manage observations and assign actions for the next round. Systematically studying

this problem will not only guide real-world material design experiments but also provides

a foundational understanding for team work in more applications.

Adaptive sequential decision making with domain knowledge. All my research

presented in this thesis is purely driven by machine learning and ignores physical and

chemical properties if they are available. When the material performance is not a pure

black-box function, domain knowledge plays an important role in material design. There-

fore, incorporating domain knowledge into the adaptive sequential decision making frame-

work is an important and practical direction in the future.

Adaptive sequential decision making for more applications. Adaptive sequential

decision making, as one of the key parts of machine learning, should never be restricted

to core machine learning research or limited real-world applications. Future directions

include research on more topics such as medicine, health science, computational social

science, financial service analytics, and so on.
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Auxiliary Technical Lemmas

In this chapter, I list auxiliary lemmas that are used in proofs.

Lemma A.0.1 (Adapted from eq. (5) (6) of [15]) Given a dataset {xi, yi}nj=1 where

yj is generated from eq. (2.1) and f0 is the underlying true function. Let f̂ be an ERM

estimator taking values in F where F is a finite set and F ⊂ {f : [0, 1]d → [−F, F ]} for

some F ≥ 1. Then with probability > 1− δ, f̂ satisfies that

E[(f̂ − f0)2] ≤
(
1 + α

1− α

)(
inf
f∈F

E[(f − f0)2] +
F 2 log(|F|) log(2)

nα

)
+

2 log(2/δ)

nα
,

for all α ∈ (0, 1].

Lemma A.0.2 (Self-normalized bound for vector-valued martingales [16, 18])

Let {ηi}∞i=1 be a real-valued stochastic process with corresponding filtration {Fi}∞i=1 such

that ηi is Fi measurable, E[ηi|Fi−1] = 0, and ηi is conditionally σ-sub-Gaussian with

σ ∈ R+. Let {Xi}∞i=1 be a stochastic process with Xi ∈ H (some Hilbert space) and Xi

being Ft measurable. Assume that a linear operator Σ : H → H is positive definite, i.e.,

x⊤Σx > 0 for any x ∈ H. For any t, define the linear operator Σt = Σ0 +
∑t

i=1XiX
⊤
i
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(here xx⊤ denotes outer-product in H). With probability at least 1 − δ, we have for all

t ≥ 1:

∥∥∥∥∥
t∑

i=1

Xiηi

∥∥∥∥∥
2

Σ−1
t

≤ σ2 log

(
det(Σt) det(Σ0)

−1

δ2

)
.

Lemma A.0.3 (Sherman-Morrison lemma [161]) Let A denote a matrix and b, c

denote two vectors. Then

(A+ bc⊤)−1 = A−1 − A−1bc⊤A−1

1 + c⊤A−1b
.

Lemma A.0.4 (Lemma 6.10 of [18]) Define ut =
√
x⊤t Σ

−1
t xt and we have

detΣT = detΣ0

T−1∏
t=0

(1 + u2t ).

Lemma A.0.5 (Potential function bound (Lemma 6.11 of [18])) For any sequence

x0, ..., xT−1 such that for t < T, ∥xt∥2 ≤ Cb, we have

log

(
detΣT−1

detΣ0

)
= log det

(
I +

1

λ

T−1∑
t=0

xtx
⊤
t

)

≤ d log

(
1 +

TC2
b

dλ

)
.

Lemma A.0.6 (Pointwise convergence [107]) Let (x, z) be drawn from any distribu-

tion D supported on X ×Y. Let Dis and D̂is be the expected and empirical disagreement

evaluated on n i.i.d. samples from D. For each fixed h ∈ H, the following generalization

error bound holds with probability 1− γ,

Dis(h, z) ≤ D̂is(h, z) +

√
2Dis(h, z) log(1/γ)

n
+

2 log(1/γ)

3n
,
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where n is the number of data points.

This is a standard application of the Bernstein’s inequality.

Lemma A.0.7 (Uniform convergence [107]) Under the same conditions of Lemma A.0.6,

and in addition assume that d is the VC-dimension of H, Then with probability at least

1− γ, ∀h ∈ H simultaneously,

Dis(h, z)− D̂is(h, z) ≤ 2

√
(d+ log(4/γ))D̂is(h, z)

n
+

4(d+ log(4/γ))

n
.

and

Dis(h, z)− D̂is(h, z) ≤ 2

√
(d+ log(4/γ))Dis(h, z)

n
+

4(d+ log(4/γ))

n
.

The above lemma is simply the uniform Bernstein’s inequality over a hypothesis class

with VC-dimension d. We will be taking z to be h∗ in the cases when we work with noise

conditions and hagg∞ (x) in the agnostic case.

Lemma A.0.8 (Learning bound [107]) Let d be the VC-dimension of H, the excess

risk is bounded with probability 1− γ,

Err(ĥ) ≤ Err(h∗) + 2

√
Err(h∗)

d log(n) + log(4/γ)

n
+ 4

d log(n) + log(4/γ)

n
,

where n is the number of data points we sample.

Lemma A.0.9 (Passive learning bound under TNC (Lemma 3.4 of [93])) Let d

be the VC-dimension of the class H. Assume Tsybakov noise condition with parameters
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τ , the excess risk is bounded with probability 1− γ,

Err(ĥ)− Err(h∗) ≲

(
1

n

(
d log

(n
d

)
+ log

(1
γ

))) 1
2−τ

,

where n is the number of data points.

Lemma A.0.10 (Agnostic active learning bound (Theorem 5.4 of [93])) Let H

be a class with VC-dimension d. With probability at least 1 − γ, there is a universal

constant C, such that the agnostic active learning algorithm (see Algorithm 7) outputs a

classifier with an access risk of α with

Cθ(Err∗ + α)

(
(Err∗)2

α2
+ log

( 1
α

))(
d log(θ(Err∗ + α)) + log

( log(1/α)
γ

))
,

where Err∗ = argminh∈H Err(h).
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Additional Information about

Differential Privacy

In this chapter, I cite a few results from differential privacy that I use as part of the

analysis.

Lemma B.0.1 (Post-processing [75]) If a randomized algorithm M : Z∗ → R is

(ϵ, δ)-DP, then for any function f : R → R′, f ◦M is also (ϵ, δ)-DP.

Definition B.0.2 (Global sensitivity [104]) A function f : Z∗ → R has global sen-

sitivity ϑ if

max
|D−D′|=1

∥f(D)− f(D′)∥1 = ϑ.

Lemma B.0.3 (Laplace mechanism [75]) If a function f : Zn → Rp has global sen-

sitivity ϑ, then the randomized algorithmM, which on input D outputs f(D) + b, where

b ∼ Lap(ϑ/ϵ)p, satisfies ϵ-DP. The Lap(λ)p denotes a vector of p i.i.d. samples from the

Laplace distribution Lap(λ).
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Definition B.0.4 (ℓ2-sensitivity [104]) A function f : Z → R has ℓ2 sensitivity ϑ2 if

max
|D−D′|=1

∥f(D)− f(D′)∥2 = ϑ2.

Lemma B.0.5 (Gaussian mechanism [104]) If a function f : Zn → Rp has ℓ2-

sensitivity ϑ2, then the randomized algorithm M, which on input D outputs f(D) + b,

where b ∼ N (0, σ2)p, satisfies (ϵ, δ)-DP, where σ ≥ cϑ2/ϵ and c2 > 2 log(1.25/δ). The

N (0, σ2)p denotes a vector of p i.i.d. samples from the Gaussian distribution N (0, σ2).

Algorithm 9 Sparse Vector Technique [162, 104]

Input: Dataset D, query set Q = {q1, ..., qm}, privacy parameters ϵ, δ > 0, unstable
query cutoff T , threshold w.

1: c← 0, λ←
√

32T log(1/δ)/ϵ, ŵ ← w + Lap(λ).
2: for q ∈ Q and c ≤ T do
3: q̂ ← q + Lap(2λ).
4: if q̂ > ŵ then
5: Output ⊤.
6: else
7: Output ⊥. ŵ ← w + 1, c← c+ 1.
8: end if
9: end for

Lemma B.0.6 (Privacy guarantee of Algorithm 9 [104]) Algorithm 9 is (ϵ, δ)-DP.

Lemma B.0.7 (Utility guarantee of Algorithm 9 [104]) For

ϕ = log(2mT/β)
√

512T log(1/δ)/ϵ,

and any set of m queries, define the set L(ϕ) = {i : qi(D) ≤ w+ ϕ}. If |L(ϕ)| ≤ T , then

w.p. at least 1− β : ∀i /∈ L(ϕ) Algorithm 9 outputs ⊤.
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Definition B.0.8 (k-stability [114]) A function f : Z → R is k stable on dataset

D if adding or removing any k elements from D does not change the value of f , i.e.,

f(D) = f(D′) for all D′ such that |D − D′| ≤ k. We say f is stable on D if it is (at

least) 1-stable on D, and unstable otherwise.

Algorithm 10 Distance to Instability Framework [114]

Input: DatasetD, function f : Z → R, distance to instability distf : Z → R, thereshold
Γ, privacy parameter ϵ > 0.

1: d̂ist← d̂istf (D) + Lap(1/ϵ).

2: if d̂ist > Γ then
3: Output f(D).
4: else
5: Output ⊥.
6: end if

Lemma B.0.9 (Privacy guarantee of Algorithm 10 [88]) If the threshold Γ = log(1/δ)/ϵ,

and the distance to instability function distf (D) = argmaxk(f(D) is k-stable), then Al-

gorithm 10 is (ϵ, δ)-DP.

Lemma B.0.10 (Utility guarantee of Algorithm 10 [114]) If the threshold Γ = log(1/δ)/ϵ,

and the distance to instability function distf (D) = argmaxk(f(D) is k-stable), and f(D)

is ((log(1/δ) + log(1/β))/ϵ)-stable, then Algorithm 10 outputs f(D) w.p. at least 1− β.

Definition B.0.11 (Definition 1.1 of [105]) M obeys (ξ, ρ)-zCDP if for two adjacent

dataset D,D′, for all ϕ ∈ (1,∞), the Renyi-divergence of order ϕ below obeys that

Dϕ(M(D)∥M(D′)) ≤ ξ + ρα.

When ξ = 0, we also call it ρ-zCDP (or simply ρ-CDP, since we are not considering

other versions of CDPs in this thesis).
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The following two lemmas will be used in the privacy analysis of the SVT-based

PATE.

Lemma B.0.12 (Proposition 1.3 of [105]) IfM obeys ρ-zCDP, thenM is (ρ+2
√
ρ log(1/δ), δ)-

DP for any δ > 0.

Lemma B.0.13 (Proposition 1.4 of [105]) IfM obeys ϵ-DP, thenM obeys ϵ2

2
-CDP.
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[85] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar,
Semi-supervised knowledge transfer for deep learning from private training data,
in International Conference on Learning Representations, 2017.

[86] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson,
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