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Colorectal cancer is the third most common type of cancer in the world. Colorectal 

cancer begins with small, noncancerous clumps of cells (polyps). Early screening, with 

colonoscopies, and surgical removal of polyps can prevent the cancer from ever 

developing. However, colonoscopies are expensive and painful, and the lifetime risk of 

colon cancer is only 5%. A test to identify people who are likely to develop colon cancer 

could eliminate needless colonoscopies.  

We obtained germline genetic data for 1309 patients diagnosed with colon cancer and 

compared this to 7517 others who have never been diagnosed with colon cancer. This 

dataset was collected as part of the Cancer Genome Atlas Program. We used supervised 

machine learning on this dataset to answer two questions.  First, what fraction of 

these colon cancer patients should be predictable from germline data? Second, how well 

could such a test perform.  We evaluated the performance of five different machine-



xii 

 

learning algorithms (gradient boost machine, wide neuron networks, deep neuron 

networks, dense-sparse neuron networks, and pairwise neuron networks) to answer 

these questions.  

We found that about 78% of colon cancer cases in the dataset should be predictable 

from germline genetic data.  We measured the receiver operating characteristic curve, 

which quantifies the tradeoff between sensitivity and specificity, for a germline genetic 

test that could predict a future diagnosis of colon cancer.  We measured the area 

under the receiver operating characteristic curve to be about 0.80. We found that the 

gradient boost machine and pairwise neuron network algorithms perform equally well, 

and these two models were significantly better than the others. We conclude that a 

germline genetic test to predict a future diagnosis of colon cancer could be useful to 

focus screening on appropriate populations. 
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Chapter1 Introduction  

Colorectal cancer is the third most common type of cancer. Around 1.4 million new cases 

are diagnosed annually, consisting of 10% of all cancer types(1). In the United States, the 

lifetime risk of colorectal cancer is estimated to be 4.49% for men and 4.15% for women, 

and it is expected to cause about 50,630 deaths during 2018.(2),(3) 

Colorectal cancer originates with polyps in the colon or rectum. According to where these 

cancers start, they can also be named colon cancer or rectal cancer. Since colon cancer 

and rectal cancer have many features in common(4), they are grouped in many research 

reports. 

The inner lining of the colon or rectum starts to grow when most colorectal cancers begin. 

These growths are called polyps. Most types of polyps are often non-cancerous growth, 

but some of them can develop into cancer(5). Two common types of polyps are found 

in the colon and rectum. The first type is hyperplastic and inflammatory polyps. They are 

the most common type of polyps and are not pre-cancerous in general. The second type 

is adenomas or adenomatous polyps. These polyps sometimes change into cancer. 

Therefore, adenomas are often called a pre-cancerous condition. 

Around 96% of colorectal cancers are developed from adenocarcinomas(6). Some other 

sub-types of adenocarcinoma may have a worse prognosis such as signet ring and 

mucinous. Also, there are other less common types of tumors can start in the colon and 
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rectum. They are carcinoid tumors, gastrointestinal stromal tumors, lymphomas, and 

sarcomas(7). Carcinoid tumors start from special hormone-making cells in the intestine. 

Gastrointestinal stromal tumors start from special cells in the wall of the colon called the 

interstitial cells of Cajal. These tumors can be found anywhere in the digestive tract, but 

not common in the colon. Lymphomas mostly start in lymph nodes, but they can also 

begin in the colon. Sarcomas often start in connective tissues, and sarcomas in the colon 

or rectum are rare. Now, in the United States, colorectal cancer is the third most 

commonly diagnosed cancer among both men and women. 

Colorectal cancer has many risk factors. They include environment factor and lifestyle 

factors such as smoking, heavy alcohol use, and type 2 diabetes. However, the most 

critical risk factors are the inherited factors according to previous studies(8). A family 

history of colorectal cancer or adenomatous polyps can increase the probability of 

getting colorectal cancer significantly. Nearly one in three people who develop colorectal 

cancer have other family members who have had it. The risk for people with a history of 

colorectal cancer in a first-degree relative (parent, sibling, or child) is also increased. The 

risk is even higher if that relative was diagnosed with colorectal cancer when they were 

younger than 45, or if more than one first-degree relative is affected.  

Early diagnosis is one of the most effective ways to avoid or minimize psychological, 

physical, and financial suffering from colorectal cancer. However, early colonoscopy 

could be expensive and physical suffering. Environment (such as radiation and sunlight), 

lifestyle (such as diet and smoking), and inherited genetics are three primary carcinogenic 
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factors(9). One method of early diagnosis is a prediction from germline DNA. Genome-

wide association studies (GWAS) are one of the most important studies which focus on 

the association between genetic variants and diseases. However, GWAS have not shown 

strong success in predicting the probabilities to common cancers (10,11). Among the 

previous studies, Single-nucleotide polymorphisms (SNPs) are one of the commonly 

used inherited factors(12,13,22–24,14–21). 

However, germline SNPs analysis is unable to explain observed heritability thoroughly. 

All the common SNPs only explain 7.52% of the heritability(25). On the other hand, the 

largest twin study estimates the overall contribution of inherited genes to the 

development of colorectal cancer to be 35%, but it had a wide confidence interval (10%-

48%)(26). 

Copy number variation is also a critical inherited factor. It affects more base pairs per 

mutational events than SNPs. Copy number variation is a phenomenon in which the 

number of copies of a region of the genome varies between individuals in a human 

population. According to the HapMap Project, discrete copy number variations cover 12% 

of the human genome. The HapMap Project also indicate that CNVs encompass more 

polymorphic base pairs than SNPs(27). In this study, CNVs are used to be the major 

genetic factor in predicting colorectal cancer risk. 

On the other hand, the complexity of the genomic factors also increased the difficulty of 

estimating the probability of getting colorectal cancer. Hence, developing new methods 
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of predicting the probability and estimating the predictability are necessary. Machine 

learning has the abilities to handle complex data, and it has wide application in 

bioinformatics. So, we choose machine learning as a tool for our study. To estimate the 

probability of getting colorectal cancer, the copy number variation data were obtained 

from patient blood samples, which were processed to extract germline DNA sequence. 

We built machine learning models to predict whether a person will develop colorectal 

cancer using germline DNA Copy Number Variation data. Also, a new method to estimate 

the predictability of colorectal cancer is reported. 

Machine learning is a technique of computer science that uses statistical methods to give 

computer systems the ability to progressively improve performance with the existing data 

without being explicitly programmed(28). Computational statistics are closely related to 

machine learning, and it also focuses on prediction making using computational 

algorithms. The core idea of building a machine learning model is mathematical 

optimization. The efficiency of the optimization significantly affects the model quality.  

Classification is one of the most important applications of machine learning. The 

prediction of getting colorectal cancer is a typical classification problem. In classification, 

the feature vectors (inputs) are the variables that are used to assign each case to certain 

classes. After training, the model could assign an unseen input to one of the classes. In 

our study, the machine learning model could estimate the probability of getting 

colorectal cancer and classify whether a person is likely to develop colorectal cancer or 

not.  
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In this study, multiple machine learning algorithms are used to predict colorectal cancer 

risk:  

⚫ Gradient Boost machine (GBM), a method of ensembling weak learners (simple 

machine learning algorithms, such as decision trees) into efficient learners. It has an 

excellent performance in many ranking and classification problems, such as the 

commercial web search engines in Yahoo(29). 

⚫ Neuron network is a complex computing system used to solve many practical 

problems such as classification. It has strong success in image classification, natural 

language processing, and recommendation systems recently. The architecture of 

neuron networks affects its performance significantly.  

• Wide networks are often used to simple and large scale problems.  

• Deep networks are widely used in many circumstances but sometimes suffer 

from the gradient exploding or gradient vanishing because of the large depth in 

the networks. 

• A dense-sparse network is developed to address the data sparsity problem and 

feature interactions in this study. 

• Also, a pairwise network is developed to push the predicted probabilities of 

colorectal patients and non-colorectal cancer patients away. 
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Chapter2 The principle of prediction and artificial intelligence in 

medicine 

2.1 Introduction of machine learning and artificial intelligence 

Artificial intelligence is a broad term that includes many different technologies and has a 

long history in medicine(30). In its broadest sense, artificial intelligence is defined as a 

machine that has thinking, reasoning, problem-solving, and learning capabilities similar 

to humans. Examples of artificial intelligence include knowledge bases and expert 

systems. Table 1 gives an example of an expert system for diagnosing congenital heart 

disease from 1968(31).  

Table 1 demonstrates the early importance placed on natural language processing, the 

ability to extract information from written language. Natural language processing is still 

an area of active research with some success. However, today’s most successful artificial 

intelligence applications in medicine use machine learning. 



7 

The recent popularity of machine learning can be attributed to two major innovations, 

first the availability of extremely large digitized datasets and second, the development of 

Table 1 An artificial intelligence package for diagnosis, 1968. 

 

PLEASE TELL ME ABOUT THE PATIENT 

The patient here with me is 23 years old 

PLEASE CONTINUE 

He shows no evidence of cyanosis 

OK PLEASE GO ON 

There is no indication of the squatting symptom 

ALL RIGHT.  GO ON PLEASE. 

I’m afraid that’s all I know about him at present. 

CHECK THE HILAR VESSELS.  ARE THEY INCREASED OR DECREASED 

They are increased 

I SEE 

LOOK FOR A LEFT SECOND SYSTOLIC MURMUR 

First tell me what the three most probable diseases are at this time 

2 WITH PROBABILITY 74 

18 WITH PROBABILITY 7 

30 WITH PROBABILITY 3 

PLEASE CONTINUE 

LOOK FOR A LEFT SECOND SYSTOLIC MURMUR 

And the name of disease 18 is 

PATENT DUCTUS ARTERIOSUS 

ALL RIGHT. GO ON PLEASE 

LOOK FOR A LEFT SECOND SYSTOLIC MURMUR 

He has a left second midsystolic murmur 

ALL RIGHT 

IS THE AXIS IN THE ECG RIGHT, LEFT, OR NORMAL 

It is the right axis 

OK 

I RECOMMEND A DIAGNOSIS OF DISEASE 2 

What is your current view of the problem 

MY CURRENT VIEW IS 

     DISEASE    PROBABILITY 

        2             93 

        4              2 

Name disease 4 for me 

ATRIAL SEPTIC DEFECT WITH PULMONARY HYPERTENSION 

I’m finished with this case. Thank you for your help 

I HOPE THAT I HAVE BEEN OF SERVICE.  GOODBYE 
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computational techniques to control and reduce overfitting known as regularization. 

These large digital datasets are often called Big Data. Big Data has led to several 

innovations. Large collections of text that have been translated into two or more 

languages led to machine translations that are almost as good as humans(32). Thousands 

of hours of television programs that include closed captions for the hearing impaired led 

to better voice recognition systems. Enormous sets of tagged images have vastly 

improved automated image recognition(33). 

Artificial intelligence advancements in a field follow the existence of Big Data in that field. 

A big impetus for the adoption of electronic health records in the United States was the 

passage of the Health Information Technology for Economic and Clinical Health (HITECH) 

Act, part of the American Recovery and Reinvestment Act of 2009. We are beginning to 

see the applications of machine learning to medicine now. 
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2.2 Diagnosis, prognosis in medicine vs. classification in machine 

learning 

Diagnosis is a key part of medicine. A patient presents with several symptoms and 

laboratory tests. Based on these symptoms and tests, the physician is called on to classify 

the patient’s condition into a disease. Once the diagnosis is complete, treatment can 

begin. 

Classification, which will be discussed in the following section, is a key part of machine 

learning. A dataset is characterized by several variables. Based upon these variables, the 

machine learning algorithm is called on to classify the dataset into a particular class. An 

example is optical character recognition. An image containing a single numeral can be 

digitized into a 20x20 array of pixels. The algorithm can classify these 400-pixel values 

into one of ten possible digits, 0--9. Thus diagnosis in medicine is a natural target for 

the application of machine learning. Both medical diagnoses and machine learning 

classification share a set of terminology that describes the performance of diagnosis and 

classification tests. Diagnosis or classification tests are judged by their ability to correctly 

predict both the correct answer and avoid the incorrect answer. For the simplest case, a 

binary classification, four rates are relevant: the true positive, false positive, true negative 

and false negative rates. The true positive and true negative rates are the correct answers, 

while the false negative and false positive errors are the incorrect answers. 
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2.3 Sensitivity versus Specificity 

These four numbers can be combined into two: sensitivity and specificity. The sensitivity 

is defined as the probability of a positive test given that the sample is known to be 

positive. While the specificity is the probability of a negative test given that the sample is 

known to be negative. Sensitivity and specificity depend on cutoff values. Different cutoff 

values give different sensitivity and specificity values. Ideally, a test will have both high 

sensitivity and high specificity, but a tradeoff exists between the two. Often a test will 

produce a numerical value. All values above a threshold have a positive test result, and 

all values below are negative. The exact values of the sensitivity and specificity will depend 

on the threshold value. If one chooses a low threshold value, one gets a high true positive 

rate (high sensitivity), and a high false positive rate (low specificity). On the other hand, if 

one chooses a high threshold value, one gets a low true positive rate (low sensitivity) and 

a low false positive rate (high specificity). 

Characterizing such a test is a very general problem first addressed in the field of signal 

detection theory(34). The problem was posed this way: “Suppose an observer is given a 

voltage varying with time during a prescribed observation interval and is asked to decide 

whether the source is noise or is signal plus noise. What method should the observer use 

to make this decision and what receiver is a realization of that method?” Petersen, Birdsall 

and Fox answered the question they posed. The best method to decide whether you 

have a signal or just noise is to set a threshold. If the voltage exceeds the threshold, then 

one can claim to have detected the signal. Of course, this alters the question to “how 
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does one set a threshold.” One sets the threshold based on the acceptable true positive 

rate and false positive rate. In the electrical engineers’ formulation of the problem, the 

“test” was an electronic receiver that detected the voltage. Thus, the main task was to 

characterize their receiver’s operating condition. They formulated a graphical expression 

of their receiver’s performance that they named the receiver operating characteristic 

(ROC) curve. In our case, a better name might be the test characteristic curve, but the 

ROC nomenclature is firmly embedded in science. 
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2.4 ROC curves and area under the curve to quantify the quality of 

test 

The receiver operating characteristic curve expresses the full capabilities of a test. One 

often needs to answer, “How good is the test?” The naïve would expect an answer like 

“80% accurate.” Where the naïve might define accuracy as “probability of a positive test 

given that the sample is known to be positive,” which we have defined as sensitivity. 

Instead, we can first define two extreme answers to the question, “how good is the test?” 

We can have the answer, “it is a perfect test,” and “it is a completely random test.” 

A perfect test is one with 100% specificity and 100% sensitivity. It would have a ROC curve 

that looks like Figure 1. 

 
Figure 1. A near perfect test has an AUC close to 1.0.  In this figure, the threshold values are indicated on 

the curve. 
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If the predictions are made at random, the specificity will be equal to the sensitivity for 

all thresholds; it looks close to Figure 2. 

The full range of possible threshold values and the associated true positive rate and false 

positive rate can only be expressed by a receiver operating characteristic curve, (ROC). 

However, a summary of the test’s receiver operating characteristic curve can be 

computed by taking the integral under the receiver operating characteristic curve. This 

quantity is widely known as the area under the receiver operating characteristic curve or 

area under the curve or AUC. A perfect test has an AUC=1.0. A completely random test 

has an AUC=0.5. One can now answer the question, “how good is the test?” with a 

number. The test has an AUC=0.7. A useful shorthand is to think of the AUC as a grade 

one might get in a class.  

 

Figure 2. This ROC curve represents a poor test, one that is just a bit better than guessing at random. 
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The AUC is only a summary of the test, and a test with a low AUC can be useful in a small 

subset of cases. Figure 3 shows an example from a BRCA-like test, where the test predicts 

outcome well for a small fraction of the population. The AUC is widely used to quantify 

tests in machine learning, medicine, psychology, and many other fields. In some fields, 

the AUC has other names including c-statistic, concordance statistic, and c-index. One 

appealing feature of the ROC / AUC is that it is insensitive to class imbalance. Suppose a 

test set contains 90% of normal patients and 10% diseased patients. The machine learning 

task is to classify whether a particular patient is normal or diseased. An algorithm that 

simply guesses “normal” for all unknown patients will have an accuracy of 90%. The AUC, 

 

Figure 3 This test has almost the same AUC as the one in Figure 2, but it performs very well for a small 

subpopulation.  This subpopulation performance is shown by the steep slope of the curve in the lower 

left.  This figure demonstrates the importance of examine. 
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however, will be 0.50. The AUC is a better measure of the performance of the algorithm 

than the accuracy.  

In cases of extreme class imbalance, screening for rare cancer, for instance, one often 

wants to identify the small number of patients most likely to be diagnosed with rare 

cancer. In these cases, it is better to practice to use a lift chart, which identifies what 

percentage of the target population (those with rare cancer) can be identified with the 

smallest possible group. As an example, suppose rare cancer occurs at a rate of 1 in 

100,000. If we had an algorithm that could narrow identify a subset of the population in 

which rare cancer occurs at a higher rate, say 1 in 10,000, that algorithm would have a 

lift of 10. The lift is computed as the ratio of the rate after prediction to the rate before 

prediction. An algorithm that provides no information (random) has a lift of 1. 
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Table 2 Several common medical tests and their published AUC values. 

Test AUC Reference 

PSA to detect prostate cancer 0.68 (35) 

Cardiac troponin to diagnose acute 

myocardial infarction 

0.96 (36) 

Cell-free DNA test for Down’s syndrome 0.999 (37) 

HbA1c for diagnosing diabetes 0.958 (38) 

HEART score to predict major adverse 

cardiac events in 6 weeks from patients 

presenting with chest pain  

0.86 (39) 

Circulating tumor cells to diagnose lung 

cancer 

0.6 (40) 
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2.5 Introduction of basic machine learning concepts 

2.5.1 Supervised learning 

The goal of supervised algorithms is to predict either a classification or a numerical result, 

called regression. Classification is ubiquitous in medicine. The patient presents with 

symptoms; the physician attempts to classify the patient, based upon symptoms into one 

of several possible diagnoses. Machine learning algorithms usually provide a measure of 

the probability that a set of data belongs to one class or another. Regression is less 

common but still useful. Regression can answer questions like, how many days is the 

patient expected to be in the hospital based on a set of data like age, initial diagnosis, 

vital signs, height, weight, days since last hospital stay, etc. There are many supervised 

machine learning algorithms, such as decision tress, neural network, and similarity 

learning. 

 

2.5.2 Unsupervised learning 

The word unsupervised means a specific label is not available before training. An 

unsupervised learning algorithm could learn to cluster samples automatically. The most 

common unsupervised machine learning algorithm is known as k-means clustering. The 

algorithm is rather old; it dates from at least the 1980’s(41). The goal of this algorithm is 

to identify subgroups in the dataset. The number of subgroups must be pre-specified 

and is known as k. With a complex dataset, the algorithm will find a close to the ideal 
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partition of the data into k different clusters. Usually, subgroups have some important 

characteristic that makes them useful with a common diagnosis into subgroups. A typical 

process is to divide a group of patients into sub-groups, where each sub-group has a 

different survival time for that disease.  

 

2.5.3 The basic process in machine learning 

A machine learning algorithm takes a set of data to build a mathematical model to learn 

the patterns behind the data. From the training process, we determine the parameters in 

the model and find the parameters with the best performance. The data is called a 

training dataset. In the training dataset, each training sample is in the form of an array or 

a vector. The vector is composed of the variables that might affect the prediction. These 

variables are called features. So the vector is usually called a feature vector. The 

hyperparameters are the properties of the model that are determined before the 

determination of the weights of the individual neurons. Hyperparameters include the 

structure of the model (such as how many hidden layers or how many neurons in each 

layer in a neural network) and information on how the weights are to be determined 

during the training process, (factors are known as the learning rate, batch size, and 

momentum are examples.) Therefore, another dataset called the cross-validation dataset 

is used to get the hyperparameters with the best performance. Also, a dataset which is 

not seen by the model is used to evaluate the performance of a model. This dataset is 

called the test dataset. In a word, the model goes through training dataset, adjust the 



19 

hyperparameters on cross-validation dataset, and test on the test dataset to evaluate the 

performance. Figure 4 shows a basic machine learning procedure used in the following 

cancer prediction. 

Supervised learning with hyperparameters requires that one be very careful to not overfit 

the data. Ideally, one has access to an unlimited dataset or more data than one can easily 

handle. Often, however, only a limited set of data is available. Given a limited dataset, 

best practices are to split the data into three parts known as the training data, the 

validation data, and the test data. A typical split is 70% training, 15% validation, and 15% 

test data. One common pitfall is modifying the model after looking at how it performs 

 

Figure 4 Basic machine learning procedure used in cancer prediction. Each block in the tables 

represents a feature. Each row in the tables represents the feature vector of each patient. 

Patient ID Copy number segment mean values (features)

1 …

2 …

…

Feature vectors in training set

Diagnosis

Normal

Cancer

…

Diagnosis

Train and cross validate 

Machine learning 
models 

Patient ID Copy number segment mean values (features)

6 …

10 …

…

Feature vectors in test set

Predict
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on the test data. Any such modification is a form of fitting to the test data. Improvements 

gained through such modifications inevitably will not translate to the next batch of fresh 

data. A second pitfall is when the data is preprocessed/sub-selected before the test data 

is extracted. This preprocessing can lead to information derived from the test data leaking 

into the training process.  

The terminology for these sub-datasets: train, validate, the test is commonly used by the 

machine learning field, but it is not universal. Clinical laboratory tests are developed on 

one dataset and then validated on an independent dataset. Thus, clinical papers often 

refer to the final independent dataset as the validation step. 

 

2.5.4 Overfitting 

In many cases, the primary objective of a machine learning algorithm is to predict a value 

or diagnose a condition based upon the input. Biomedical examples abound:  

• Can one diagnose whether a patient has lung cancer based upon an 

immunofluorescent studies of cells captured from the blood?  

• Can one diagnose whether a patient has diabetes by measuring glycated 

hemoglobin levels in the blood? 
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• Can one predict whether a patient will have a heart attack in the next month based 

upon a combination of EKG, age, body mass index, tobacco smoking status, family 

history, and measurements of troponin in the blood? 

In the simplest case, one has an example set of results y and input values x. The goal is 

to identify the best function that will predict the value of y from the input values, x:  𝑦 =

𝑓(𝑥),  as shown in Figure 5. This process is referred to as supervised learning. The 

challenge is to derive this function f without overfitting. An example of overfitting is 

shown in Figure 6. 

Every real set of data contains both signal and noise. The goal of machine learning is to 

build a model of the signal while ignoring the noise. The problem is that the noise is 

often indistinguishable from the signal. 

 

Figure 5.  The line represents the best prediction of y, given x.  The points indicate observations of y, 

and the corresponding x value.  The line is represented by two parameters a slope and an intercept. 
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Many approaches to reducing overfitting exist. The first, and simplest, is to have some 

fundamental understanding of the relationship between y and x. For instance, if there is 

a good reason to believe that y is linearly related to x, then the set of functions, f, should 

be limited to those in which x and y are linearly related: y= βx+c. If the relationship 

between y and x is complex and not well understood, then more complex methods are 

needed.  

The main approaches to reduce overfitting in complex functions are known as 

regularization and drop out. To understand regularization better, we first need to state 

the cost function. A typical linear least square fit minimizes the cost function 

𝐶 =
1

2𝑛
∑(𝑦𝑖 − 𝛽𝑥𝑖)

2

𝑛

𝑖=1

 

 
Figure 6.  This black curve represents a clear case of overfitting.  The same data as shown in Figure 4 

are presented.  In this case, the datapoints are fit with an 8th degree polynomial. 
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This cost function is called the mean squared error. It takes the squared difference 

between the actual value, y_i and the predicted value β x. The problem can be posed as 

a minimization problem, where the goal is to minimize the cost function by adjusting β. 

If multiple input variables, x_j, exist, instead of a single input variable, x, then a set of 

coefficients, βj is also needed. The cost function now looks like this, when there are a 

total of p input variables and n independent observations: 

𝐶 =
1

2𝑛
∑(𝑦𝑖 − ∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

 

Minimizing this function will often lead to overfitting. Overfitting can be reduced by 

adding a new term to the cost function that penalizes functions that are more complex. 

This addition to the cost function is known as regularization. The idea is that a simpler 

model is one that uses fewer of the xj variables. The penalty is implemented by adding a 

term to the cost function that is proportional to the absolute value of the coefficient: 

𝐶 =
1

2𝑛
∑(𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

 

This addition to the cost equation is known as L1 or Lasso Regression. If, instead, the cost 

function includes a factor proportional to the square of the coefficient: 
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𝐶 =
1

2𝑛
∑(𝑦𝑖 − ∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2

+ 𝜆 ∑𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

, 

The process is known as L2 regularization. 

In each case, the cost function is increased by the final term, which is proportional to the 

parameter λ.  

 

2.5.5 Regularization Revolution  

Dropout is a revolutionary method to prevent overfitting (42). Dropout has primarily been 

applied to deep learning algorithms, but similar techniques are also used in other 

algorithms. The principle underlying the dropout mechanism is that by randomly 

dropping different connections within a network during the training process, the network 

becomes more robust and less susceptible to overfitting. The advent of dropout led to 

an immediate improvement in the performance of most deep learning algorithms. 

Machine learning algorithms fall into two categories: supervised and unsupervised. 

Supervised algorithms require a batch of training data: a set of chest x-ray images from 

patients with pneumonia, for instance. The supervised algorithm uses the training data 

to build a model that can be applied to similar data (a chest x-ray) with an unknown 

diagnosis. An unsupervised algorithm is applied to a set of data to discover sub-

classifications. For instance, an analysis based on six variables from patients with adult-
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onset diabetes found that these patients could be grouped into five different types. The 

different types had a different risk of complications(43). 

2.5.6 Applications 

Applications of machine learning to medical data have grown rapidly in the past few 

years. We can organize these applications with different types of medical data. Examples 

of different data structures found in medical data include tabular data, medical images, 

time series, and natural language. In this dissertation, we developed many machine 

learning algorithms which applied to colorectal cancer prediction research. 
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Chapter3 Classification systems and gradient boost machine in 

cancer prediction 

3.1 Pattern recognition in prediction research 

In cancer prediction research, we can acquire a large amount of genetic data from 

patients’ germline DNA. The prediction object in this study is to find the pattern behind 

the data and estimate the probability of developing cancers in the future. The act of 

taking in raw data and taking action based on the “category” is called pattern 

recognition(44).  

A cancer prediction project is to separate the people with a high risk of getting cancer 

from genetic data. The variations in the genetic data are typically mathematical in form. 

The overarching goal and approach in pattern classification are to hypothesize the 

probability of getting cancer, process the higher associated genetic data, eliminate the 

unrelated data, and choose the best model that fit the pattern best. 

In previous research, people use P-value of a simple chi-squared test to recognize the 

pattern in Genome-Wide Association Studies (GWAS)(45). GWAS are one of the most 

significant research in cancer prediction. It is an approach that involves rapidly scanning 

markers across the complete sets of DNA, or genomes, of many people to find genetic 

variations associated with a particular disease (46). In the GWAS study, the associations 

between Single-nucleotide polymorphisms (SNPs) and primary human cancers were 

reported. They focused on the phenotypes for a particular disease type. The genetic data 
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was acquired from the group of people with the disease (experimental group) and the 

group of people without the disease (control group). The genetic variants from the 

patients were then read by SNP arrays. The high frequency of a particular variant in the 

experimental group shows a higher association with the particular disease. Figure 7 

shows a Manhattan plot of colorectal cancer in association with risk loci(47). 

 

 

Figure 7 Manhattan plot of colorectal cancer in association with risk loci. The X-axis shows the genomic 

positions, and the Y-axis shows the P-values in association with digestive system disease (smaller P-

value have a stronger association). 
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However, the GWAS study has limited success because it only focused on particular loci 

and neglected the inner connections between the loci. Copy number variation is a genetic 

variant that focuses on segments in the DNA sequence, which contains more information 

than single mutations (SNP). We used a copy of the (The Cancer Genome Atlas) TCGA 

data hosted by the Institute for System Biology Cancer Genomics Cloud, an interactive 

web-based application(48), to access and explore the rich cancer datasets.  

Machine learning has the abilities to handle complex data, and it has broad application 

in bioinformatics. In this study, many machine learning techniques are applied to the 

research. Machine learning is a technique of computer science that uses statistical 

techniques to give computer systems the ability to progressively improve performance 

with the existing data, without being explicitly programmed(28). Computational statistics 

are intimately involved in machine learning, and it also focuses on prediction making 

using computational algorithms. The core idea of building a machine learning model is 

mathematical optimization. The efficiency of the optimization significantly affects the 

model quality.  
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3.2 Gradient Boost Machine 

3.2.1 The principle of Gradient Boost Machine 

Gradient Boost Machine (GBM) was first implemented in this research. It first trains a 

group of weak learners and then ensemble them with different weights. 

The GBM model grows following the algorithm specified by Hastie et al. (49) and is 

implemented by H2O.ai platform(50). A brief flow chart is shown in Figure 8. We trained 

a sequence of weak learners 𝑓𝑚 in which regression trees were used as functions in a 

gradient boosting framework. This give a predicted score �̂� by an estimate function 

𝐹(𝑥), in the following form 

𝐹(𝑥) =  ∑ 𝑓𝑚(𝑥),

𝑀

𝑚=1

 𝑓𝑚 ∈ 𝐹 

 

Figure 8 Tree growing algorithm in GBM 
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where x was the input feature vector, M was the number of regression trees, 𝑓𝑚(𝑥) were 

incremental functions (“steps” or “boosts”) defined by an optimization method, and F was 

the space of all possible 𝑓𝑚(𝑥). 𝐵 ecause our problem is a two-class classification 

problem, we built two estimate functions 𝐹1(𝑥)  and 𝐹2(𝑥)  to predict the score of 

colorectal cancer and non-colorectal cancer separately. We considered 𝐹1(𝑥) 𝑎𝑛𝑑 𝐹2(𝑥) 

evaluated at each point x to be “parameters” and sought to minimize the loss function, 

which was given by 

𝐿({𝑦1, 𝐹1}, {𝑦2, 𝐹2}) =  −𝑦1 log 𝑝1(𝑥) − 𝑦2 log 𝑝2(𝑥) 

where y1, y2 ∈ {0,1} were the observed values. 𝑝1(𝑥) 𝑎𝑛𝑑 𝑝2(𝑥) were the probabilities 

when y1 and y2  were equal to one. It could be written as the following equation 

according to the symmetric multiple logistic transformation(51). 

𝑝1(𝑥) = 𝑒𝑥𝑝(𝐹1(𝑥))/ (𝑒𝑥𝑝(𝐹2(𝑥)) + 𝑒𝑥𝑝(𝐹2(𝑥))) 

𝑝2(𝑥) = 𝑒𝑥𝑝(𝐹2(𝑥))/(𝑒𝑥𝑝(𝐹2(𝑥))  +  𝑒𝑥𝑝(𝐹2(𝑥))) 

The model was trained iteratively and additively. At the mth iteration, two new functions 

𝑓1,𝑚, 𝑓2,𝑚(regression trees) selected from F are added to the ensemble 𝐹1(𝑥) and 𝐹2(𝑥) 

to predict the corresponding current residuals, 𝑟1,𝑖𝑚 and 𝑟2,𝑖𝑚, for the ith instance on the 

probability scale. The residuals could be computed as 

𝑟1,𝑖𝑚  =  𝑦1,𝑖  −  𝑝1,𝑚 − 1(𝑥𝑖) 
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𝑟1,𝑖𝑚  =  𝑦2,𝑖  −  𝑝2,𝑚 − 1(𝑥𝑖) 

Both of these trees have J-terminal nodes, splitting the data into corresponding regions 

{𝑅1,𝑗𝑚}𝑗 = 1
𝐽  and {𝑅2,𝑗𝑚}𝑗 = 1

𝐽 . For big data splitting, this can be a problem. To avoid this 

problem, we approximate sorting with binning instead(52). 

The parameters  of 𝑓𝑚 , 𝛾1,𝑗𝑚 and 𝛾2,𝑗𝑚  should optimize the mth objective function, 

which is given by 

𝛾1,𝑗𝑚, 𝛾2,𝑗𝑚 =  𝑎𝑟𝑔 𝑚𝑖𝑛
{𝛾1,𝑗𝑚,𝛾2,𝑗𝑚}

∑(𝑙(𝑦1,𝑖, 𝐹1,𝑚 − 1(𝑥𝑖)  +  ∑ 𝛾1,𝑗𝑚𝐼(𝑥𝑖 ∈  𝑅1,𝑗𝑚)
𝐽

𝑗 = 1
)  

𝑁

𝑖 = 1

+ 𝑙(𝑦2,𝑖, 𝐹2,𝑚 − 1(𝑥𝑖)  +  ∑ 𝛾2,𝑗𝑚𝐼(𝑥𝑖 ∈  𝑅2,𝑗𝑚)
𝐽

𝑗 = 1
)) 

Where 𝑙 (𝑦, 𝐹)  = −𝑦𝑙𝑜𝑔𝑝 from the loss function above, with F related to p through the 

probability equation above. N is the total number of patients in the training set, and the 

indicator function 𝐼() has the value one if its argument is true, and zero otherwise. With 

a single Newton-Raphson step, the 𝛾1,𝑗𝑚, 𝛾2,𝑗𝑚 could be decomposed into a separate 

calculation for each terminal node of each tree(51), 

𝛾𝑘,𝑗𝑚  =  
∑ 𝑟𝑘,𝑖𝑚𝑥𝑖∈𝑅𝑘,𝑗𝑚

2∑ |𝑟𝑘,𝑖𝑚|(1 − |𝑟𝑘,𝑖𝑚|)𝑥𝑖∈𝑅𝑘,𝑗𝑚

  𝑘 =  1, 2 

At the end of each iteration, we can update the estimate function. 

𝐹𝑘,𝑚(𝑥)  =  𝐹𝑘,𝑚 − 1(𝑥)  + ∑ 𝛾𝑘,𝑗𝑚𝐼(𝑥𝑖 ∈  𝑅𝑘,𝑗𝑚), 𝑘 =  1, 2
𝐽

𝑗 = 1
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The final probability can be calculated by equation (3) and (4) with 𝐹1,𝑀(𝑥) and 𝐹2,𝑀(𝑥). 
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3.2.2 Feature engineering 

Feature engineering focuses on feature extraction. The data made available by the ISB-

CGC through Google Bigquery is organized into open-access datasets, which is made up 

of multiple tables. We used the datasets which are uniquely identified based on Google 

Cloud Platform(GCP) project name (ISB-CGC), and the datasets name 

(TCGA_hg38_data_v0 and TCGA_bioclin_v0). Each table inside the datasets is uniquely 

identified by the table name. The table, “Copy_Number_Segment_Masked,” ”Clinical,” 

and “Biospecimen” were used in our study. 

“Copy_Number_Segment_Masked” table, which is from “TCGA_hg38_data_v0” datasets, 

contains all available Copy Number Segmentation data across all TCGA samples. Each 

single copy number segment for each aliquot is shown in each row in the table. The field 

“chromosome” shows where each Copy Number Segment is located. The field “start_pos” 

and “end_pos” specify the coordinates for the segment, and “segment_mean” gives an 

estimate of the 𝑙𝑜𝑔2(𝐶𝑜𝑝𝑦 𝑁𝑢𝑚𝑏𝑛𝑒𝑟/2) mean value.  

“Clinical” table, which is from “TCGA_bioclin_v0” datasets, contains over 11,000 cases. 

Each row in the table represents each TCGA case (patient or participant) with any clinical 

information. 

“Biospecimen” table, which is also from “TCGA_bIoclin_v0”, is a sample-centric table. Each 

row in the table represents each of the TCGA samples. The filed “sample_type” specify 
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the sample type code. For example, in our study, we used Blood-Derived Normal sample 

(sample type code = 10) as our data source. 

From TCGA datasets, the original datasets contain 69,518 copy number segments. We 

constructed our feature vector using three different methods: start grouping, end 

grouping, and no grouping. For start grouping, we incorporated the segments with the 

same start position as one feature. Then, we calculated the mean value of these copy 

number segment-mean values as a feature value. For end grouping, we incorporated the 

segments with the same end position as one feature. We then calculated the mean value 

of these copy number segment-mean values as a feature value. For no grouping, we 

used the original copy number segments as features. Finally, the gender vector was 

incorporated into the feature vector for each of the three methods. After model training, 

the start grouping method had the best performance. 

Our data acquisition was performed using standard SQL. The program can be described 

in the following steps. 

1. Selected the Copy Number Variation data from “Copy_Number_Segment_Masked” 

table and “Biospecimen” table with the same “sample barcode,” in which the sample 

type is Blood-Derived Normal Sample.  

2. Grouped the data to one row if it had the same start position at the same 

chromosome (start grouping) and counted the frequency of each location.  
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3. Sorted the data by order of frequency of the location. We select the top 30 rows 

from the table we got since most of the samples do not have the location information 

after the 30th row. The output data after this step is shown in Table 1. 

4. From the “Copy_Number_Segment_Masked” table and “Clinical” table, selected the 

cancer data, gender data, and location data whose location information is available 

in Table 1. 

5. Averaged the segment mean values if it is in the same row in Table 3.  

6. Merged chromosome and start position as one unit in the table. Then spread the 

table to generate a feature vector in which each row represents a patient’s 

information (gender, age, segment mean values of different Copy Number Segment). 

The format of a typical feature vector is shown in Table 4. 
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Table 3 Frequencies of copy number segments in different start position 

Row  Chromosome Start position  Frequency  Row  Chromosome Start position  Frequency  

1 6 1011760 8861 16 11 456012 8852 

2 18 326691 8861 17 1 3301765 8844 

3 13 18874255 8861 18 15 23437561 8838 

4 3 2170634 8861 19 X 3236359 8821 

5 14 20033191 8861 20 2 480597 8821 

6 17 1074619 8861 21 16 603333 8821 

7 10 366509 8861 22 7 664936 8565 

8 12 780472 8861 23 5 913983 7221 

9 19 283868 8861 24 5 914118 1640 

10 22 16934932 8861 25 19 30799692 376 

11 4 1059384 8861 26 19 30797211 371 

12 21 13974127 8861 27 13 106732887 365 

13 9 789794 8860 28 13 106731890 360 

14 20 472817 8860 29 21 24216643 348 

15 8 667625 8859 30 7 24000259 348 

 

Using feature vectors as an input, the GBM model produced the probability score of 

getting colorectal cancer. The feature vectors were divided into two parts, a training-

cross validation set and a test set at the ratio of 0.85 to 1. The model was fitted by the 

training-cross validation set, and the results were given by the test set. The model hyper-



37 

parameter setting includes the number of trees M, maximum tree depth P, and the 

number of folds for cross-validation K.  

Table 4. A typical feature vector 

feature sample_barcode (not feature) gender 1_3301765 10_366509 

value TCGA-2V-A95S-10D MALE 9.00E-04 0.0011 

feature 11_456012 12_780472 13_106731890 13_106732887 

value 0 -0.002 NA NA 

feature 13_18874255 14_20033191 15_23437561 16_603333 

value 0.001 -0.0013 0.0031 -6.00E-04 

feature 17_1074619 18_326691 19_283868 19_30797211 

value 0.0022 -0.001 0.0026 NA 

feature 19_30799692 2_480597 20_472817 21_13974127 

value NA 0.006 0.0022 0.0018 

feature 21_24216643 22_16934932 3_2170634 4_1059384 

value NA 0.0024 0.0024 0.0043 

feature 5_913983 5_914118 6_1011760 7_24000259 

value 0.0011 NA 5.00E-04 NA 

feature 7_664936 8_667625 9_789794 X_3236359 

value 0.0045 0.0028 -8.00E-04 -0.0028 
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Throughout implementing the model, we used P = 5, M = 100, K = 10 based on the 

default parameter set of gradient boosting training package according to H2O.ai. 
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3.2.3 Results for Gradient Boosting Machine 

The performance of GBM model evaluation was implemented by ten-fold cross-

validation on public colorectal cancer patient data with copy number variation 

information retrieved from ISB-GCC(48). We evaluated using receiver operating 

characteristic (ROC) curves(53), with the area under the ROC curve (AUC) as the 

evaluation criteria. As illustrated in Figure 9, the GBM model achieved an AUC of 0.8012, 

reflecting an effective prediction performance of the model. 

As illustrated in Figure 10, all the copy number segment that we used as a feature vector 

is shown in the form of “XXX_XXX.” The first part represents the chromosome where the 

copy number segment is located, and the second part represents the start position of 

the copy number segment. The importance of each copy number segment was also 

plotted showing that the copy number segment located on chromosome two has the 

largest effect on the probability of getting colorectal cancer.  

A probability score of getting colorectal cancer was predicted for each patient in the test 

set, and all the patients were sorted at a descending order by the probability score. The 

patients who were diagnosed as colorectal cancer (“ground truth”) and their probability 

score is shown in Table 5. The distribution of the patients who were diagnosed as 

colorectal cancer in the test set is shown in Figure 11. Setting a threshold of the 

probability score for the classification affects the true positive rate and false positive rate 
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significantly. So, we developed a new method to estimate the genomic predictability 

instead of using the accuracy of prediction in the previous study(54). 

 

 

Figure 9 ROC curves of the GBM model. The AUC value of this ROC curve is 0.80, which indicates the 

GBM could efficiently predict the probability score 
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Figure 10 Copy Number Segment Importance. The Y-axis represents the copy number segment start 

position. In “XX_XXXX”, the first number represents the chromosome where the copy number segment 

is located, and the second number represents the start position of the copy number segment. The X-

axis represents the relative importance (the most important feature is set the value of one). 
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Table 5. Probability score of the diagnosed ("ground truth") colorectal cancer patients 

The data above the blue line is the number of patients who are inherited from genome factor in level 1. 

The data above the yellow line is the number of patients who are inherited from genome factor in level 4. 

The data above the green line is the number of patients who are inherited from genome factor in level 6. 

The data above the red line is the number of patients who are inherited from genome factor in level 8. 

 

 

Probability 

score 

Serial 

number 

Probability 

score 

Serial 

number 

Probability 

score 

Serial 

number 

Probability 

score 

Serial 

number 

0.884259 1 0.466803 8 0.460366 9 0.360891 16 

0.337589 19 0.259559 23 0.244251 24 0.243751 25 

0.231916 28 0.189347 40 0.168354 48 0.165799 49 

0.164757 50 0.150394 63 0.146377 66 0.142975 71 

0.13433 74 0.130431 76 0.128506 80 0.122948 84 

0.11156 94 0.108889 99 0.095606 121 0.094155 127 

0.092221 130 0.090953 131 0.085503 141 0.085178 143 

0.080366 148 0.079359 149 0.076258 161 0.066001 192 

0.060698 217 0.057163 234 0.053937 246 0.052 252 

0.051889 254 0.051149 259 0.050043 264 0.0498 265 

0.049429 269 0.049122 273 0.047636 282 0.041251 330 

0.036157 361 0.034876 370 0.02853 439 0.028279 442 

0.01969 543 0.015868 628 0.013698 689 0.011437 756 

0.009948 809 0.00881 854 0.008163 887 0.007749 908 

0.005998 1016 0.005842 1029 0.001515 1272 
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Figure 11 The distribution of the patients who were diagnosed as colorectal cancer in the test set. The 

patients in the test set was ranked by the probability score. Each patient is represented by a line (blue or 

white) in the figure. The blue line represents the patient who were diagnosed as colorectal cancer. The 

white line represents the patients who were not diagnosed as colorectal cancer. 
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3.3 Estimating the fraction of colorectal cancers which are predictable from 

germ line genetics 

People usually estimated the heritability using the method in the literature on model 

fitting(55). Similar to the method, we estimated the predictability of colorectal cancer by 

the method below. After applying the GBM model to the test set data, we get a 

probability score for colorectal cancer in each patient. We then sorted the patient by 

probability in descending order. Each sample s in the test set was given a serial number 

𝑗  according to the order. The probability score of the diagnosed (“ground truth”) 

colorectal cancer patients is shown in Table 6. According to how strictly the colorectal 

cancer is inherited from the genomic factor (Copy Number Variation), we measure the 

predictability in eight levels. The number of patients 𝑁𝐼 who are inherited from genome 

factor in different level can be calculated by the following equation 

𝑁𝐼 = 𝑁𝐶 − (
1

𝑘
) ∗ ∑ 𝐼(𝑗 >  𝑘𝑁𝑇)𝑠 𝜖 𝐶𝑂𝐴𝐷   

Table 6 k values used to set predictability level 

 

 

Where 𝑁𝐶 is the number of patients who were diagnosed as colorectal cancer patients, 

COAD is the set of patients who were diagnosed as colorectal cancer patients, and 𝑁𝑇 

is the total number of patients in the test set. k is a level parameter which varies by level. 

The specific value of k in different levels is shown in Table 4. Thus, the estimation of the 

predictability 𝑝 can be derived from(56) 

level 1 2 3 4 5 6 7 8 

k  8/9  7/8  6/7  5/6  4/5  3/4  2/3  1/2 
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𝑝 =  
𝑁𝐼

𝑁𝐶
 

Figure 11 also represents how we estimated predictability at a different level. We 

estimated the predictability of colorectal cancer in eight different levels, which were 

ranked by how strictly the colorectal cancer was inherited from the genomic factor. The 

results are shown in Figure 12.  

If we only consider whether the inherited genomic factor contributes to colorectal cancer, 

the predictability of colorectal cancer can be represented by the result of level 8. Thus, 

the inherited genomic predictability of colorectal cancer explained by copy number 

variation is estimated to be 78.92% ± 6.40%. On the other hand, heritability, which is 

defined as the proportion of phenotypic variation (𝑉𝑃) that is due to variation in genetic 

values (𝑉𝐺)(55), depend on the predictability significantly. However, the largest twin study 

 

Figure 12 Inherited Genomic predictability in different level. 
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estimated that the heritability of colorectal cancer is 35%(26) and the heritability explained 

by all common SNPs is 7.42%(25). These studies shows that the SNPs explain only a small 

proportion of colorectal cancer heritability. Numerous studies have estimated the 

variance explained by the colorectal cancer SNPs(23),(19). However, the loci they 

identified only explained a small proportion of the heritability. As indicated by Jiao et 

al(25), a large part of the colorectal heritability is explained by other types of heritable 

factors, such as copy number variation. Our study strongly suggests that the copy 

number variation explains a certain portion of colorectal heritability, a factor has been 

ignored by the previous studies. 

 

 

Figure 13 The distribution of the estimated inherited genomic predictability 
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To increase the precision of the heritability estimation, we built the GBM model 100 times 

on 100 randomly divided training-cross validation data. The distribution of the estimated 

inherited genomic predictability is shown in Figure 13. A Shapiro-Wilk normality test 

gives the p-value of 0.5251 which suggests that the predictability data follows a Gaussian 

distribution. Hence, a mean of these predictabilities was calculated to be the last 

estimated predictability.  
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Chapter4 Neuron network in cancer prediction 

4.1 Artificial neural network 

Like the human nervous system, the artificial neural network is a computing system 

composed of numerous neurons. The neural network itself is a complex computing 

algorithm. It can process up to thousands of data as multiple inputs. Such a system could 

be considered as a framework for many different machine learning algorithms to works 

together(57). The framework is not born to be programmed with any task-specific rules. 

It gradually learns from “training examples” to fulfill its functions. For example, In face 

recognition, the system will learn to identify a specific face by analyzing the images of 

human faces in many different angles. Before the neural network starts to learn, it has no 

prior knowledge about the face or any human face information, such as eyes, nose, 

mouth, or any facial details. Instead, It automatically gets this facial detail information 

during the training process. 

The nervous system detects the environmental changes as input, then transmits signals 

to and from a different part of the body, finally generate an output response. Similarly, 

an artificial neural network generates an output response by analyzing the input values. 

Artificial neurons connect the output and input. Connections between artificial neurons 

are like the synapses in a biological brain. These connections are called edges. Each 

artificial neuron could process the signals from thousands of different neurons. Weights 

and bias in the edges would adjust to fit a particular pattern during training. Besides, 
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artificial neurons also have an activation function to filter the signal, such as setting up a 

threshold to only pass the signal crosses the threshold. 

The Inputs of an artificial neural network aggregate a “layer,” called the input layer. The 

neurons which are connected to the input layer aggregate the second layer. Similarly, 

the second layer can be followed by many layers until the output layer. These layers 

between the input layer and the output layer are called hidden layers. Different layers 

may perform different kinds of transformations on their inputs. Figure 14 shows a typical 

artificial neural network. 

 

 

Figure 14 An artificial neural network was composed of groups of neurons. The connections between 

neurons is represented by the dotted line. 
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4.2 Neural network model 

An artificial neuron works the way that a biological neuron model, but it is a mathematical 

model. A single input neuron could be explained in Figure 15(58). The input p is 

multiplied by the weight w and then add bias b to form the summer output 𝑤𝑝 +  𝑏. It 

then goes to an activation function f to finally produce the output a. In terms of 

comparison to the biological neuron, the weights explained by the analogy with the 

strength of synapse, the summer function and activation function explained by the 

 

Figure 15 A single input artificial neuron explained by the analogy with a biological neuron (Jarosz, n.d.) 

The figure above represents the mathematical model of one neuron. The figure below is a biological 

neuron. 
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analogy with the cell body, and the output a explained by the analogy with the signal 

output on the axon.  

Mathematically, the output of a single input neuron can be calculated by: 

𝑎 =  𝑓(𝑤𝑝 +  𝑏) 

Here, the weight w and b are adjustable and will be tuned during the neural network 

training process. The initial values of w and b are set before network training. The initial 

values could also affect the training results. So, setting a proper initial value would be the 

first step in training a neural network. 

Typically, the activation functions are usually nonlinear functions. Different activation 

function may apply to the different problems the artificial neural network is attempting 

to solve. The following are several common activation functions and their shape (Figure 

16.). 

• Logistic/sigmoid/soft step function: 

𝑓(𝑥)  =  𝜎(𝑥)  =  
1

1 + 𝑒−𝑥
  

• Rectified linear unit(ReLU)(59) 

𝑓(𝑥)  =  {
0 𝑓𝑜𝑟 𝑥 <  0
𝑥 𝑓𝑜𝑟 𝑥 ≥  0

 

• Leaky rectified linear unit(Leaky ReLU)(60) 
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𝑓(𝑥)  =  {
0.01𝑥 𝑓𝑜𝑟 𝑥 <  0
𝑥     𝑓𝑜𝑟 𝑥 ≥  0

 

• Randomized leaky rectified linear unit(RReLU)(61) 

𝑓(𝑥)  =  {
𝛼𝑥 𝑓𝑜𝑟 𝑥 <  0
𝑥  𝑓𝑜𝑟 𝑥 ≥  0

 

• Exponential linear unit(ELU)(62) 

𝑓(𝑥)  =  {
𝛼(𝑒𝑥  −  1) 𝑓𝑜𝑟 𝑥 <  0

𝑥          𝑓𝑜𝑟 𝑥 ≥  0
 

Typically, an artificial neuron network has numerous inputs. A neuron with n inputs 

(represented by a one-dimensional matrix P ((𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛 )) (Figure 17.) is shown 

below.  

 

Figure 16 Common activation functions 
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One-dimensional matrix W(𝑤1,1, 𝑤1,2, 𝑤1,3, . . . , 𝑤1,𝑛) and b represent the weights and bias 

for each input. Mathematically, the output a could be expressed as: 

 
Figure 18 A neuron with multiple inputs 

 

Figure 17 A layer of m neurons 
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𝑎 =  𝑓(𝑊𝑃′ +  𝑏). 

Typically, one neuron is not enough for complex computing. So, layers are aggregated 

by multiple neurons. Mathematically, the one-dimensional output A (𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑚) 

from m neurons could be expressed as (Figure 18): 

𝐴 =  𝑓(𝑊𝑃′ +  𝑏) 

However, most artificial neural networks are composed of many layers, especially the 

model used for deep learning. Several thousand layers may aggregate some deep 

learning architecture. For example, the state of the art image recognition model, ResNet, 

may have 1202 layers in its architecture(63). Figure 19 shows a two-layer network. If more 

layers are needed, additional layers should be added correspondingly. Again 

mathematically, it can be expressed as (the weights of the first layer is written as 𝑊1, the 

 

Figure 19  two-layer neural network 
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weights of the second layer is written as 𝑊2, the bias of the first layer is written as 𝑏1, 

the bias of the second layer is written as 𝑏2, the activation function of the first layer is 

written as 𝑓1, the activation function of the second layer is written as 𝑓2) 

𝑎2  = 𝑓2(𝑊2𝑓1(𝑊1𝑝 + 𝑏1)  +  𝑏2) 
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4.3 Artificial neural network learning 

In cancer prediction, we mostly use an artificial neural network for supervised learning 

problems. For example, a neural network might be used for inferring the possibility of 

getting colorectal cancer. After seeing a lot of genetic data with a particular diagnosis for 

many patients, the artificial neural network needs to determine the probability of getting 

colorectal cancer accurately. So, in this chapter, we are about to focus on the learning 

process in supervised learning.  

In most supervised learning problems, a particular pattern will be given a particular label 

to identify. The neural network needs to predict the label during the learning process, 

where the label must be a class label or a real number(64). In terms of cancer predicting 

problems, the patterns to be labeled are positive diagnosis and negative diagnosis. 

Usually, numerical number one is labeled to be the positive diagnosis and zero is labeled 

to be the negative diagnosis. The learning process for supervised learning problems has 

many significant advantages over a hard-wired system(64). The first is that it could save 

a significant amount of time for designing the hard-wired system. The second is that it 

could efficiently utilize the previous practical experiences through the learning process. 

Besides, it could be more precise for problems in which the environment often changes.  

The cancer prediction problem is a typical binary classification problem, which means 

that the neural network needs to calculate the output either 0 or 1. As introduced in the 

previous section, a particular patient developed cancer from many complicated patterns. 

These patterns are unknown to us, at least we can not build a specific mathematic model 
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based on the potential cancer risks. The method by which the neural network adjust the 

parameters to fit the patterns constitutes the learning algorithms. So, the learning 

algorithms change the neural network data in response to the training data. After this 

learning process, we could assume that the model learns the patterns behind so many 

cancer risks.  

The training data consist of paired data in the form of (x, y), where x is a specific patient’s 

genetic copy number variation data, the input of the neural network ( 𝑥 ∈  𝑋), and y is 

the diagnosis, the real fact (𝑦 ∈  𝑌). In classification problems, 𝑌 =  {0, 1}. We assume 

that each patient’s data is independent of others. The prediction of the neural network 

follows a probability distribution. The distribution reflects the probability that the patterns 

will be labelled in a particular way based on the cancer risk factors.  

To elaborate on the training process mathematically and precisely, we assume that the 

model is a function of X and the output of the model is 𝑓(𝑥). A loss function 𝑙(𝑓(𝑥), 𝑦), 

also called cost function, reflects the differences between the estimation 𝑓(𝑥) and the 

actual diagnosis y. Let F represents the set of functions 𝑓𝑤,𝑏(𝑥) that parametrized by 

weight vector w and bias vector b. As descibed above, the objective of the tranining 

process is to find a model function 𝑓 that could minimize the loss averaged on the 

training samples. In this study, we use gradient descent as the optimization method in 

the tranining process. 
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Gradient descent is an optimization algorithm that could efficiently find the local 

minimum of a function step by step. In each iteration, the algorithm takes a step 

proportional to the negative of the gradient towards the local minimum. Here, the 

function is the loss function, and the parameters (weights w and bias b) get updated each 

step. Mostly, gradient descent and its variations play a significant role in the machine 

learning process today. We can adjust the step size for the learning process to reach the 

local minimum as much as possible. The size of each step is called the learning rate. With 

a high learning rate, we can reach the local minimum faster but may cross over the 

minimum due to the big step we made. With a low learning rate, we can make sure every 

step is towards the local minimum since we update the gradient very frequently. Though 

a low learning rate could help each step moves precisely, it increases the cost of 

computing space and time. 

Because we fix the input X in training and update the parameters each iteration, the loss 

function could be rewritten as a function of weights w and bias b. Moreover, in the most 

fundamental gradient descent method, we calculate the average loss for the whole 

training sample. Here we use a one layer neural network model to make the 

representation more clear (the derivation of the gradient for multiple layers will be 

discussed in backpropagation). So, we give the loss function in mean square error: 

�̂�(𝑤, 𝑏)  =  
1

𝑁
∑(𝑦𝑖  −  (𝑤𝑥𝑖  +  𝑏))2

𝑁

𝑖 = 1
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, Where N is the total number of patients in the training set. So, the gradient can be 

calculated as: 

𝐹 ′̂(𝑤, 𝑏) =  

[
 
 
 
𝜕�̂�

𝜕𝑤
𝜕�̂�

𝜕𝑏 ]
 
 
 

 =  

[
 
 
 
 
 1

𝑁
∑ −2𝑥𝑖(𝑦𝑖  − (𝑚𝑥𝑖  +  𝑏))

𝑁

𝑖 = 1

1

𝑁
∑ −2(𝑦𝑖  −  (𝑚𝑥𝑖  +  𝑏))

𝑁

𝑖 = 1 ]
 
 
 
 
 

 

At the kth iteration, the weight w and b can be updated as:  

𝑤𝑘+1  =  𝑤𝑘  −  𝛾
𝜕�̂�

𝜕𝑤
 

 
Figure 20 A brief illustration of gradient descent. The figure represents a loss function in a topographic 

map. The arrow towards the center represents the learning process to the local minima. 
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𝑏𝑘+1  =  𝑏𝑘  −  𝛾
𝜕�̂�

𝜕𝑏
 

, Where 𝛾 is the learning rate. We can adjust the total number of iteration and the 

learning rate until find the minimum most efficiently. When the function f is convex, the 

local minimum is also the global minimum. In this case, the algorithm also finds the 

parameters that converge to the global minimum. The learning process of a gradient 

descent algorithm could be illustrated in Figure 20(65).  

Other variations of gradient descent were also applied to this study, such as mini-batch 

gradient descent, Stochastic gradient descent, gradient descent with momentum, Adam 

and Adagrad. The basic idea of these algorithms is similar. We applied as much as 

possible learning algorithms to make sure we get a more precise model. 
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4.4 Backpropagation 

The gradient calculation is a significant step for neural network learning. From the last 

section, the gradient of a single layer neural network can be easily computed. However, 

the gradient calculation in multiple layer neural network with nonlinear activation 

function is more complicated.  

Consider a multiple layer neural network shown in Figure 21. Still, applying the gradient 

descent of a mean square loss function for the mth layer weight and bias in the kth 

iteration: 

𝑤𝑖,𝑗
𝑚(𝑘 +  1) =  𝑤𝑖,𝑗

𝑚(𝑘)  −  𝛾
𝜕�̂�

𝜕𝑤𝑖,𝑗
𝑚 

𝑏𝑖
𝑚(𝑘 +  1) =  𝑏𝑖

𝑚(𝑘)  −  𝛾
𝜕�̂�

𝜕𝑏𝑖
𝑚 

 

Figure 21 Multiple layer neural network 
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Here, the partial derivative of weights and bias in hidden layers are indirect to the loss 

function. So we will use the chain rule to calculate these derivatives(58). 

𝑎2  = 𝑓2(𝑊2𝑓1(𝑊1𝑝 + 𝑏1)  +  𝑏2) 

For a single neuron in the mth layer, we have 

𝑓𝑚(𝑛𝑖
𝑚)  =  𝑓( ∑ 𝑤𝑖,𝑗

𝑚𝑎𝑗
𝑚−1  +  𝑏𝑖

𝑚

𝑁𝑚−1

𝑗=1

) 

, Where 𝑁𝑚−1 is the number of neurons of the last layer. 𝑎𝑗
𝑚−1is the jth output from the 

last layer. Then we compute the derivative using the chain rule: 

𝜕�̂�

𝜕𝑤𝑖,𝑗
𝑚  =  

𝜕�̂�

𝜕𝑛𝑖
𝑚 ×

𝜕𝑛𝑖
𝑚

𝜕𝑤𝑖,𝑗
𝑚 

𝜕�̂�

𝜕𝑏𝑖
𝑚  =  

𝜕�̂�

𝜕𝑛𝑖
𝑚 ×

𝜕𝑛𝑖
𝑚

𝜕𝑏𝑖
𝑚 

Therefore, we have the second term: 

𝜕𝑛𝑖
𝑚

𝜕𝑤𝑖,𝑗
𝑚  =  𝑎𝑗

𝑚−1 

𝜕𝑛𝑖
𝑚

𝜕𝑏𝑖
𝑚  = 1  

To simplify the gradient equation, we define the sensitivity: 
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𝑠𝑖
𝑚  ≡  

𝜕�̂�

𝜕𝑛𝑖
𝑚 

Written in matrix form, 

𝐬𝒎 ≡ 
𝜕�̂�

𝜕𝐧𝒎
=

[
 
 
 
 
 
 
 

𝜕�̂�

𝜕𝑛1
𝑚

𝜕�̂�

𝜕𝑛2
𝑚

⋮
𝜕�̂�

𝜕𝑛𝑁𝑚
𝑚 ]

 
 
 
 
 
 
 

 

Then the gradient descent equation could be written as: 

𝑤𝑖,𝑗
𝑚(𝑘 +  1) =  𝑤𝑖,𝑗

𝑚(𝑘)  −  𝛾𝑠𝑖
𝑚 𝑎𝑗

𝑚−1 

𝑏𝑖
𝑚(𝑘 +  1) =  𝑏𝑖

𝑚(𝑘)  −  𝛾𝑠𝑖
𝑚 

Now, the calculation of 𝑠𝑖
𝑚 becomes the only thing left. The main idea of the process is 

that we compute the sensitivity of the mth layer from the sensitivity of the (m + 1)th layer, 

which explain the term backpropagation. From the chain rule, we have: 

𝑠𝑗
𝑚  ≡  

𝜕�̂�

𝜕𝑛𝑗
𝑚 = 

𝜕𝑛𝑖
𝑚+1

𝜕𝑛𝑗
𝑚 × 

𝜕�̂�

𝜕𝑛𝑖
𝑚+1 = 

𝜕𝑛𝑖
𝑚+1

𝜕𝑛𝑗
𝑚 × 𝑠𝑗

𝑚+1  

Where, 

𝜕𝑛𝑖
𝑚+1

𝜕𝑛𝑗
𝑚 = 

𝜕(∑ 𝑤𝑖,𝑙
𝑚+1𝑎𝑙

𝑚 + 𝑏𝑖
𝑚+1)𝑁𝑚−1

𝑗=1

𝜕𝑛𝑗
𝑚 = 𝑤𝑖,𝑗

𝑚+1
𝜕𝑎𝑗

𝑚

𝜕𝑛𝑗
𝑚 
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= 𝑤𝑖,𝑗
𝑚+1

𝜕𝑓𝑚(𝑛𝑗
𝑚)

𝜕𝑛𝑗
𝑚  

Then, apply the equation above to the chain rule: 

𝑠𝑗
𝑚 = 𝑤𝑖,𝑗

𝑚+1
𝜕𝑓𝑚(𝑛𝑗

𝑚)

𝜕𝑛𝑗
𝑚 𝑠𝑗

𝑚+1 

Written in matrix form, we have: 

𝜕𝐧𝒎+𝟏

𝜕𝐧𝒎
 ≡  

[
 
 
 
 
 
 
 
𝜕𝑛1

𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛𝑖
𝑚+1

𝜕𝑛2
𝑚 ⋯

𝜕𝑛1
𝑚+1

𝜕𝑛𝑁𝑚
𝑚

𝜕𝑛2
𝑚+1

𝜕𝑛1
𝑚

𝜕𝑛2
𝑚+1

𝜕𝑛2
𝑚 ⋯

𝜕𝑛2
𝑚+1

𝜕𝑛𝑁𝑚
𝑚

⋮
𝜕𝑛𝑁𝑚+1

𝑚+1

𝜕𝑛1
𝑚

⋮
𝜕𝑛𝑁𝑚+1

𝑚+1

𝜕𝑛2
𝑚

   ⋮

⋯
𝜕𝑛𝑁𝑚+1

𝑚+1

𝜕𝑛𝑁𝑚
𝑚 ]

 
 
 
 
 
 
 

 

= 𝐖𝑚+1�̇�𝑚(𝐧𝑚) 

Where  

�̇�𝑚(𝐧𝑚) =  

[
 
 
 
 
 
 
 
𝜕𝑓𝑚(𝑛1

𝑚)

𝜕𝑛1
𝑚 0 ⋯ 0

0
𝜕𝑓𝑚(𝑛2

𝑚)

𝜕𝑛2
𝑚 ⋯ 0

⋮
0

⋮
0

   ⋮

⋯
𝜕𝑓𝑚(𝑛𝑁𝑚

𝑚 )

𝜕𝑛𝑁𝑚
𝑚 ]

 
 
 
 
 
 
 

 

Finally, the sensitivity 𝐬𝒎 can be written as: 

𝐬𝒎 = 
𝜕�̂�

𝜕𝐧𝒎
= (

𝜕𝐧𝒎+𝟏

𝜕𝐧𝒎
)

𝑇
𝜕�̂�

𝜕𝐧𝒎+𝟏
= �̇�𝑚(𝐧𝑚)(𝐖𝑚+1)𝑇

𝜕�̂�

𝜕𝐧𝒎+𝟏
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= �̇�𝑚(𝐧𝑚)(𝐖𝑚+1)𝑇𝐬𝒎+𝟏 

From the equation above, the 𝐬𝒎 follows the backpropagation rule (from the last layer 

to the first layer). Now, we finish the calculation of the gradient of each parameter. Apply 

it to the gradient descent equation, one iteration of the neural network learning process 

is finished. 
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Chapter5 Wide model for colorectal cancer prediction  

5.1 Wide model 

The word “wide” in the wide model refers to a large number of inputs with a single layer 

neural network architecture. In past decades, there were so many researches on studying 

which model could do better on various problems. However, no particular model could 

always perform well in all the tasks. In recent years, deep neural networks have been 

shown state-of-the-art results for many problems. For example, Convolutional neural 

network performs well in image recognition problems; Recurrence neural network 

performs well in natural language processing. In these situations, networks with multiple 

layers could beat shallow networks easily(66). The outperformance of deep architectures 

makes it popular in machine learning literature. However, the algorithm for deep 

architecture often relies on the number of epochs, learning rate, batch size, etc. Tuning 

these parameters can be tricky in training and could affect the performance significantly. 

Moreover, multiple layer networks have a better performance with the large training 

dataset. However, in cancer prediction research, it is hard to acquire large dataset 

because of the unavailability of enough patients. So, in this study, we tried many 

architectures and tested its performance. 

For small scale classification problems, wide model (generalized linear model) are widely 

used because it is simple to be implemented and easy to interpret. So we first test the 

performance of wide model in this study. 
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5.2 Feature engineering  

5.2.1 Dense feature and sparse feature 

In mathematics, “dense” means non-zero numbers in a matrix and “sparse” means zero 

numbers in a matrix. If a matrix consists of mostly zeros and few non-zero numbers, we 

call it a sparse matrix. On the contrary, if a matrix consists of mostly non-zero numbers 

and few zeros, we call it a dense matrix. In this study, if the genetic data from a patient is 

missing, we replace it with zero in the matrix. So, the copy number variation data could 

be partially dense and partially sparse in the feature matrix because many segment-mean 

values for a particular segment was missing in the original dataset.  

As the feature processed in Gradient Boost Machine, feature vectors were extracted by 

each patient. In machine learning, a large scale of sparse data could cause many 

problems. It is space consuming, time-consuming, and make neural network hard to 

learn at the beginning of the training process. So, we process the dense feature and 

dense feature separately in some architecture in this study. Because we do not do sparse 

feature embedding in wide architecture, an input vector which is concated by 25 dense 

features and 250 sparse features are used for wide model training. Table 7 shows a typical 

feature vector used for wide neural network training. 
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Table 7. A typical feature vector for the wide model 

feature sample_barcode (not feature) gender 1_3301765 11_456012 

value TCGA-2V-A95S-10D MALE 9.00E-04 0 

feature 10_366509 12_780472 16_603333 13_106732887 

value 0.0011 -0.002 -6.00E-04 0 

feature 13_18874255 14_20033191 15_23437561 13_106731890 

value 0.001 -0.0013 0.0031 0 

feature 17_1074619 18_326691 19_283868 19_30797211 

value 0.0022 -0.001 0.0026 0 

feature 21_13974127 2_480597 20_472817 19_30799692 

value 0.0018 0.006 0.0022 0 

feature 4_1059384 22_16934932 3_2170634 21_24216643 

value 0.0043 0.0024 0.0024 0 

feature 5_913983 X_3236359 6_1011760 7_24000259 

value 0.0011 -0.0028 5.00E-04 0 

feature 7_664936 8_667625 9_789794 5_914118 

value 0.0045 0.0028 -8.00E-04 0 

◼ Features on the left side of the blue line are the dense feature 

◼ Features on the right side of the blue line are the sparse feature. 

 

 



69 

5.3 Wide model architecture 

The whole architecture was built based on Tensorflow framework(67). The architecture is 

built based on the following steps: 

1. Build a function of embedding layers with weights and bias.  

2. Build a function of fully connected layers with weights, bias, and activation function. 

3. Set the number of neurons for the first layer, and distribute “placeholder” for the 

neurons 

4. Connect the neurons with the embedding layer 

 
Figure 22 Wide model architecture. Each node in the figure represents a neuron. The blue node 

represents the neuron with sparse feature, and the orange node represents the neuron with dense 

features 
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5. The outputs of the embedding layer go through a sigmoid function 

6. Set the regularization coefficient for the model. 

7. Set loss function at the end of the architecture with regularization.  

Figure 22 shows the overall architecture of the wide model and Figure 23 shows the flow 

diagram of the wide model in Tensorflow. 

 

 
Figure 23 Flow diagram of the wide model. Each box in figure represents a data processing center. After 

all neuron data (crossEntropy, auc, pre_out) is processed, they are sent to the training processor to train 

the model. 
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5.4 Wide model training 

The training process was also implemented on Tensorflow framework(67): 

1. Randomly sort the samples to make sure patients who diagnosed with cancer not 

close to each other. 

2. Divide the training dataset with several batches. 

3. Fit the copy number variation data and diagnosis into the “placeholder.” 

4. Start training by optimizing the loss function with different regularization coefficient 

using gradient descent. 

5. Report evaluation matrix every iteration. 
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5.5 Results of wide model 

In this study, we choose Area Under the Curve (AUC) to be the evaluation criteria. Figure 

24 shows the learning curve of the best performance AUC on the test set. In the wide 

model, we have 25 dense inputs and 250 sparse inputs and trained with 10000 iterations 

and a 0.01 learning rate. 

The learning curve shows that the model was not overfitting so much since the AUC value 

when the learning curve converges is similar to the value on the test dataset. Figure 25 

and Table 8 showed the AUC value on the test dataset when we applied different L2 

regularization coefficient. There is no significant change between differentnt L2 

regularization coefficient, which also proves that the wide model was not overfitting. 

These results are reasonable because the wide model is a relatively small-scale model 

and it is hard to overfit. 

Table 8 AUC performance on test dataset with different regularization coefficient 

Regularization coefficient 1 2 3 4 5 

l2=0 0.779782 0.754973 0.721669 0.747027 0.758383 

l2 = 0.01 0.729618 0.768639 0.773171 0.784229 0.719601 

l2 = 0.03 0.752169 0.711095 0.729579 0.726009 0.771395 

l2 = 0.05 0.782318 0.731056 0.742412 0734613 0.723894 
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Figure 24 The learning curve of the wide model. The X-axis represents the training iterations (the 

training time) and the Y-axis represents the AUC value. We can see the model is learning with the AUC 

value going up as training time goes on. 
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To better understand the learning processing during training, the parameters in the 

neural network was plotted using Tensorboard(67). Figure 26 shows the change of the 

weight distributions over time for each neuron in a histogram visualization. The x-axis is 

the value of the weights, Y-axis is the number of training iterations (training time), and 

the Z-axis shows how the weight value densely clustered in the weight value space. For 

example, each X-Z place shows a weight histogram for each iteration. The diagram is like 

an audio waveform spread out over time and reflects the trend of the parameter change 

during training(67). Figure 27 shows the change in weight distribution over time in a 

different view. The palest line shows the maximum value of the weights in each iteration. 

With the color goes darker, the line represents the value that covers 90th percentile 

weights, 60th percentile weights, and so on. A diagram in this view shows how densely 

clustered for a parameter during training over time. Similarly, Figure 28 shows the change 

 
Figure 25 AUC performance on test dataset with different regularization coefficient. Different color on 

the bar represents the different model training with the same setting. There is no significant difference 

between different regularization coefficient.  
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of bias over time. The distribution could not be plotted since the wide model is a single 

layer model, and it just has one bias for each iteration. 

 

 

 

 

 

 
Figure 26 Wave plot of the weight distribution changes over time. X-axis represents the parameter 

value, and the Y-axis represents the training iteration (training time). Each cross section represents the 

parameter distribution in each training iteration. We can monitor the value shift over time. 
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The weights spread out over time in the diagram. The weights were set to be very close 

 

Figure 27 Cluster plot of the weight distribution changes over time. Y-axis represents the parameter 

value, and the X-axis represents the training iteration (training time). Darker color represents more 

parameters falling within the darker area. The parameters is spreading out during training. 

 

Figure 28 Bias change over time. X-axis represents the bias value, and the Y-axis represents the training 

iteration (training time). With the training goes on, the bias decrease over time.  
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to zero initially. So, they were clustered in the beginning. Since the model is learning 

relatively well, the distribution spread out gradually and smoothly. Moreover, the bias 

decrease over time from the diagram, which also supports that the model learns the 

pattern smoothly. 
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Chapter6 Deep model for colorectal cancer prediction 

6.1 Deep model 

The word “deep” in the deep model refers to the multiple layers of neural network 

architecture. The input data is transformed through all the layers. As mentioned before, 

the deep model is widely used in many machine learning problems. The deep model can 

perform well with complex non-linear relationships. A deep model could be expressed 

as a complex combination of many single layer “wide model.” The extra layers can make 

the model compute the hidden features from lower layers, model complex data with less 

computing time and space than shallow architectures. Thus, the deep model can be able 

to process more complex data the wide model(68). 

However, the deep model tends to be overfitting because the extra layers allow the 

model to do some “extra jobs” for the rare dependencies in the training data. In the 

training process, a deep model requires the adjustment of many training parameters, 

such as the number of layers, the number of neurons in the hidden layer, and the 

coefficient of regularization. In this study, we compared the results on the test dataset 

with different training hyper-parameters.  

The feature engineering in deep modeling follows the same process as the wide model 

in this study. 
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6.2 Deep model architecture 

The whole architecture was also built based on Tensorflow framework(67). The 

architecture is built based on the following steps: 

1. Build a function of embedding layers with weights and bias.  

2. Build a function of fully connected layers with weights, bias, and activation function. 

3. Set the number of layers of the model. 

4. Set the number of neurons for the first layer, and distribute “placeholder” for the 

neurons 

5. Set the number of neurons for the hidden layers. 

6. Connect the input with the fully connected layer with activation functions 

7. Connect the neurons in hidden layers with fully connected layers with activation 

functions. 

8. Set the regularization coefficient for the model. 

9. Set loss function at the end of the architecture with regularization. 

10. Figure 29 shows the overall architecture of the deep model and Figure 30 shows the 

flow diagram of a four layer deep model in Tensorflow. 
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Figure 30 Deep model architecture. Each node in the figure represents a neuron. The blue layer 

represents the input layer and output layer. The orange layer represents the hidden layer. The 

connections between layers is shown with dotted line. The connections between hidden layers could go 

through multiple layers. 

 

Figure 29 Flow diagram of the wide model. Each box in figure represents a data processing center. After 

all neuron data (layers, crossEntropy, auc, preoutput) is processed, they are sent to the training 

processor to train the model. 
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6.3 Deep model training 

The training process was also implemented on Tensorflow framework(67): 

1. Randomly sort the samples to make sure patients who diagnosed with cancer not 

close to each other. 

2. Divide the training dataset with several batches. 

3. Build the overall architecture with hidden layers. 

4. Feed the copy number variation data and diagnosis into the “placeholder.” 

5. Computed the value for neurons in each layer. 

6. Start training by optimizing the loss function with different regularization coefficient 

using gradient descent. 

7. Report evaluation matrix every iteration. 

8. Repeat the process above with different network architectures. 
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6.4 Results of deep model 

The Area Under the Curve (AUC) was also used to be the evaluation criteria for the deep 

model. Figure 33 shows the learning curve of the best performance AUC on the test set. 

In the deep model, we have 25 dense inputs and 250 sparse inputs and trained with 500 

iterations and a 0.01 learning rate. The deep model was trained with fewer iterations than 

the wide model because the model is prone to overfitting. A smaller number of iterations 

could decrease the probability with which the model learns the rare dependencies. 

The learning curve shows that the model was overfitting since the AUC value when the 

learning curve converges is much larger than the value on the test dataset. Table 9 and 

Figure 32 showed AUC value on the test dataset when we applied different network 

architecture. The four hidden layer architecture with a gradually decreasing number of 

neurons perform best in this model. Table 10 and Figure 31 showed AUC value on the 

test dataset when we applied the regularization coefficient. The regularization did not 

work very well, probably because the available patient sample data was too small to avoid 

the deep model to learn rare dependencies.  

Table 9 AUC performance on test dataset with different network architecture 

Network architecture 1 2 3 4 5 

250-256-128-64-32 0.663593 0.690123 0.628179 0.682243 0.671184 

250-256-128-32-32 0.604324 0.583023 0.618644 0.560698 0.632144 

250-256-128-32 0.584442 0.603061 0.607788 0.508004 0.610845 
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Table 10 AUC performance on test dataset with different regularization coefficient 

Regularization coefficient 1 2 3 4 5 

l2 = 0 0.663539 0.690122 0.628185 0.682234 0.671178 

l2 = 0.01 0.619053 0.685714 0.68335 0.641879 0.698381 

l2 = 0.2 0.623711 0.694759 0.659038 0.680681 0.640031 

 

 
Figure 32  AUC performance on test dataset with different network architecture. The number in each 

architecture “xx-xx-xx-xx” represents the number of nodes in each layer. 
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Figure 31 AUC performance on test dataset with different regularization coefficient. There is no 

significant difference between different regularization coefficient. Different color on the bar represents 

the different model training with the same setting. 
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Figure 33 The learning curve of the deep model. The X-axis represents the training iterations (the 

training time) and the Y-axis represents the AUC value. We can see the model is learning with the AUC 

value going up as training time goes on. 
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Figure 34 Cluster plot of the weight distribution, bias distribution, and activation distribution changes 

over time. Y-axis represents the parameter value, and the X-axis represents the training iteration 

(training time). Darker color represents more parameters falling within the darker area. The parameters is 

spreading out during training. 
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Figure 35 Cluster plot of the weight distribution, bias distribution, and activation distribution changes 

over time in deep model. X-axis represents the parameter value, and the Y-axis represents the training 

iteration (training time). Each cross section represents the parameter distribution in each training 

iteration. We can monitor the value shift over time. 
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Figure 34 shows the cluster plot of the weight distribution, bias distribution, and 

activation distribution changes over time. Figure 35 shows the wave plot of the weight 

distribution, bias distribution, and activation distribution changes over time. The first four 

rows in these two figures showed the distributions of the parameters in the four hidden 

layers. The last row in these two figures showed the distribution of the parameter in the 

last layer, which is similar to the diagram of the wide model.  

The relatively smooth wave plot and the smooth learning curve prove the model was not 

broken. However, the concave at the 100th iteration reflects the abnormal learning 

occurred. This concave could explain the deep model was learning the rare dependencies 

after the 100th iteration, which probably cause the overfitting of the deep model. 

However, the training with only 100 iterations was also performed, but the AUC 

performance does not have much improvement.  
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Chapter7 Dense-sparse model for colorectal cancer prediction 

7.1 Dense-sparse model 

In the cancer prediction study, the copy number variation data for many segments from 

a patient can be unavailable. This situation is very usual in the TCGA dataset, which causes 

the data used for training very sparse. As mentioned before, very sparse training data 

can cause many problems for neural network training. Also, the deep model and wide 

model do not take the low-order or high-order feature interactions into consideration. 

However, in a real situation, gene segments could interact with each other and affect the 

traits together. By introducing the feature interactions into neural network architecture, 

the model could “predict” the unavailable features using the interactions it learned during 

training. In this section, we show an end-to-end learning model that could incorporate 

feature interactions to deal with the sparse copy number variation data. 

The critical problem here is to model the feature interactions effectively since many 

interactions are hidden in the complex dataset, which could only be identified by machine 

learning automatically. Even some of the genetic interactions between gene segments 

could be determined by experts, but it could be a massive workload, especially when the 

number of features is large. Factorization Machines(69) was designed for feature 

interactions by an inner product of latent vectors. DeepFM(70) combined deep neural 

networks with factorization machine and showed promising results on the large sparse 

dataset. In this study, a dense-sparse model is reported based on the inner product 

theory to deal with the feature interactions. 
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The dense-sparse model processes the dense features and sparse features separately 

first and combines them later to go through a deep neural network. Figure 36 shows the 

overall architecture of the model. The dense features go through a deep neural network 

and output a fixed size vector. The sparse features divide into several segments first. Each 

segment goes through an embedding layer and output a vector with the same size of 

the vector that output from the dense feature. Then, pairwise dot products by the 

previous outputs were concated to a large vector (Figure 37). During this process, the 

interactions between features are incorporated into the model. This large vector then 

goes through another deep neural network to predict the final results. Figure 38 shows  

 

 
Figure 36 Dense-sparse model architecture. Each node in the figure represents a neuron. The blue 

nodes together represent network which process the dense features. The orange nodes together 

represent the network which process the sparse features. The green nodes together represent the 

network which process the data after pairwise dot product and concat.  
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The flow chart after the vectors concated together (the whole flow chart is sophisticated 

so only the latter part of the graph is shown here). The figure shows the vector pairwise 

dot and concat process. 

The whole architecture was also built based on Tensorflow framework(67). The 

architecture is built based on the following steps: 

1. Build a function of embedding layers with weights and bias.  

2. Build a function of fully connected layers with weights, bias, and activation function. 

3. Set the number of layers for the dense features, sparse features, and concat vector. 

 
Figure 37 Vector pairwise dot and concat process. The dot product operation represents the dot 

product of the same size vector. The concat operation represents the connection of each vector in the 

first axis. 
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4. Set the number of neurons for each layer, and distribute “placeholder” for the 

neurons 

5. Connect the dense input with the fully connected layer with activation functions 

6. Connect the sparse input with the fully embedding layer. 

7. Connect the neurons in hidden layers for all the architecture. 

8. Set the regularization coefficient for the model. 

9. Set loss function at the end of the architecture with regularization. 
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7.2 Dense-sparse model training 

The training process was also implemented on Tensorflow framework(67): 

1. Randomly sort the samples to make sure patients who diagnosed with cancer not 

close to each other. 

2. Divide the training dataset with several batches. 

3. Build the overall architecture with hidden layers. 

4. Feed the sparse features to the input “placeholder” for the sparse network. 

5. Feed the dense features to the input “placeholder” for the dense network 

6. Computed the value for neurons in each layer. 

7. Start training by optimizing the loss function with different regularization coefficient 

using gradient descent. 

8. Report evaluation matrix every iteration. 

9. Repeat the process above with different network architectures. 
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7.3 Results of dense-sparse model 

The Area Under the Curve (AUC) was also used to be the evaluation criteria for the dense-

sparse model. Figure 39 shows the learning curve of the best performance AUC on the 

test set. In the dense-sparse model, the 25 dense inputs go through a neural network 

with one hidden layer (16 neurons) and output a vector of fixed length 16. The 250 sparse 

inputs are divided into five fields. Each field goes to an embedding layer and outputs a 

vector of fixed length 16. After pairwise dot and concat, the long vector goes through a 

neural network with two hidden layers, which has 128 neurons and 16 neurons 

respectively. The model was trained with 1000 iterations and a 0.01 learning rate. A 

0.703624 AUC was reported and cannot be improved by changing the architecture or 

the regularization coefficient.  

The learning curve also shows that the model was overfitting since the AUC value when 

the learning curve converges is much larger than the value on the test dataset. Figure 40 

shows the cluster plot of the weight distribution of each layer, bias distribution of each 

layer, dense activation, and dot product distribution changes over time. Figure 41 shows 

the wave plot of the weight distribution of each layer, bias distribution of each layer, 

dense activation, and dot product distribution changes over time. 
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Figure 38 The learning curve of the dense-sparse model. The X-axis represents the training iterations 

(the training time) and the Y-axis represents the AUC value. We can see the model is learning with the 

AUC value going up as training time goes on. 
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Figure 39 Cluster plot of the weight distribution, bias distribution, and activation distribution changes in 

dense-sparse model over time. Y-axis represents the parameter value, and the X-axis represents the 

training iteration (training time). Darker color represents more parameters falling within the darker area. 

The parameters are spreading out during training. 
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The relatively smooth wave plot and the smooth learning curve prove the model was not 

broken. However, the abnormal curve of the first overall layer and the pre-output layer 

shows that the model is probably overfitting. From the wave plot, the distribution of the 

 
Figure 40 Cluster plot of the weight distribution, bias distribution, and activation distribution changes 

over time in dense-sparse model. X-axis represents the parameter value, and the Y-axis represents the 

training iteration (training time). Each cross section represents the parameter distribution in each 

training iteration. We can monitor the value shift over time. 
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parameters tends to spread out, which may reflect the model are learning rare 

independencies. Especially, the wave plot of the bias in pre-output shows a significant 

abnormal shape, which potentially indicates that the model is significantly overfitting at 

the end of the training. 

 

 

 

. 
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Chapter8 Pairwise model for colorectal cancer prediction 

8.1 Pairwise model in learning to rank 

Learning to rank is a concept from a machine learning system. Traditional machine 

learning problems predict a single instance at a time. For example, we feed all the 

features associated with copy number variation from a single patient in the previous 

section. The object of traditional machine learning is to estimate a numerical score for 

that single instance. However, learning to rank can solve problems in several instances. 

The object of learning to rank is to predict an order for these instances. Especially, when 

applying to two instances, it calculates the “distance” between the two instances.  

This concept of calculating the similarity can usually be found in image recognition. 

Traditionally, researchers model the image similarity by category level(71)(72). Two 

images are considered to be similar if they are from the same category. However, this 

method has limitations on distinguishing images in the same category. Another way to 

model the image similarity is to extract hidden features like SIFT(73) and HOG(74). The 

success of these methods highly depends on the features extracted. Recently, A deep 

learning model for learning the Fine-grained image similarity was reported(75). The deep 

learning model could be able to learn the hidden features jointly and has a good 

performance on image similarity ranking. Instead of calculating the similarity between 

images, we calculate the similarities of genetic data (copy number variation) between two 

patients using the triplet loss(75) in this study.  
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The model takes two patients’ data as input and calculates the similarity between the two 

patients. In this study, we set the one patient as a positive sample (patient who is 

diagnosed with cancer) and the other patient as a negative sample (patient who is not 

diagnosed with cancer) as shown in Figure 42 a). A typical feature vector is shown in 

Figure 42 b). If the first patient is a positive sample, the label 𝑙 of this feature vector is 

set to be one. If the second patient is a positive sample, the label 𝑙 of this feature vector 

is set to be zero.  

We define the model score the first patient as 𝑆1, the second patient as 𝑆2. Then we 

define the rank loss function for training as: 

𝑙(𝑝1, 𝑝2) = 𝑚𝑎𝑥 {0,𝑚 + 𝑙 ∗ (𝑆2 − 𝑆1)} 

Where 𝑝1 and 𝑝2 are the genetic data from the patient pair, 𝑚 is the margin that the 

ideal smallest difference of the score could be, 𝑙 is the label of the feature vector. Using 

 

Figure 41 Sample data pairs used for training. Figure 42 a) shows two patients’ genome, one diagnosed 

as colorectal cancer, the other did not. Figure 42 b) shows two typical feature vectors fed into the 

pairwise model. 
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the rank loss here, a model to calculate the similarity of the genetic data is built as Figure 

43. Figure 44 shows the data flow chart in Tensorflow(67). 

 

 

Figure 42  Basic architecture for a pairwise model. One patient’s data from the input feature vector go 

through the anchor network, another patient’s data from the input feature vector go through the mirror 

network. After a sigmoid function, the scores S_1 and S_2 
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The sub neural network in Figure could be any forms. From the results in the previous 

section, the wide model performs best in our study since it is not too complicated and 

not overfitting. So, the wide model is used as the sub neural network in the pairwise 

model.  

As the feature processed in Gradient Boost Machine, a feature vector for each patient 

was extracted by each patient. In the pairwise model, we do an extra step to pair the 

 

Figure 43  Flow diagram for pairwise model (anchor_1 refer to mirror in Tensorflow). Anchor and 

anchor_1 represent two identical neural networks with different input data. Anchor is fed with positive 

data and anchor_1 (mirror) is fed with negative sample. All the data was calculated and goes to training 

processor finally. 
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patients as shown in Figure 42. A random shuffling process was also performed after the 

paring.  

The whole architecture was also built based on Tensorflow framework(67). The 

architecture is built based on the following steps: 

1. Build a function of embedding layers with weights and bias.  

2. Build a function of fully connected layers with weights, bias, and activation function. 

3. Set the number of neurons for the sub wide neural networks and distribute 

“placeholder” for the neurons 

4. Connect the neurons with a sigmoid function. 

5. Connect the two sub-neural networks with rank loss function. 
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8.2 Pairwise model training 

The training process was also implemented on Tensorflow framework(67): 

1. Randomly shuffle the new vectors to make sure the label of the vector not repeat. 

2. Divide the training dataset with several batches. 

3. Build the overall architecture with the rank loss 

4. Feed the first features to the anchor sub neural network. 

5. Feed the second features to the mirror sub neural network. 

6. Computed the value for neurons in each layer. 

7. Start training by minimizing the loss function using gradient descent. 

8. Report evaluation loss every iteration. 

9. Repeat the process above with different network architectures. 
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8.3 Results for pairwise model 

The Area Under the Curve (AUC) was also used to be the evaluation criteria for the 

pairwise model. Figure 45 shows the learning curve of the best performance AUC on the 

test set. In the pairwise model, the 275 sparse and dense features from one patient go 

through a wide model with a single layer, another 275 features from another patient go 

through a mirror wide model with the same parameter as the previous one. The model 

was trained with 8000 iterations and a 0.01 learning rate. Because there are more than 

2000000 feature vectors due to paring. The margin is set to be 0.1 to get the best 

performance. The model with the best performance reports a 0.802655 AUC value. 

The learning curve also shows that the model was overfitting since the rank loss is very 

small when the learning curve converges. Figure 46 shows Wave and cluster plot of the 

weight distributions of the anchor network, bias distribution of the anchor, embedding 

(outputs before sigmoid function) distribution of the anchor network. The wave plot and 

scatter plot are the smoothest one compared to the previous model, which means the 

model is learning patterns smoothly and not overfitting easily. The aim of the pairwise 

model is to push the predictions of a positive sample and a negative sample away. 

Therefore, the AUC performance of the pairwise model is the best compared to the 

previous model. Figure 45 shows a comparison between the models in this study. 
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Figure 44 Learning curve of the pairwise model. The X-axis represents the training iterations (the 

training time) and the Y-axis represents the AUC value. We can see the model is learning with the AUC 

value going up as training time goes on. 
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Figure 46 Wave and cluster plot of the weight distributions, bias distribution of the ancho, embedding 

(outputs before sigmoid function) distribution of the anchor network. The distributions of the mirror 

neural network are the same since the two sub neural networks share the same parameter. 

 
Figure 45 AUC performances for all the models in this study 
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Chapter9 Summary 

In this thesis, we have discussed the principle of artificial intelligence in medicine. Starting 

from the predictions in medicine, evaluation criteria, sensitivity, and specificity, the basic 

machine learning process was derived. With describing the two main classes of machine 

learning, supervised machine learning and unsupervised machine learning, predicting the 

probability of getting colorectal cancer was introduced, and many recent machine 

learning techniques were performed. 

We have conducted many machine learning methods to estimate the probability of 

getting colorectal cancer. First, the Gradient Boosting Machine (GBM) was used to predict 

the probability. The mathematical algorithm of GBM was derived and performed. Also, 

an Area Under the Curve (AUC) value was reported to evaluate the performance of the 

model. The distribution of the predictions (Figure 11) proves that the model could predict 

the probability effectively. We also estimate the predictability at a different level to study 

the heritability of colorectal cancer. Secondly, different types of neural networks were 

performed in this study. The mathematical modeling of neural networks was derived and 

performed, including single layer derivation, multiple layer derivation, and 

backpropagation theory.  

The first neural network architecture we tried is the wide model. It is a single layer model 

which allows all the features (dense feature and sparse feature) goes in the model 

together. A relatively simple architecture makes the model not overfitting easily. The 
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parameter diagram and learning curve also prove the relatively good performance of the 

wide model. The second architecture we tired is the deep model. It is a popular model in 

recent years. However, it requires a large amount of training data to prevent overfitting 

since it is more complex than the wide model. So, the evaluation performance of the 

deep model is not satisfied. The third model we tried is the dense-sparse model. It has a 

better performance for the large sparse training dataset and could incorporate the 

interaction between the features into the model. However, it also requires a large training 

dataset and is easy to overfitting. The performance of the dense-sparse model was also 

not satisfied. The last model we tried is the pairwise model. It is inspired by the idea of 

predicting the similarity between images using triplet loss. It is composed of two sub 

neural networks and try to push the score of the positive sample and the negative sample 

far away using the rank loss. The wide model was used to be the sub neural network to 

avoid hard overfitting. Finally, the evaluation shows that the pairwise model has the best 

performance among these models. 

By researching cancer predicting, people with high risk could screen earlier and more 

often and remove the tumor with surgery at an early stage. Also, people with super low 

risk on specific cancer could save money for screening for other cancers with higher risk. 
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