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A primary design goal for VLSI systems is to achieve low energy consumption while

maintaining high performance. Increasing thermal densities and the portability of emerging

computing systems demand further reduction of design power. However, in integrated-circuit

(IC) designs, there is a tradeoff between energy and performance, and the solution space for any

given design is bounded by the lowest possible energy and the highest possible performance. To

minimize energy consumption under performance constraints, we seek to optimize the design up

to the Pareto frontier of energy versus performance. Many system- and design-level techniques

have been introduced to extend the achievable energy-performance envelope. For low-power

IC implementation, this thesis first explores traditional design methodologies, which include

gate sizing optimization and power gating. Gate sizing is an effective approach to optimize the

tradeoff of power and delay in VLSI design. A sensitivity-guided metaheuristics approach is
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presented for high-quality, large-scale gate sizing. The proposed gate sizing method can mini-

mize the power (energy) consumption under the timing (performance) constraint. Power gating

is one of the most effective solutions available to reduce leakage power. However, power gating

has not been practically usable in an active mode. In this thesis, a data-retained power gating is

presented to enable power gating of flip-flops during the active mode.

Extensions of the energy-performance envelope can be achieved with new system- and

design-level techniques such as (i) error-tolerant design, (ii) dynamic voltage and frequency

scaling (DVFS), (iii) approximate arithmetic design, and (iv) adaptive power gating. However,

with the new system-level techniques for energy-efficient design, conventional CAD flows or

designs may constrain or reduce the benefits realized from these techniques; hence, new design

methodologies are necessary for each technique. The innovative techniques proposed in this

thesis exploit the system and application information, and connect them into design optimization

and physical implementation to enable more energy-efficient designs. In other words, if we

have better communication between system design and chip implementation, we can improve

the design quality in terms of the low energy consumption. First, error-tolerant design allows

timing errors, so frequently exercised paths should be optimized to reduce the error rate of the

design. This means that a function-aware design optimization is required for the error-tolerant

design. Second, to minimize lifetime energy in DVFS design, operating scenarios should be

considered and scenario-aware optimization is required. Third, for the approximate designs, a

tradeoff between data accuracy and power reduction can be used. Finally, to make an adaptive-

power gating, we should retain internal data and control wake-up overheads. In each of these four

directions, this thesis proposes novel optimization and design flows which expand the achievable

envelope of low-power, high-performance VLSI system design.
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Chapter 1

Introduction

A primary design goal of the VLSI system is to achieve low energy consumption and

high performance. Increasing thermal densities and the portability of emerging computing sys-

tems demand further reduction of design power. However, in integrated-circuit (IC) designs,

there is a tradeoff between energy and performance, and the solution space for any given design

is bounded by the lowest possible energy and the highest possible performance. To minimize

energy consumption under performance constraints, we seek to optimize the design up to the

Pareto frontier of energy versus performance.

1.1 The Energy versus Performance Envelope

In general, for a VLSI system, the faster (smaller) the computation (delay), the more

energy it consumes. This observation points to the tradeoff between the performance (delay)

versus energy (power) consumption. In [190] [249], an energy-delay efficiency metric which

captures any tradeoff between the energy and the delay of design has been introduced. As shown

in Figure 1.1, according to the tradeoff, all possible designs are bounded by the lowest possible

energy and the highest possible performance. In the energy-delay space, a goal of the VLSI

system design is to implement a minimum energy design at a given performance target and to

optimize the design up to the Pareto frontier of energy versus performance.

Gate sizing is an effective approach to optimize the tradeoff of power and delay in VLSI

design. Gate sizing seeks to determine design parameters (e.g., gate width and threshold voltage)

so as to optimize timing, area and power of a circuit for each gate, subject to constraints. The

gate sizing optimization has been extensively studied, and a number of heuristics have been

1
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possible 
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Figure 1.1: Energy versus performance envelope in VLSI design.

proposed. However, there have been no definitive comparisons (empirical or mathematical) of

different techniques. Moreover, many published techniques make unrealistic assumptions about

the underlying circuits, such as the possibility of continuous gate sizing and Vt assignment and

the convexity of delay functions. Some publications fail to account for the effect of rounding

when using a discrete gate library or do not account for realistic capacitance and slew constraints.

Scalability to circuits with hundreds of thousands of gates is also an important issue, yet many

publications use much smaller benchmarks mapped into outdated technologies.

To achieve an energy-efficient design, the use of clock gating and power gating to re-

duce dynamic power and static leakage, respectively, is well-understood by both researchers

and IC designers [17]. Clock gating is considered to be one of the most effective techniques

to reduce dynamic power, and its automatic application is supported by EDA tools [45]. Clock

gating masks the clock signal when the corresponding circuits are not performing useful compu-

tations. Power gating [213] drastically reduces leakage power by introducing a switch between

the voltage supply (and/or ground) and a given block of functional circuitry; the block’s leakage

is stopped when the switch cuts off the current path from supply to ground. To reduce active-

mode leakage power, several approaches have been reported which combine clock gating and

power gating [229] [49] [169] [160] [207]. However, these previous approaches have associated

design complexity and overhead issues which limit their practical implementation.

1.2 Extending the Envelope with New Design Techniques

Extensions of the energy-performance envelope can be done with new system- and

design-level techniques, such as (i) error-tolerant design, (ii) dynamic voltage and frequency
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Figure 1.2: Error rate (a) and power consumption (b) versus voltage scaling in BTWC designs.

scaling (DVFS), (iii) approximate arithmetic design and (iv) adaptive power gating. However,

with the new system-level techniques for energy-efficient design, conventional CAD flows or

designs may constrain or reduce the benefits realized from the new system- and design-level

techniques; hence, new design methodologies are necessary for each technique.

1.2.1 Error-Tolerant Design

The traditional goal of IC design is for the product to always operate correctly, even

under worst-case combinations of non-idealities (process, voltage, temperature, wear-out, etc.).

It is well-recognized that designing for worst-case operating conditions incurs considerable area,

power and performance overheads [83], and that these overheads worsen with increased man-

ufacturing or runtime variations in advanced technology nodes [15]. Better-than-worst-case

(BTWC) design [41] allows reliability (in the sense of timing and, hence, functional correct-

ness) to be traded off against performance and power. The central idea, as exemplified by the

shadow-latch technique in Razor [83], is to design for average-case conditions (thus saving area

and power) while adding an error detection and correction mechanism to handle errors that occur

with worst-case variabilities.

Figure 1.2 illustrates power consumption under voltage scaling in BTWC designs. In

the left plot, functional errors begin to occur below the voltage vb, but we can reduce power

consumption until we reach the voltage vc, given the use of error correction. The right plot

shows that below the voltage vc, power consumption is increased because of recovery overhead.

The impact of BTWC design techniques is often limited in high-performance digital de-

signs by a critical operating point or “wall of slack” phenomenon that limits voltage overscaling

and, more importantly, is a direct consequence of today’s standard approach to power optimiza-

tion. The Critical Operating Point (COP) hypothesis [189] (cf. Figure 1.2(a)), in the context of
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voltage scaling, states that a modern digital design will have a critical operating voltage Vc above

which zero timing errors occur, and below which massive timing errors occur. The COP hypoth-

esis is natural in light of how modern designs are optimized for power and area and subject to

a frequency constraint: negative timing slack (on a combinational path) is cured by upsizing

and buffering while positive timing slack is traded off for area and power reductions. Thus, in

the final design, many timing paths are critical, and there is a “wall of slack”. The COP hy-

pothesis states that overscaling beyond the critical voltage can abruptly cause error rates beyond

what an error-tolerance mechanism can handle. According to [189], this has been confirmed in

general-purpose microprocessors. A key motivation for our work is that COP behavior limits the

applicability of voltage scaling in trading off reliability for power even in the context of BTWC

design.

1.2.2 Dynamic Voltage and Frequency Scaling (DVFS)

Increasing thermal densities, reliability concerns, and the portability of emerging com-

puting systems have made power and energy consumption primary concerns for microelectronic

designers [15]. Dynamic voltage and frequency scaling (DVFS) [44] is a popular technique to

reduce power and energy in situations where there is diversity in workloads (e.g., CPU-intensive

versus memory-intensive, realtime versus non-realtime, etc.), compute conditions (e.g., wall-

powered versus battery-powered, low system utilization versus high system utilization, etc.), or

objective functions (e.g., single-thread performance versus throughput, energy versus energy-

delay product, etc.) [150]. Diversity in operating conditions is exploited by reducing the supply

voltage when performance constraints are relaxed. The effectiveness of DVFS at reducing power

consumption is due to the strong dependence of both static and dynamic power on supply volt-

age.

To conserve energy, many DVFS-based mobile and embedded devices typically spend

the majority of their lifetimes operating in a low-power mode. For example, Windows switches

a DVFS-capable processor into a low-power mode whenever utilization is low [214]. A con-

ventional multi-mode design methodology spends resources to optimize the critical paths in all

modes and is therefore over-optimized at any single operating mode. Conventional design flows

also require the user to specify all constraints at design time and disregard factors that are critical

to optimizing energy efficiency, such as the amount of time spent in each mode.
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1.2.3 Approximate Arithmetic

The approximate designs produce almost-correct results at the given required accuracy,

and obtain power reductions or performance improvements in return. In some applications,

however, more accurate or totally accurate results are required under certain conditions, e.g.,

image processing in security cameras would require cleaner images after detecting a motion. In

contexts where the required accuracy changes during runtime, the accuracy of results should be

configurable to maximize the benefit of approximate operations. Figure 1.3 illustrates how power

benefits can be achieved with an accuracy-configurable design. The accuracy-configurable de-

sign can adapt to changing accuracy constraints by using different modes in each situation. To

our knowledge, no previous work can configure the output accuracy during runtime, and each is

thus restricted (or, best-suited) to particular application contexts. In contexts where the accuracy

requirement can change dynamically, the previous methods’ benefits from the accuracy tradeoff

are reduced since the implementation must be targeted to the maximum accuracy requirement.

time
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Figure 1.3: Power benefits from accuracy-configurable design.

1.2.4 Memory Access Power Gating

In mobile devices, operation time and peak processor performance are limited by bat-

tery capacity and chip thermal limits. These limits demand that all available power is used as

efficiently as possible. However, a significant portion of power usage is leakage power. At the

32nm and 22nm technology nodes, leakage power ranges from 16.9% to 52.7% of total core

power depending on circuit type, latency constraints, and temperature [162]. This leakage power

translates into significant wasted energy if a core stalls waiting for a resource.

A core may stall quite often if it is intensively accessing the memory subsystem: every
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time a thread makes a memory request that misses in the L1 cache, the core is subjected to a

variable access latency. This variable access latency often translates into a stall during which no

forward thread progress occurs. Indeed, five of the SPEC 2006 [23] benchmarks (GemsFDTD,

gobmk, lbm, mcf, and milc) spend more than 50% of their execution time waiting for the mem-

ory subsystem. Increased memory pressure in multi-core processors suggests that delays will

become longer as more threads contend for the memory resource. Power-gating the core during

a memory access can potentially mitigate costly leakage power dissipation during core stalls.

1.3 This Thesis

The innovative techniques proposed in this thesis exploit available system and appli-

cation information, and creating new connections into design optimization and physical imple-

mentation to achieve more energy-efficient designs. First, an error-tolerant design allows timing

errors, so frequently-exercised paths should be optimized to reduce the error rate of the design.

This means that a function-aware design optimization is required for error-tolerant design. Sec-

ond, to minimize lifetime energy in DVFS design, operating scenarios should be considered and

scenario-aware optimization is required. Third, for the approximate designs, a tradeoff between

data accuracy and power reduction can be used. Fourth, to make a memory access power gating,

we should retain internal data and control wake-up overheads. In each of these four thrusts,

this thesis proposes novel optimization and design flows, which expand the achievable power-

performance envelope of VLSI system design, leading to a low-power integrated-circuit design.

Figure 1.4 illustrates the scope and organization of this thesis.

The remainder of this thesis is organized as follows.

• Chapter 2 covers background and reviews prior works in the area of low-power design

methodology. Two traditional literatures, on gate sizing optimizations and power gating

techniques, are reviewed. In addition, four new system- and design-level techniques, (i)

error-tolerant design, (ii) dynamic voltage and frequency scaling (DVFS), (iii) approxi-

mate arithmetic design, and (iv) adaptive power gating, are explored.

• Chapter 3 proposes a multi-threaded, stochastic optimization for gate sizing and Vt as-

signment to minimize leakage power subject to capacitance, slew and timing constraints.

Scalability and solution quality of our sizer are validated on ISPD-2012/2013 Gate Sizing

Contest benchmarks.
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Figure 1.4: Scope and organization of this thesis.

• Chapter 4 proposes a data-retained power gating (DRPG) technique which enables power

gating of flip-flops during active mode. We combine clock gating and power gating tech-

niques, with the flip-flops being power gated during clock masked periods. We introduce

a retention switch which retains data during the power gating. With the retention switch,

correct logic states and functionalities are guaranteed without additional control circuitry.

• Chapter 5 proposes recovery-driven design, a design approach that optimizes a processor

module for a target timing error rate rather than for correct operation. We show that sig-

nificant power benefits are possible from a recovery-driven design flow that deliberately

allows errors caused by voltage overscaling [108] [83] to occur during nominal operation,

while relying on an error recovery technique to tolerate these errors. We present a de-

tailed evaluation and analysis of such a CAD methodology that minimizes the power of a

processor module for a target error rate.
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• Chapter 6 explores the DVFS design space to identify the factors that affect DVFS effi-

ciency. We propose two design-level techniques to enhance the energy efficiency of DVFS

for energy constrained systems. First, we present a context-aware DVFS design flow that

considers the intrinsic characteristics of the hardware design as well as the operating sce-

nario – including the relative amounts of time spent in different modes, the range of perfor-

mance scalability, and the target efficiency metric – to optimize the design for maximum

energy efficiency. Second, we present a selective replication-based DVFS design method-

ology that identifies hardware modules for which context-aware multi-mode designs are

energy-inefficient; such modules are candidates for replication. Selective replication cre-

ates module replicas for different operating modes.

• Chapter 7 proposes an accuracy-configurable approximate (ACA) adder for which the ac-

curacy of results is configurable during runtime. Because of its configurability, the ACA

adder can adaptively operate in both approximate (inaccurate) mode and accurate mode.

The proposed adder can achieve significant throughput improvement and total power re-

duction relative to conventional adder designs. It can be used in accuracy-configurable

applications, and improves the achievable tradeoff between performance/power and qual-

ity.

• Chapter 8 proposes a low-overhead technique to power gate an actively executing core

during memory accesses. To this end, we design Token-Based Adaptive Power Gating

(TAP), an architecture that provides two services. First, TAP tracks every system memory

request and provides a lower-bound estimated time of arrival (ETA) for the response. Sec-

ond, TAP tracks the state of every core in the system that can be power gated and provides

a minimal-latency wake-up mode (with wake-up latency on the order of 2.4ns to 18.4ns)

to each core such that voltage drops on neighboring active cores will be within safety

margins. Any power gating switch that interfaces with TAP is able to deterministically

power gate its core and avoid any performance hit by not power gating for intervals that

are shorter than the break-even duration for energy savings.



Chapter 2

Background and Prior Work

This chapter covers background and reviews prior works in the area of low-power de-

sign methodology. Two traditional literatures, on gate sizing optimizations and power gating

techniques, are reviewed. In addition, four new system- and design-level techniques, (i) error-

tolerant design, (ii) dynamic voltage and frequency scaling (DVFS), (iii) approximate arithmetic

design, and (iv) adaptive power gating, are explored.

2.1 Traditional Low-Power Design Optimizations

For low-power IC implementation, Chapter 3 and 4 of this thesis focus on two traditional

low-power design optimizations, gate sizing and power gating.

2.1.1 Gate Sizing

The problem of sizing standard cells in digital circuits has been extensively studied due

to its importance, and many optimization techniques have been developed. Before discussing

specific ideas, we introduce the optimization objectives and relevant constraints.

Gate Sizing Formulation. Consider a netlist N = (C, I,P), where C is the set of cells, I
is the set of interconnects between cells, and P is the set of pins on C. Also given is the input

technology library L, where each cell c ∈ C has a set of valid (manufacturable) sizes. Given N
and L, the objective of (discrete) gate sizing is to map C to L while minimizing the total power

consumption subject to design constraints. We consider (i) slack constraints, (ii) capacitance

constraints, and (iii) slew constraints.

9
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Continuous Methods. The vast majority of gate sizing research has focused on finding con-

tinuous solutions, where parameters can take values within certain contiguous ranges. Some

techniques optimize transistor parameters (e.g., threshold voltage), and others focus on entire

standard cells and deal with drive strength and input-pin capacitances. However, as modern dig-

ital methodologies use only discrete cell types, continuous-valued parameters must be efficiently

rounded to allowed discrete values.

Many different approaches to gate sizing have shown success, including:

• Linear programming [46] [62] [124] and network flow [199]

• Convex nonlinear optimization [67] [201] [202] [236],

including Lagrangian relaxation [60] [67] [224] [236] [164]

• Slack budgeting [109]

Due to the complexity of modern designs, the two most scalable approaches are those based

on Lagrangian relaxation and sensitivity. Instead of satisfying every imposed constraint, La-

grangian relaxation changes the original constrained problem into an unconstrained problem

such that the solutions to the latter can be mapped back to the former. However, Lagrangian re-

laxation is typically formulated for continuous-variable functions and does not naturally handle

discrete gate sizes. Numerical optimization techniques used with Lagrangian relaxation some-

times also assume convexity, which does not hold for practical circuit-delay models.

Discrete Methods. In contrast to continuous methods, discrete methods assume a fixed cell

(and technology) library with a set of discrete cell sizes. While discrete methods avoid the

difficult “rounding” problem that continuous methods face, they must directly solve an NP-hard

problem [181]. Branch-and-bound [196] and dynamic programming [112] [164] [186] based

approaches can be categorized as discrete.

Another discrete method, the sensitivity-based (iterative) approach, modifies individual

components one at a time, e.g., by changing (i) transistor width, (ii) threshold voltage (in dual-Vt

designs), (iii) source voltage (in dual-Vdd designs), and (iv) gate and/or wire resistances and ca-

pacitances. To further improve performance, the authors of [75] develop a multi-directional

search, and the authors of [48] suggest using multistarts. Sensitivity-based downsizing ap-

proaches have been proposed in [86] [216] [222] [101] [100] [102]. TILOS [86] proposes a

heuristic that sizes transistors iteratively, according to the sensitivity of the critical path delay

to the transistor sizes (i.e., with maximum ratio of delay reduction / transistor width increase)
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in order to find an optimum. Equation (2.1) shows the sensitivity function of TILOS. ∆L and

∆D represent the change in leakage and delay for a resized transistor. The techniques proposed

in [222] use the same sensitivity function as TILOS.

Sensitivity = ∆L/∆D (2.1)

For the cell sizing in [101], all cells are sorted in decreasing order of ∆L × S, where ∆L is

the improvement in leakage after a cell is replaced with its less leaky variant, and S is its timing

slack after the replacement has been made. The techniques proposed in [100] and [102] use

sensitivity-based downsizing (i.e., begin with all nominal cell variants and replace cells on non-

critical paths with long channel-length variants) heuristics for leakage optimization. In their

heuristics, they define the sensitivity associated with a given cell instance as

Sensitivity = ∆L/∆S (2.2)

where ∆S represents the slack change of a given cell instance after downsizing, and ∆L indi-

cates the leakage change of the cell instance after downsizing. The sensitivities are computed

for all cell instances. The heuristics of [100] [102] select a cell with the largest sensitivity and

downsize it to a logically equivalent cell. If there is no timing violation in incremental STA, this

move is accepted and saved.

Recently, the authors of [186] have developed a Lagrangian-relaxation graph-based ap-

proach to efficiently assign cell types in very large netlists. Their optimizations have significantly

improved power-performance tradeoffs in ICs designed at Intel. This work has also spurred the

ISPD-2012 (Discrete) Gate Sizing Contest [184].

The ISPD-2012 Gate Sizing Contest. To more accurately capture the discrete gate sizing

problem for modern technologies, researchers from Intel organized the ISPD-2012 Gate Sizing

Contest [184]. The contest benchmarks are derived from the IWLS 2005 benchmarks [20] and

have between 25K and 995K cells. The contest employs standard industry formats for bench-

marks, including Verilog netlists, interconnect parasitics in IEEE SPEF format [14], and timing

constraints in Synopsys Design Constraints (SDC) format [30]. The simplified standard-cell li-

brary implements 12 different logic functions, and 30 different cell types (options) for each logic

function; the cell types correspond to three different threshold voltages (Vt) and ten different

sizes for each Vt. The cell library also has lookup tables for (a) delay and transition time (slew),
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and (b) max load capacitance (in the Synopsys Liberty format) for each cell type. An indus-

try timing engine – Synopsys PrimeTime [29] – is used as the reference timer. For simplicity,

the contest does not capture false paths, placement-dependent distributed interconnect parasitic

models, or multiple clock domains. The contest compares leakage power of solutions that satisfy

all given constraints. Specific constraints include (i) no negative (setup) slack on all pins, (ii) a

300ps transition time upper bound, and (iii) a maximum load capacitance per cell type.

Stochastic Combinatorial Optimization. High-dimensional, hard combinatorial optimiza-

tion problems do not admit such mathematically elegant solutions as Lagrangian relaxation, and

are often solved using simulated annealing or other metaheuristics that combine local search

with a global strategy [94] (e.g., stochastic hill-climbing, tabu search [93], or genetic crossover).

These techniques are difficult to implement well (e.g., require heavy parameter tuning), are gen-

erally not reproducible, and require sophisticated mathematics to analyze their asymptotic per-

formance.

The go-with-the-winners (GWTW) metaheuristic [39] repeatedly invokes greedy heuris-

tics within randomized multistarts to (i) explore a large search space by maintaining a small set

of best-seen solutions, and (ii) find a global optimum with high probability, as proven in [39].

Local minima are avoided when better intermediate solutions are found (e.g., in parallel search

threads), from which multiple solutions may be derived. GWTW is asymptotically more efficient

than purely independent randomized restarts; its performance is on par with that of simulated an-

nealing and can be significantly easier to analyze [39].

The maintenance of the best-seen solutions in GWTW is akin to the “survival of the

fittest” invariant in genetic algorithms [94]. However, GWTW does not employ genetic crossover,

does not exclude repeat solutions, and allows the number of kept solutions to vary. GWTW can

be viewed from the statistics perspective as sequential importance sampling and traces its roots

to statistical physics [96]. In Chapter 3, we propose a gate sizing approach which adapts the

GWTW metaheuristic [111].

2.1.2 Active-Mode Leakage Reduction

Power gating is the most effective available technique to reduce standby leakage, with

benefits that are magnified by the increasing fraction of overall IC lifetime that modules spend

in standby mode. With technology scaling, active-mode leakage becomes an increasingly sig-

nificant portion of total dynamic power. Usami et al. [229] propose Run-Time Power Gating

(RTPG) to extend the application of power gating to active-mode leakage reduction. Figure 2.1
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shows the basic structure of RTPG. The enable signals of a gated clock design are exploited

to control power switches for combinational logic gates. When the clock enable signal is 0, the

power switch is turned off and active-mode leakage is cut off. The holders keep the input voltage

of non-power-gated circuits.

 

power gating. Section IV presents the implementation 
methodology and Section V discusses the results.  

II. FINE-GRAINED RUN-TIME POWER GATING STRUCTURE AND 
GENERATION 

A. Exploiting Enable Signals of Gated Clock 
Gated clock is a technique to reduce dynamic power of clock 

network. When data stored in flip-flops (F/F's) are not updated, 
clock toggling to the F/F's is stopped to reduce dynamic power. 
During this period, combinational logic gates located at the 
transitive fan-in of the F/F's are not required to compute new 
data to the F/F's. If outputs of the combinational logic gates are 
not used at anywhere else, the logic gates are considered as 
"idle". By detecting this idle period, we turn off the power 
switch provided to the combinational logic gates. This results in 
reducing active leakage power of the combinational logic gates. 
Figure 1 shows the basic structure that we use for fine-grained 
RTPG. We fully exploit the enable signals of gated clock 
design to control both power switches provided to the 
combinational logic gates and holders. The holder is composed 
of low leakage transistors (e.g. high-Vth and thicker gate oxide) 
and inserted between power-gated and non-power-gated 
circuits. When the enable signal is 0, the power switch is turned 
off and active leakage current is cut off at the power-gated logic 
circuits. The holders keep the input voltage of the 
non-power-gated circuits to avoid signal floating. When the 
enable signal is 1, the power switch is turned on and updated 
data are loaded into the F/F. 

B. Power Gating Domain 
In actual clock-gated designs, it is likely that more than one 

enable signals exist. To perform fine-grained RTPG for these 
designs, we propose an idea of "power gating domain" 
(PG-domain). The PG-domain is defined as a group of circuits 
that are power gated with a unique enable signal. We describe 
the PG-domain by using an example shown in Fig. 2. In this 
circuit there are two enable signals EN_A and EN_B, 
controlling clock-gating for multi-bit registers regA and regB, 
respectively. Combinational logic gates enclosed with a dotted 
line and indicated as "Group_A" perform computation only for 
the register regA. In other words, the logic gates in Group_A 
become idle if regA is not updated. This allows us to power 

gate the combinational logic gates in Group_A with the enable 
signal EN_A. Hence, we refer to Group_A as the "PG-domain 
A". Similarly, logic gates indicated as "Group_B" can be 
power-gated using the enable signal EN_B. We hence refer to 
Group_B as the "PG-domain B". 

In contrast, combinational logic gates indicated as 
"Group_X" influence not only regA but also regB. These logic 
gates become idle only when neither regA nor regB are updated. 
Therefore, we refer to Group_X as the "PG-domain AB" and 
power gate the domain using both EN_A and EN_B. 

Logic gates indicated as "Group_Y" are not power gated 
because their transitive fanouts are connected to the output pins. 
Data at the output pins may be used outside of this circuit, and 
hence should be kept updated. Due to this, we do not power 
gate the logic gates in Group_Y. They do not belong to any 
PG-domain. As an extension, if this scheme is applied to the 
coarse-grained RTPG where the entire circuit is put into sleep, 
we put the gates in Group_Y into an independent PG-domain. 
The PG-domain is controlled by a power switch which is turned 
off only when the entire circuit becomes idle.  

C. Algorithm to Partition into Power Gating Domains 
We describe an algorithm to partition into PG-domains for a 

given circuit. Let us assume a circuit depicted in Fig. 3 is given. 
First, we focus on an F/F and find an enable signal controlling 
the F/F. In Fig. 3, the flip-flop FF1 is controlled by the enable 
signal EN_A. Next, from the data-input terminal of the F/F we 
traverse combinational logic network backward until reaching 
input pins of the given circuit or an output terminal of an F/F. 
We put a label "A" to all the combinational logic gates that we 
meet during the traversal. Thus we extract combinational logic 
gates located at transitive fan-in of FF1. Then we move to the 
next flip-flop FF2 and find an enable signal of the flip-flop. In 
this case, the enable signal is identified as EN_A again. Hence, 
the label "A" is also put to logic gates located at transitive 
fan-in of FF2. 
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Figure 2.1: Basic structure of RTPG [229].

Several design (synthesis and layout) flows have been proposed for RTPG implementa-

tion. Bolzani et al. [49] present a synthesis flow to combine power gating and clock gating. They

partition the circuit into a number of clusters that are clock-gated by the same registers. Li et

al. [160] propose an activity-driven optimization for RTPG variant which integrates clock gating

and power gating based on input data. Seomun et al. [207] provide a synthesis and physical

design (placement) flow for RTPG circuits. Mistry et al. [175] present a RTPG which works

concurrently with voltage and frequency scaling.

While RTPG can effectively reduce active-mode leakage power of combinational logic,

the approach has several inherent limitations that hamper practical implementation. First, the

RTPG approach significantly increases design complexity. Each cluster of gates requires its own

control signal to control power gating transistors. Other overheads include special buffer trees

that use the real power supply network, synthesis of high-fanout nets, power routing for the

buffers, and so on. Further, the large number of virtual ground rails must be mutually isolated as

well. Second, RTPG implementation incurs significant area overheads from its design complex-

ity and additional circuits, e.g., bus holder circuits. Third, inrush current from power gating can

diminish the amount of leakage reduction. If the clock-masked period is short or if flip-flop data

is frequently changed, then RTPG will not be applicable due to the inrush current overhead.

Fukuoka et al. [89] present a clock gating scheme for partially-depleted SOI which

controls Vt of each transistor by body biasing associated with the clock gating signal. Their

approach reduces active-mode leakage of flip-flops with the dynamic body biasing. However, the

body biasing technique requires significant design and area overheads from the biasing circuits

and voltage regulators.



14

Kim et al. [142] have proposed a tri-mode power gating approach that provides a choice

between a large leakage reduction without data retention (IDLE) and an intermediate level of

leakage reduction with data retention (PARK). The authors of [142] add a single PMOS switch

to an NMOS footer switch in parallel to provide the intermediate power-saving mode. However,

their intermediate mode is applied to an entire submodule, and cannot be used for a fine-grained

RTPG approach. In Chapter 4, we exploit the idea of an intermediate mode of power gating, and

apply a similar approach within our proposed data-retained power gating approach.

2.2 New Techniques for Low-Power Design

Extensions of the energy-performance envelope can be achieved with new system- and

design-level techniques. Chapters 5, 6, 7 and 8 of this thesis respectively focus on (i) error-

tolerant design, (ii) dynamic voltage and frequency scaling (DVFS), (iii) approximate arithmetic

design, and (iv) adaptive power gating.

2.2.1 Error-Tolerant Design

Error-tolerant designs trade off between design robustness and design quality (perfor-

mance, power and area) [69] [77] [83] [91] [97] [221]. Razor [83] is a well-known technique

to detect and correct timing errors due to frequency, temperature, and voltage variations. Razor

detects timing violations by supplementing error-tolerant registers (Razor flip-flops – Figure 2.2)

with shadow latches. A shadow latch strobes the output of a logic stage at a fixed delay after

the main flip-flop; if a timing violation occurs, the main flip-flop and shadow latch will have dif-

ferent values, indicating the need for correction. Correction involves recovery using the correct

value(s) stored in the shadow latch(es).

Error-tolerant designs reduce design constraints by allowing timing errors. An example

is timing speculation [235], which increases the clock frequency and exploits error detection and

recovery mechanisms to correct the resulting errors. Timing improvement from error-tolerant

designs can lead to further power and area benefits over conventional designs. In other words,

we can reduce the power and area of logic cells in a fanin cone by instantiating an error-tolerant

register at the endpoint.

Error-Tolerant Registers with Error Recovery. As noted above, Razor and other related

works [83] [77] [42] replace registers with specialized flip-flops which detect and correct timing

errors on each endpoint by capturing the correct value at the shadow latches with a delayed
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Figure 2.2: Structure of Razor flip-flop [83].

clock. The Razor technique [83] can correct timing errors within a specific safety margin of

the error-tolerant register. Razor II [77] provides additional analyses of the Razor flip-flop –

timing constraints, safety margin and clock scheme – and reduces complexity and area of the

Razor flip-flop implementation. STEM [42] improves error detection capability with a second

shadow latch. However, the duty cycle of the clock must be adjusted to avoid severe hold-time

constraints introduced by the latch. TIMBER [69] masks temporal errors by borrowing time from

successive pipeline stages.

Error Prediction Techniques. Error prediction techniques monitor transitions of data path

signals before the clock edge. In [38], a stability checker design predicts timing errors due to

a gradual increase in delay from wearout and aging effects. Another error prediction technique

pads a given data path with a delay element and samples the delayed data path signal in another

flip-flop, called the canary flip-flop [205]. A timing error is predicted when the value in the data

path flip-flop differs from the value in the canary flip-flop. Error prediction based on duplicating

critical paths and predicting timing errors on the original paths has been described in [50].

Replica Circuits for Error Masking. Several techniques compare output values in each cycle

using redundant hardware circuits for error masking. Paceline [97] employs a leader-checker

which checks timing errors due to overclocking. CPipe [221] enables reliable overclocking

through core-replication. The outputs of the main combinational logic are compared with those

of the duplicated logic in each cycle. This kind of approach can provide error resilience with

high reliability, but typically has significant area and power overheads due to the redundant and

duplicated logic circuits. Another approach, CRISTA [91], anticipates a timing error using an

input pattern decoder; if critical paths are toggled by specific input patterns, the clock period is

changed so that timing errors do not occur. Critical and non-critical paths are divided using a

path isolation method. The CRISTA approach forces a significant design changes, and is difficult

to apply to general processor designs.
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Design-Level Optimization. In conjunction with error-tolerant techniques, a number of

design-level optimizations [98] [91] [128] [129] have been proposed which identify and optimize

critical paths that are frequently exercised during operation. However, such techniques in gen-

eral do not consider the cost of the error-tolerant circuits during the optimization. BlueShift [98]

identifies the most frequently violated timing paths during gate-level simulation, and optimizes

the paths iteratively until the error rate is below a given target. To add timing slack to frequently-

exercised paths, BlueShift uses two methods, forward body biasing of selected gates and appli-

cation of tighter timing constraints to the frequently-exercised paths. Work on better than worst

case (BTWC) logic synthesis [73] has also proposed to use activity information to reduce the

error rate of an overscaled design. Whereas traditional synthesis tools attempt to minimize delay

for a logic block, the proposed BTWC synthesis tool uses switching probability to break a tie

when two equivalent logic decompositions have the same delay. Reducing switching activity can

result in fewer errors for an overscaled design.

2.2.2 DVFS Design

Multi-Corner Multi-Mode Design. Recently, EDA manufacturers have included Multi-

Corner Multi-Mode (MCMM) capabilities [28] [6] in their implementation tools. MCMM capa-

bilities allow analysis and optimization of a hardware design for multiple modes, where modes

are defined by a set of clocks, supply voltages, timing constraints, and libraries. MCMM is

typically geared towards achieving design closure across all modes (e.g., test mode and mission

modes) in a single pass, significantly reducing design turnaround times.

In Chapter 6 of this thesis, we show that variants of MCMM can be used for efficient

DVFS designs, since MCMM can optimize a design for multiple voltage and frequency modes.

However, capabilities must be added to identify the constraints that minimize energy for different

duty cycles and ranges of scalability. We use MCMM sign off in our context-aware multi-mode

design flow as well as in our baseline conventional design flow.

Heterogeneous CMP. DVFS is not the only technique to target multiple power and perfor-

mance points. In a heterogeneous chip multi-processor (CMP) [150], each core can be designed

for a different power and performance target, with tasks scheduled to cores depending on their

performance or power requirements. Such designs incur significant overheads in terms of area,

verification, complexity, and task scheduling. However, they may improve energy efficiency over

DVFS designs by providing entire cores that are optimized for specific performance targets. The

overheads associated with heterogeneous CMPs could potentially be reduced by replicating core

functionalities at a finer granularity, rather than replicating the entire core (see Section 6.2.2).
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Workload-Specific Data Path Customization. It has long been known that energy efficiency

can be improved by customizing hardware for a specific workload. Work on conservation cores

(C-cores) [232] proposes to synthesize application-specific cores to improve energy efficiency

at a specific frequency and voltage. Application-specific cores can significantly reduce energy

consumption for their target applications. The limitations of application-specific cores include

increased design and verification overheads, limited generality beyond the applications and in-

puts for which the cores were synthesized, and significant area overhead for large applications

(i.e., applications with multiple hot codes). Recent work suggests that the area overhead of con-

servation cores may be more acceptable if continued technology scaling results in a utilization

wall, necessitating dark silicon [95].

Race-To-Halt. For some energy-based metrics and some specific (compute-intensive) work-

load conditions, an orthogonal approach to voltage scaling such as race-to-halt [79] may be use-

ful for increasing energy efficiency. Race-to-halt proposes that it may be more energy-efficient to

execute a task as quickly as possible, and then switch to a low-power sleep mode, than to operate

at the lowest possible frequency and voltage that meets timing constraints. While race-to-halt

can provide energy benefits over a naive DVFS approach in some scenarios, it suffers somewhat

in generality (e.g., it does not benefit memory-intensive workloads). Also, while race-to-halt can

potentially reduce energy, it cannot be used to reduce power due to thermal and reliability con-

sequences. Note that DVFS does not preclude the deployment of a race-to-halt strategy: indeed,

race-to-halt could well be an element of a task scheduling policy used by a DVFS processor that

must, by its nature, be able to switch between different power and performance modes.

2.2.3 Approximate Design

Approximate Arithmetic Circuits. Guardbands for dynamic variations severely limit per-

formance and energy efficiency of conventional IC designs. To overcome consequences of

overdesign, several recent mechanisms for variation-resilient design [92] allow timing errors

and manage design reliability dynamically. This and other relaxations of the requirement of

correctness for designs have the potential to dramatically reduce costs of manufacturing, veri-

fication and test [15]. In resilient designs, errors can be corrected with redundancy techniques

(error-tolerance), or accepted in some applications relating to human senses such as hearing

and sight (error-acceptance). In the error-acceptance regime, approximation via a simplified or

inaccurate circuit can increase performance and/or reduce power consumption.
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Various approximate arithmetic designs have been previously proposed. Lu [166] in-

troduces a faster adder which has shorter carry chains and considers only the previous k bits of

input in computing a carry bit. Verma et al. [233] provide a variable-latency speculative adder

(V LSA), which is a reliable version of the Lu adder [166] with error detection and correction.

Shin et al. [211] propose a data path redesign technique for various adders which cuts the crit-

ical path in the carry chain. Zhu et al. [247] [246] propose three approximate adders – ETAI ,

ETAII and ETAIIM . ETAI is divided into an accurate part and an inaccurate part to achieve

approximate results. ETAII cuts carry propagation to speed up the adder, and ETAIIM modi-

fies ETAII by connecting carry chains in accurate MSB parts. Kulkarni et al. [147] present a

2×2 underdesigned multiplier, and use it to build large power-efficient approximate multipliers.

George et al. [90] define the concept of probabilistic CMOS (PCMOS), and implement efficient

arithmetic using PCMOS. Shin et al. [212] propose a logic synthesis approach to design an

approximate circuit.

Approximate Circuit Design. Recently, approximate computing has been explored as a means

of improving energy efficiency for noise-tolerant applications. While approximate computation

circuits have been shown to be effective at improving energy efficiency at the expense of per-

fect functional correctness, modern CAD tools are unable to perform design automation (e.g.,

approximate module replacement) for designs that contain approximate computation circuits. A

necessary foundation for CAD tools that can create resource-efficient approximate designs is

the ability to quickly and accurately estimate the output quality of designs whose composition

includes approximate computation circuits. Such functionality is needed if CAD tools are to

minimize the energy of a design during synthesis, optimization, etc. while maintaining accept-

able output quality, as specified by system designers. In Chapter 7, we propose a flow that can

analyze how errors originate and propagate in designs composed of approximate computation

circuits to quickly and accurately estimate the output quality at nets in an approximate design.

The following terminology is relevant to our treatment of approximate circuit design.

• Error metric (EM): a unit of measure that quantifies the deviation between the outputs

produced by a functionally correct design and an approximate design. Below, we review

several commonly-used EMs from the existing literature.

• Approximate circuit: a circuit that contains one or more approximate hardware modules.

Figure 2.3 compares an approximate circuit to its accurate counterpart.

• Composed EM (EMcomposed): the estimated EM value at an output or internal net in an

approximate circuit.
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Figure 2.3: Illustration of approximation module replacement.

• Pre-characterized EM (EMchar): a sampled EM for an individual approximate hardware

module that has been stored in a library. We measure EMchar using uniformly-distributed

inputs and propose composition rules to designs with different input operand distributions

(X).

• Composition function: a function that maps EMchar to EMcomposed.

• Dref (X): the output of a correct circuit (not approximate) for an input distribution X .

• Dappx(X): the output of an approximate circuit for an input distribution X .

Based on the definitions above, the error metric composition problem seeks to find a

composition function for a composed EM as described in Equation (2.3), whereEM i
char denotes

the EMchar of the ith approximate module in an approximate circuit. As discussed below in

Section 7.2, values of EMchar for different approximate hardware modules may be stored in a

library for quick reference during computation of EMcomposed.

EMcomposed = f
(
EM1

char, EM
2
char, ..., EM

n
char

)
(2.3)

Error Metrics (EMs). Definitions of EMs from the literature are given in Equations (2.4) to

(2.9). Note that E[·] indicates the expected value of a random variable.

ER =
∑

Xs.t.Dappx(X)!=Dref (X)

Pr(X) (2.4)

ES = E[Dappx(X)−Dref (X)] (2.5)

ARES = E[(Dappx(X)−Dref (X))/Dref (X)] (2.6)

MSE = E[|Dappx(X)−Dref (X)|2] (2.7)
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SNR = E[|Dref (X)|2/|Dappx(X)−Dref (X)|2] (2.8)

MAXE = MAXIMUM [|Dappx(X)−Dref (X)|] (2.9)

• Error rate (ER) [146] is used to evaluate the likelihood of correctness in arithmetic oper-

ations. An accurate estimation of ER is important in the case where approximate circuits

spend additional cycles for error corrections.

• Error significance (ES) [230] addresses the magnitude of errors. We define ES as a signed

difference between correct and erroneous results.

• Average relative error significance (ARES) is used to measure the impacts of errors for

image processing in [125] [247]. ARES is defined as the average absolute difference

between correct and erroneous results, normalized to correct results. In digital signal

processing (DSP) circuits, the magnitude of errors is important because small errors may

be masked by other noise sources.

• Mean squared error (MSE) in [66] [237] and signal-to-noise ratio (SNR) in [66] [103] are

common metrics to measure signal degradation in communication and image processing

systems.

• Maximum error (MAXE) is defined as the maximum absolute value of produced errors.

In [116], the MAXE metric is used to evaluate approximate circuits.

Approximate Arithmetic Modules. Various approximate arithmetic modules have been pro-

posed in previous works, where aggressive timing and power benefits are obtained by breaking

critical paths in the approximate module. To achieve a bounded error significance or configurable

error rate, several techniques have been applied to reduce the severity of errors in these approxi-

mate hardware modules. ETAI [247] limits the maximum error by detecting a carry propagation

and setting all lower sum bits to “1”. A similar compensation approach is used in Shin’s approx-

imate adder [212], which detects a carry propagation using a specially designed truth table. By

using error compensation approaches, the error can be reduced compared to simply breaking the

carry chain.

ETAIIM [247], ACA-SD [125], Lu’s adder [166] and ACA-X [233] use a carry-look-

ahead (CLA)-based approach to shorten the longest carry propagation path in the adder. These

adders are composed of CLA submodules, and the numbers and sizes of the submodules can be

configured at design time. The error significance and error rate can be configured by changing
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Table 2.1: Categories of error analysis, propagation, and optimization works.

category (C1) (C2) (C3) (C4)

manipulated
logic cell arithmetic arithmetic

multiple

elements levels

error approximate
rounding

approximate overscaled

source hardware hardware Vdd

probabilistic
N N N Y

errors

reference
[230] [174] [84] [219] [58] [59] [115] [117] [137] [64]

[212] [179] [148] [155] [144] [116] [63] [231]

the length of carry propagation paths. Kahng et al. [125] also show that the errors can be detected

and corrected in each CLA block, and that the accuracy can be configurable during runtime.

Analysis and Composition of Errors. We categorize existing works on hardware error anal-

ysis into four categories as shown in Table 2.1. In (C1), the works focus on searching for useful

approximations during logic synthesis. Venkataramani et al. [230] work with existing commer-

cial synthesis tools and simplify logic based on approximate don’t care (ADC) information under

a given error significance bound. Miao et al. [174] focus on a methodology to design more effi-

cient adders by combining logic components to reduce the maximum error. In [212], Shin et al.

provide a heuristic to search for useful approximations based on a truth table to study the tradeoff

between the error rate and literal terms (hardware cost). Previous works in (C2) address rounding

errors between floating-point and fixed-point conversions. In these works, the rounding errors

are determined by the wordlength of hardware, and so are different from the errors induced by

approximate hardware. In (C3), [116] and [117] use an interval-based approach (integer arith-

metic (IA) or affine arithmetic (AA)) to propagate errors. The interval-based approach uses

pre-characterized libraries for error estimations, but the runtime of characterization can increase

when more intervals are required for large ranges of signals. In (C4), existing works assign over-

scaled supply voltages to achieve a graceful accuracy degradation. Kedem et al. [137] analyze

propagations of errors induced by the degraded supply voltage, and they simplify the analysis

by assuming that no error cancellations occur between multiple adders. Venkatesan et al. [231]

propose the MACACO flow to evaluate propagations of errors induced by the overscaled supply

voltage. They also apply this approach to characterize errors for different approximate adders.

Chippa et al. in [64] [63] propose methodologies to analyze and optimize computing effort at

different levels of abstraction, and also consider errors due to overscaled voltage supplies.
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2.2.4 Power Gating

Power gating has been studied at both architectural and circuit levels. Microarchitectural

works typically examine questions related to the use of different power-gating modes, selecting

which circuits to power gate, and predicting when to power gate as well as control algorithms to

avoid energy penalties from poor power gating decisions. Circuit-level papers typically analyze

different circuit techniques aimed at reducing wake-up latency, efficiently retaining logic states,

minimizing ground bounce, and achieving resilience to process variation.

Architectural-Level Power Gating. Hu et al. [113] propose power gating as a technique

to reduce functional unit leakage power when applications underutilize their functional units.

Specifically, they power gate the floating-point and fixed-point units according to three different

predictors which are respectively ideal, time-based, and branch-misprediction-guided. The best

technique (branch-misprediction-guided) is able to put functional units to sleep for up to 40%

of total cycles with only 2% performance loss. The authors of [113] also develop equations to

estimate the break-even points for power gating an out-of-order superscalar processor. However,

although they build a power consumption model with precise analysis of virtual supply voltage

during power gating, they do not consider the wake-up energy required to restore circuit nodes.

Lungu et al. [167] show that in many cases, the predictor of [113] can lead to increased

energy consumption. A monitor that controls the use of power gating is introduced to bound the

performance and energy penalty for misbehaved applications. Madan et al. [170] extend the idea

of Lungu et al. to the core level, and propose a “guard mechanism” that reduces harmful use of

power gating.

Power gating technology is also readily visible in leading commercial products. The

recent Nehalem architecture employs power gating at the core level to reduce leakage power

on idle cores, but 100ms is required to wake up a core [151] [158]. AMD [200] has improved

this power gating technique by optimizing the wake-up sequence to skip built-in self tests and

restoration of cache state; this results in wake-up times as short as 75µs. In today’s systems, the

operation system typically power gates the cores in the idle loop. Of particular note for our work

in Chapter 8: this misses out on opportunities for power gating during long memory accesses.

Circuit-Level Power Gating. In the realm of circuit innovation, the pioneering work of

Horiguchi et al. [110] has been followed by many works on fundamental circuit design is-

sues related to power gating, including switch-cell sizing, data-retention methods, physical-

implementation methodologies, and mode-transition noise analysis and reduction. The recent
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survey of Shin et al. [213] gives an excellent summary of the history and highlights of power

gating techniques.

Agarwal et al. [36] and Singh et al. [215] examine multiple sleep modes that feature

different wake-up overheads and leakage power savings. Use of multiple sleep modes achieves

an extra 17% reduction in leakage power compared to a single power gating mode. Also, one of

the sleep modes can reduce leakage power by 19% while preserving circuit state. However, these

energy savings are based on static traces of bus activity and do not address the runtime problem

of predicting when to power gate. In addition, the reported results are likely optimistic since

wake-up noise and the overhead of implementing low-voltage sleep control signal distribution

are not considered.

To minimize ground bounce during mode transition, Kim et al. [141] control turn-

on voltage (VGS), which makes sleep transistors turn on in a non-uniform stepwise manner.

Kim et al. [142] propose a tri-mode power gating structure in which a PMOS switch is com-

bined in parallel with traditional NMOS power gating switches. The additional PMOS transistor

supports intermediate power-saving state-retaining modes at low-supply voltage, and reduces

ground bounce noise during transitions between normal and power-gated modes. Chowdhury

et al. [70] propose a similar tri-mode (i.e., RUN, HOLD, CUT-OFF) power gating technique

using PMOS switches in parallel with NMOS footer switches, combined with additional NMOS

switches in parallel with PMOS header switches. Kim et al. [140] propose a programmable-

width power gating switch that adjusts the widths of power gating switches to compensate for

core-to-core process variation occurring in multi-core systems. Finally, Zhang et al. [244] pro-

pose a multi-mode power gating technique using three NMOS switches with different sizes and

threshold voltages. Using various combinations of the three switches, they can provide multiple

power-gating modes with different leakage savings. They also note that their method is tolerant

to process variation.

Memory Access Aware Power Gating. Memory Access Aware Power Gating for MPSoCs

[122] examines the potential to power gate an in-order core while monitoring a single memory

bus and estimating memory latencies. A controller that sits at the memory bus sends explicit

commands to each core to power gate and to wake up from a power-gated state. The controller

estimates memory latencies by tracking whether each memory request is a row buffer hit or miss.

However, this work does not consider out-of-order execution, and is limited in scalability to a

system with a single memory bus, which precludes understanding of its application to data-center

servers. In addition, it does not consider the importance of core location and state information
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for determining safe wake-up modes, the possibility of using staggered wake-up to reduce the

latency of core wake-up from a power-gated state, or the scalability of their designs. By contrast,

the token-based adaptive power gating that we report in Chapter 8 addresses these issues, is ap-

plicable to out-of-order cores, formally analyzes the energy savings for in-order cores, considers

the importance of core location and wake-up stagger, and considers the scalability of the design

to many-core processors.



Chapter 3

Gate Sizing for Leakage Reduction

The sizing problem in VLSI design seeks to determine design parameters (e.g., gate

width and threshold voltage) for each gate, so as to optimize timing, area and power of a circuit,

subject to constraints. The problem has been extensively studied, and a number of heuristics

have been proposed. However, there have been no definitive comparisons (empirical or math-

ematical) of different techniques. Moreover, many published techniques make unrealistic as-

sumptions about the underlying circuits, such as the possibility of continuous gate sizing and

Vt assignment and the convexity of delay functions. Some publications neglect the effect of

rounding when using a discrete gate library, or do not account for realistic capacitance and slew

constraints. Scalability to circuits with hundreds of thousands of gates is also an important issue,

whereas many previous publications use much smaller benchmarks mapped into outdated tech-

nologies. To address these shortcomings in published literature, Intel researchers have recently

prepared and released an extensive infrastructure for research on large-scale gate sizing [184].

This includes (i) a set of benchmarks ranging from small to large, mapped into a modern discrete

gate library, and (ii) a set of evaluation protocols that includes checking timing constraints using

industry-standard software (Synopsys PrimeTime [29]) and measuring total leakage power for a

particular sizing solution. This infrastructure has been used in the ISPD-2012/2013 Gate Sizing

Contests, and provides a baseline for further research on this topic.

Within the research-oriented infrastructure used in the ISPD-2012/2013 Gate Sizing

Contests, we develop a metaheuristic approach to gate sizing that integrates timing and power

optimization, and handles several types of constraints. In this chapter, we describe a successful

entry from the ISPD contest that achieves practical large-scale metaheuristic gate sizing and Vt

optimization with a signoff timer (ST) in the loop. We also propose a new benchmark genera-

25
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tion approach for (leakage) power-driven gate sizing. The main contributions of our work are as

follows.

• We use a sensitivity-guided metaheuristic approach based on sequential importance sam-

pling [39] that integrates power and timing optimization, and handles several types of

constraints.

• We define a parameterized space of sensitivity functions for gate sizing and traverse this

space using a multistart technique that naturally lends itself to efficient parallelization on

multi-core and shared memory CPU architectures, and distributed systems.

• We develop new mechanisms that enable close tracking of an external signoff timer (ST)

without undue loss of efficiency.

• We make a choice of internal delay and slew models that permit sufficient calibration to

the external ST.

• We propose benchmark circuits with known optimal solutions for gate sizing.

• The proposed benchmarks resemble real designs in terms of size, path depth (number

of logic stages), and net degree distribution. These parameters are extracted from real

designs. The property of known optimal solution quality is maintained.

3.1 Sensitivity-Guided Metaheuristics for Gate Sizing

Our research reported in this section focuses on large-scale optimization of gate sizes

under realistic circumstances. Our techniques accurately track circuit timing throughout the op-

timization process, ensure the satisfaction of several types of constraints, and identify the gates

with the greatest impact on power-performance tradeoffs. Rather than approximate gate sizing by

continuous convex optimization, as is done in many prior publications, we fully account for the

discrete nature of the problem and the nonconvexities of circuit delay functions. Our optimiza-

tions try not to overlook available opportunities to improve power-performance tradeoffs, but are

also fast and can quickly traverse large regions of the solution space. They are highly modular,

and are organized in a hierarchy where high-level metaheuristics configure and drive heuristics,

which are assembled from lower-level optimization blocks. The lower-level optimizations are in

turn based on high-performance timing and power analysis, constraint repair, search, gain cal-

culations, sorting and prioritization, as well as roll-back. Some of these ideas have been known
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before, but every hierarchical level in our techniques contains some novel elements. Moreover,

in a highly studied and competitive field such as gate sizing, reliable individual components form

only a small fraction of overall success — a larger fraction of success is in the selection, ordering

and composition of these components, as well as the overall flow. Our most important decisions

rely on new insights into large-scale gate sizing and its interaction with design constraints.

3.1.1 Metaheuristics for Gate Sizing

Our proposed heuristic has two stages – Global Timing Recovery (GTR) and Power Re-

duction with Feasible Timing (PRFT). GTR first seeks violation-free (feasible) solutions, and

then PRFT iteratively reduces total leakage power of sizing solutions by local search, as il-

lustrated in Figure 5.4. At each stage of our optimization flow, we parameterize the space of

sensitivity functions, and traverse this space to find the best configurations of sensitivity by in-

dependent multistarts (Figure 3.2). After each multistart, we compare all obtained solutions

and retain the best/non-dominated solutions. This is accomplished by adapting the go-with-the-

winners (GWTW) metaheuristic (Section 2.1.1). However, our optimization is purely determin-

istic in that our multistart procedure begins with the small set of the best-seen solutions, whereas

GWTW is typically randomized. Solutions after each stage are ensured to be feasible, which

enables pruning of dominated solutions by GWTW.

3.1.2 Global Timing Recovery

This stage starts with an arbitrary cell configuration that is incrementally refined by in-

creasing/decreasing gate sizes or downscaling/upscaling threshold voltages. The interaction of

these steps in our implementation has been optimized for the case where the initial solution gen-

erally underestimates optimal power dissipation of individual gates and likely violates timing

constraints. Therefore, we start with timing recovery by upsizing gates or downscaling threshold

voltages. We observe that best-seen solutions for several ISPD-2012 benchmarks configure most

cells at or close to their minimum-leakage configurations (Table 3.3), making minimum-leak-age

configurations for all cells an appropriate initial setting. For benchmarks with tighter timing con-

straints, alternative initial settings may save runtime. However, our optimization techniques are

sufficiently fast and robust to start with minimum-leakage configurations. Empirically, finding

a timing-feasible solution in the “coarse-search” stage of our optimization accounts only for a

single-percent fraction of the total required runtime (Section 3.1.5).

Starting with an underpowered configuration, we seek to generate feasible solutions by
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Figure 3.1: Algorithmic flow of our heuristic for timing recovery (GTR) and leakage reduction
(PRFT).

monotonically (i) increasing cell sizes or (ii) lowering cell threshold voltages (Vt). Both cell

upsizing and Vt downscaling are performed in smallest possible steps; the ordering of these

actions is determined by their sensitivities, which are calculated by impacts on TNS and leakage

power:

sensitivityGTR =
∆TNS

∆leakage powerpower exponent
(3.1)

When estimating the impact of a single cell modification, invoking STA can be computa-

tionally prohibitive. Therefore, we approximate the impact on TNS of a single cell modification

(mk
i ) on cell ci using NPathsi, the number of negative-slack paths that pass through ci. We

define the nearest-neighbor set of ci to be the set of cells that have a driver (fanin) in common

with ci, and Ni to be the union of ci’s nearest-neighbor set and ci itself. Then, we estimate

∆TNS(mk
i ) as

∆TNS(mk
i ) ≈ Σcj∈Ni−∆delaykj ×

√
NPathsj (3.2)

where ∆delaykj is an estimated delay change on cj due to mk
i . This approximation is based on

the fact that any perturbation to cell ci will change the delay of ci, but also can impact the slacks

of other cells that share path(s) with ci (i.e., changing the Vt of ci can change required arrival



29

Stage II

Stage I

[          ,         ]

Search Space

Fine-grain Search

Step Size

∆αFGS ∆ FGSγ

Search Space

Coarse-grain Search

Step Size

(0,     ]init
γ

[          ,         ]∆αCGS ∆ CGSγ

(      ,     )
initγα init

Thresγ

(0,      ]initα
Thresα

[    - /2,    +         /2]αThresiαiα αThres

[    - /2,    +         /2]
i
γ Thresγ

i
γ Thresγ

Best solutions
(    ,   )γ

i
α

i

Best solutions
(    ,   )γ

i
α

i

Best 
solutions

(    ,   )γ
i

α
i

Figure 3.2: Search-range changes during the GTR search procedure.

times (RATs) for its upstream cells, and change actual arrival times (AATs) for its downstream

cells). To account for this, we introduce the factor
√
NPathsj , which reflects the number

of fanin and fanout cells of cj that are affected by the delay change of cj . If this effect is

not accounted for, particularly for cells that are on critical paths, the impact on TNS will be

underestimated. To more accurately estimate the impact on TNS when we resize1 ci, we must

consider all cells inNi, as changing the size will affect the capacitive load on the common driver,

which affects their arrival (and transition) times. Following the empirical observation in [186],

we assume that the propagation of increased transition time can be safely bounded to only the

nearest neighbors.

We sort the changes by non-increasing sensitivity values and commit them in order

(Algorithm 1). Given that each single-cell modification is evaluated assuming other cells are

fixed, the inaccuracies of sensitivity accumulate as multiple cells are changed. Therefore, we

only commit the first γ% of the modifications between two consecutive STA invocations. The

variables power exponent (0 ≤ α ≤ 3.0) and commit ratio (0 < γ ≤ 60%) determine

specific multistart configurations. To effectively reduce the size of the search space, we perform

multilevel search (Figure 3.2). Fine-grain search is performed on non-dominated configurations

from coarser search, but with finer steps and over smaller ranges.

3.1.3 Power Reduction with Feasible Timing

From the Global Timing Recovery (GTR) stage, we obtain a feasible sizing solution with

no timing, slew or maximum capacitance violations. However, the solution can improve further
1Vt changes do not affect the delays of neighboring cells.
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Algorithm 1 Global Timing Recovery (GTR).

Procedure TimingRecovery(α, γ, N)
Input : power exponent 0 ≤ α ≤ 3.0, commit ratio 0 < γ ≤ 60%, netlist N
Output : sizing solution S

1: Set the current solution S with a minimum-leakage setting;
2: Fix maximum capacitance violations; // Section 3.1.4
3: Run STA to initialize slack and delay values for the netlist N;
4: while (!S.feasible() and S.leakage < best seen leakage) do
5: Update NPathsi for each cell instance ci in the netlist N ;
6: M ← ∅; counter ← 0;
7: for each cell instance, ci in the netlist N do
8: if cell ci is upsizable then
9: mk.target← ci; mk.change← upsize;

10: mk.sensitivity ← ∆TNS / ∆leakage powerα(ci, upsize);
11: M ←M ∪ {mk};
12: end if
13: if cell ci is not a LV T cell then
14: mk.target← ci; mk.change← Vt-downscaling;
15: mk.sensitivity ← ∆TNS / ∆leakage powerα(ci, downscale);
16: M ←M ∪ {mk};
17: end if
18: end for
19: while (counter < γ ×M.size()) do
20: Pick a modification mk with maximum sensitivity in M ;
21: Commit mk.change;
22: M ←M \ {mk};
23: counter ← counter + 1;
24: Fix maximum capacitance violations;
25: end while
26: Run STA to evaluate the current sizing solution S;
27: end while
28: if S.feasible() then
29: Update best seen leakage;
30: end if

since some cells are oversized during the timing recovery stage. We reduce leakage power while

maintaining timing feasibility by alternating (i) sensitivity-guided greedy sizing (SGGS), (ii)

slack legalization, and (iii) speeding up bottleneck cells.

Sensitivity-Guided Greedy Sizing (SGGS). SGGS downsizes cells according to sensitivity

while avoiding timing violations. Algorithm 2 presents pseudocode of our SGGS procedure.

In this algorithm, ISTA(ci) is an incremental STA operation (i.e., update of timing analysis)

after cell ci is changed. In ISTA(ci), we start timing and slack updates at the fanin nodes of the

changed cell. From the fanin nodes, transition times and AATs are propagated in the forward

direction, and RATs are propagated in the backward direction.

The SGGS algorithm starts with STA and initializes all timing nodes. Sensitivities are
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Algorithm 2 Sensitivity-Guided Greedy Sizing (SGGS).

Procedure SGGS(SF, S, N)
Input : sensitivity function SF , a feasible sizing solution S, netlist N
Output : sizing solution S with reduced power

1: Run STA to initialize delay values for the given solution S;
2: M ← ∅;
3: for each cell instance, ci in the netlist N do
4: if cell ci is downsizable then
5: mk.target← ci; mk.change← downsize;
6: mk.sensitivity ← ComputeSensitivity(ci, downsize);
7: M ←M ∪ {mk};
8: end if
9: if cell ci is not a HV T cell then

10: mk.target← ci; mk.change← Vt-upscaling;
11: mk.sensitivity ← ComputeSensitivity(ci, upscale);
12: M ←M ∪ {mk};
13: end if
14: end for
15: while M 6= ∅ do
16: Pick a modification mk with maximum sensitivity in M ;
17: S′ ← SaveState(S);
18: Commit mk.change;
19: M ←M \ {mk};
20: ISTA(mk.target);
21: if !S.feasible() then
22: S ← RestoreState(S′);
23: else
24: if cell mk.target is downsizable and not a HV T cell then
25: Recalculate mk.sensitivity;
26: M ←M ∪ {mk};
27: end if
28: end if
29: end while



32

computed for all downsizable cells in Lines 3–14. We consider both gate downsizing and Vt

upscaling for the sensitivity calculation. We define five sensitivities, as summarized in Table 3.1.

Table 3.1: Sensitivity functions for SGGS. SF4 and SF5 appear most successful (Table 3.4),
and our metaheuristic produces better results when using multiple functions.

acronyms sensitivity functions

SF1 −∆leakage power/∆delay

SF2 −∆leakage power × slack

SF3 −∆leakage power/(∆delay ×#paths)

SF4 −∆leakage power × slack/#paths

SF5 −∆leakage power × slack/(∆delay ×#paths)

∆leakage power and ∆delay represent leakage power and cell delay changes after the

downsizing of cell ci. The variable slack represents the slack at the output pin, and #paths is

the number of timing paths that pass through the cell ci. The slack value is positive since the

downsizing is applied to cells with positive slack. #paths is calculated similarly to NPaths in

Section 3.1.2, but including positive-slack paths. SF1 and SF2 have been used in [86] [100]

and [101], respectively. We have added #paths into SF3 and SF4 to favor cells with smaller

impact on the slacks of other cells. SF5 is a hybrid of SF1 and SF2; similar logic is used

in [218], but without considering #paths. In Lines 15–22, we select a cell ci with maximum

sensitivity, and downsize ci or upscale its Vt. We perform incremental timing analysis and check

for violations. If the sizing step creates a timing, slew or maximum capacitance violation, it is

undone. The loop continues until M becomes empty.

Slack Legalization. ISTA achieves a significant speedup over full-netlist STA through propa-

gation of timing changes that are related only to updated instances. We achieve further speedup

by blocking the propagation when changes to timing are below a propagation threshold.2 Due

to this limited accuracy, SGGS can overlook a small number of timing violations. Instead of us-

ing GTR, we use a slack legalization procedure to rectify small timing violations at a small

leakage power cost.

In slack legalization, we first collect cells which are in critical (negative-slack) paths.

These cells are sorted in decreasing order of |∆delay| (delay improvement due to upsizing and

Vt downscaling) and are modified in this order. Unlike GTR, slack legalization tracks slack

changes after each cell modification, and ensures no timing degradation. Let ∆slack(c) be

2By default, propagation threshold is set to 0.1ps. Table 3.2 shows that ISTA runs faster if a higher
propagation threshold is given.
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Figure 3.3: Progression of PRFT on vga lcd fast.

the slack change on output pin of cell c, and Cfi(c) be set of fanin cells of cell c. After the

modification of cell ci, slack legalization restores the change if (i) ∆slack(ci) ≤ 0, or (ii)

∆slack(ci) + Σcj∈Cfi(ci)∆slack(cj) ≤ 0. Slack legalization repeats the sizing until all timing

violations are fixed.

Speeding up Bottleneck Cells. During greedy sizing, we size gates monotonically downward

with lower-size or higher-Vt library cells, but the resulting solution is of course a local opti-

mum. A key obstacle is that we have no timing slack available to allow further gate downsizing.

Therefore, to recover timing slack with the least impact to power, we speed up bottleneck cells,

i.e., cells that participate in many timing-critical paths. We identify these cells by a bottleneck

analysis similar to that provided in EDA tools [29]. We then perturb the converged solution by

assigning larger sizes or lower Vt cells, and then repeat the downsizing procedure.3 To identify

bottleneck cells, we estimate total slack changes by ∆delay ×
√

#paths due to hypothetical

cell upsizing (or Vt downscaling). We commit the first γ% of such modifications with largest

∆total slack, then optimize leakage power with SGGS. Timing violations created by speed-

ing up bottleneck cells or SGGS are removed by slack legalization. To define specific multistart

configurations, we sweep γ from 1% to 5% with a step size of 1%. The iterations (speeding

up bottleneck cells + SGGS + slack legalization) terminate when the solutions stop improving.

Figure 3.3 illustrates the progression of PRFT. Starting with a feasible solution from GTR, PRFT

iteratively reduces leakage power while maintaining timing feasibility.
3This recalls the large-step Markov chain approach [172].
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3.1.4 Handling Capacitance and Slew Violations

Each standard cell can drive a certain maximum capacitance load defined in the library

(e.g., based on the contest library, the maximum capacitance that can be driven by the small-

est four-input NAND gate with high Vt is 3.2fF ). If a cell is overloaded, its output transition

time slows down significantly, resulting in overall degradation of slacks in its fanout cone. In

our heuristic, we remove maximum capacitance and slew violations at every iteration of GTR

(Algorithm 1) by alternating backward- and forward-traversal repair as necessary. During back-

ward traversal, we visit cells in a reverse topological order and continue to upsize driving cells

until capacitance violations for the driving cells are removed or the driving cells reach their max-

imum sizes (whichever comes first). This procedure resolves most of the capacitance violations

in the early iterations of GTR when cell sizes are relatively small. However, in later stages,

cells on certain paths can be saturated at their maximum sizes,4 and we must downsize some of

their fanout cells. Therefore, during forward traversal, we visit cells in a forward topological

order and continue to downsize fanout cells until capacitance violations for the current cells are

removed or all fanout cells shrink to their minimum sizes (whichever comes first). Empirically,

this requires one to two iterations of backward and forward traversals. As this happens, all output

transitions become faster than the maximum slew allowed at the ISPD-2012 Gate Sizing Contest

(300ps).

3.1.5 Analysis of Our Implementation

Our implementation, Trident, is written in C++, compiled with g++ 4.6.2 and validated

on a 3.2GHz Intel Xeon E31230 Linux workstation with 8GB of memory, using four CPU cores.

We compare it to the results of the ISPD-2012 Gate Sizing Contest on the ISPD-2012 benchmark

suite [184]. Timing violations are verified by Synopsys PrimeTime [29], and leakage-power

values are read from the official contest evaluation script [184]. In all experiments, we use the

default settings described in Section 3.1.1.

Trident is a stand-alone tool that includes a built-in static timer and relies only on stan-

dard C++ libraries. Instead of analytical model-fitting, the built-in timer is based on library table

lookups, linear interpolation, and timing propagation. With capacitive modeling of wires used

in the contest, the timer correlates to PrimeTime within 10−3ps precision but runs 60× faster on

average. Table 3.2 compares the runtimes of ISTA and full-scale STA of our timer.
4For instance, if one inverter is driving numerous large cells, even a maximum-sized inverter cannot remove

capacitance violations.
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Table 3.2: Runtime comparisons of full-scale STA (sec) and incremental STA (ms) after
changing the size of one cell.

benchmarks
FSTA ISTA (ms)

(sec) 0ps 0.1ps 0.5ps 1.0ps

dma 0.233 1.495 0.845 0.620 0.508

pci b32 0.271 0.982 0.717 0.388 0.348

des perf 1.108 0.700 0.508 0.471 0.422

vga lcd 1.729 22.75 8.108 7.822 2.069

b19 2.435 5.460 2.717 2.115 1.833

leon3mp 6.746 43.21 2.152 1.542 0.939

netcard 9.751 9.612 2.299 1.940 1.675

geomean 924.58× 2.86× 1.00× 0.77× 0.54×

Running in 3-4 threads, Trident generates feasible solutions for all 14 benchmarks in

83 hours using less than 6.0GB of memory. Our implementation dynamically assigns multistart

configurations to available threads, and therefore it can readily issue more parallel threads as

memory allows. An example runtime breakdown on the netcard slow benchmark is as follows.

GTR takes 31.3% (6.2% coarse search, 25.1% fine-grain search) of total runtime, of which 53%

is spent in full-scale STA, 20% in TNS estimation, and 12% is spent in fixing maximum ca-

pacitance violations. PRFT takes 68.5% (45.4% SGGS, 23.0% perturbing iterations), of which

87.6% is in ISTA. I/O takes 0.2% of runtime.

3.1.6 Comparisons to the State of the Art

Table 3.3 compares Trident to top contestants at the ISPD-2012 Gate Sizing Contest.

Performance results5 for individual teams are quoted from [184]. Trident has found feasible siz-

ing solutions for all circuits in the ISPD-2012 benchmark suite. Compared to the top three teams,

Trident achieves the lowest leakage power for 13 out of 14 circuits (no parameter tuning to spe-

cific benchmarks has been employed). On average, Trident obtains leakage power improvement

of 43%, 16%, 52% versus NTUgs (National Taiwan University), UFRGS-Brazil (Universidade

Federal do Rio Grande do Sul), and PowerValve (National Tsing Hua University and Missouri

University of S&T), respectively. Geometric means are calculated excluding infeasible bench-

marks, which underrepresents the impact of our proposed techniques. All of our runs are finished

within the corresponding hard runtime limits [184]. For further analysis, Table 3.4 provides the
5The contest considered only leakage and not dynamic power.
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Table 3.3: Leakage power (W ) and wall clock time (minutes) on ISPD-2012 benchmarks.

ISPD-2012 contest results (leakage) Trident LPRS [87]

benchmarks # of cells
NTUgs UFRGS

Power
best

leakage after wallclock leakage wallclock

Value GTR PRFT time power time

dma fast (25.3K) 0.511 0.323 0.312 0.312 0.650 0.299 13.9 0.238 0.92

dma slow (25.3K) 0.205 0.158 0.147 0.147 0.211 0.145 9.9 0.132 0.79

pci b32 fast (33.2K) 0.512 0.168 0.226 0.168 0.348 0.183 13.0 0.136 0.92

pci b32 slow (33.2K) 0.203 0.115 0.116 0.115 0.185 0.111 10.2 0.096 0.87

des perf fast (111K) 2.390 3.520 2.320 2.320 7.157 1.842 82.7 1.395 16.37

des perf slow (111K) 0.674 0.884 0.697 0.674 0.922 0.614 70.1 0.570 25.31

vga lcd fast (165K) 0.758 0.580 0.773 0.580 0.685 0.471 45.6 0.413 8.37

vga lcd slow (165K) 0.415 0.378 0.391 0.378 0.454 0.351 87.5 0.328 5.67

b19 fast (219K) 2.7l0 – 4.490 1.040 1.377 0.771 206.5 0.717 11.75

b19 slow (219K) 0.627 0.614 0.736 0.614 0.718 0.583 213.9 0.564 9.15

leon3mp fast (649K) – – 4.940 2.020 1.989 1.487 1323.2 ∗ 1.443 46.62

leon3mp slow (649K) 1.420 1.790 2.960 1.420 1.422 1.341 1274.0 1.334 38.98

netcard fast (959K) 2.010 2.300 2.970 2.010 1.997 1.861 1096.9 1.841 47.41

netcard slow (959K) 1.770 1.970 1.940 1.770 1.818 1.770 299.9 1.763 34.39

geometric mean 1.43× 1.16× 1.52× 1.11× 1.53× 1.00× 0.90×

best parameter values found by our metaheuristics for individual benchmarks. Recently, Flach

et al. [87] have made significant improvements on the ISPD-2012 benchmark optimization us-

ing Lagrangian Relaxation. Their approach shows 10% leakage power improvement over our

results.

Comparing our approach to [186], we note the following.

• The winners of the contest (NTUgs) have implemented algorithms in [186] with additional

improvements, and we include their contest results in Table 3.3.

• Intel released their results for five benchmarks (out of 14 total), where they observed sig-

nificant room for improvement compared to the best contest results. Of these five bench-

marks, we outperform [184] on four, and are slightly behind on one.

Hence, our optimizer appears competitive.

3.1.7 Comparison to Minimum-Leakage Solutions

In addition to reporting achievable results, we estimate available room for further im-

provement. Starting with minimum-leakage configurations for each cell instance, we heuristi-
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Table 3.4: Parameters for GTR and PRFT associated with the best solutions found. This
parameter sweep is included in reported runtimes. SF1–SF5 are described in Table 3.1.

benchmarks
GTR PRFT

α γ (%) SF# γ (%)

dma fast 0.91 24.5 SF5 1.0

dma slow 1.00 10.0 SF5 5.0

pci b32 fast 0.91 34.0 SF4 4.0

pci b32 slow 1.11 36.0 SF5 4.0

des perf fast 0.85 46.5 SF5 1.0

des perf slow 0.83 8.5 SF2 3.0

vga lcd fast 0.70 17.5 SF5 4.0

vga lcd slow 1.00 10.0 SF4 3.0

b19 fast 1.33 16.5 SF2 4.0

b19 slow 1.50 7.5 SF5 1.0

leon3mp fast 0.71 7.0 SF4 1.0

leon3mp slow 0.89 4.0 SF4 2.0

netcard fast 0.57 4.0 SF3 1.0

netcard slow 2.67 4.0 SF3 1.0

cally fix slew and maximum capacitance violations while increasing leakage power by between

5.8% (netcard) and 53.5% (dma). In other words, we estimate the leakage cost of achieving elec-

trical feasibility with respect to only load and slew constraints (ignoring timing). The ratio of

total leakage power of our timing-feasible configurations to that in solutions constructed as just

described gives an indication of the additional leakage penalty needed to fix timing violations.

Table 3.5 shows that for the largest benchmarks the penalty is very small, and our solutions likely

cannot be improved by more than several percent. Benchmarks with tighter timing constraints

(“fast”) require greater leakage penalty to achieve timing feasibility, and this is especially true

for smaller benchmarks. This suggests that the availability of a strong gate-sizer could allow the

tightening of timing constraints for large (power-constrained) designs. Based on leakage power

values in Table 3.3, the last column in Table 3.5 approximates the amount of total negative slack

that can be removed by each doubling of leakage power from the electrically feasible solutions

that we have constructed.
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Table 3.5: Leakage power ratios of electrically feasible solutions to our best solutions. Since
our solutions are (timing) feasible, ∆TNS equals TNS of electrically feasible solutions.

benchmarks minimum leakage ratio ∆TNS
log2Ratio

(µs)

dma fast 0.073 4.08 1.92

pci b32 fast 0.063 2.89 1.95

des perf fast 0.268 6.88 1.31

vga lcd fast 0.303 1.54 31.2

b19 fast 0.522 1.48 11.0

leon3mp fast 1.311 1.15 148

netcard fast 1.766 1.06 216

dma slow 0.073 1.98 3.40

pci b32 slow 0.063 1.75 3.25

des perf slow 0.268 2.29 2.58

vga lcd slow 0.303 1.16 77.4

b19 slow 0.522 1.12 24.2

leon3mp slow 1.311 1.02 643

netcard slow 1.766 1.002 2290

3.2 High-Performance Gate Sizing with a Signoff Timer

In this section, we describe a successful entry from the ISPD-2013 contest that achieves

practical large-scale metaheuristic gate sizing and Vt optimization with a signoff timer (ST) in

the loop.

The software system we describe integrates a number of previously known components

and ideas with new ones. Significant effort was spent on identifying the most pertinent ideas,

techniques and components (the optimization framework, models for interconnect capacitance,

delay and slew, etc.) whose runtime-quality tradeoffs are consistent with the desired perfor-

mance envelope of a high-performance sizer. Another area of major importance is partitioning

the overall optimization into separate stages that pursue specific goals and call for dedicated

components. The handoff between such stages has also been critical to the overall performance.

Given the large amount of computation involved, effective use of parallel-computing resources

is required.

3.2.1 Interconnect Modeling

We now review fast delay models and explain how we have selected models appropriate

for high-performance optimization. A core insight, well understood in the field, is that early
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optimization does not require signoff timing accuracy and can be performed with simpler, faster

delay models. Therefore, we perform empirical studies of known models to assess tradeoffs

between (i) accuracy versus signoff timing, (ii) computation complexity and runtime, and (iii)

impact on sizing results.

Figure 3.4 illustrates basic modeling of interconnects. In Figure 3.4(a), delay from pin

X to pin Y is composed of gate (cell1, cell2) delay and wire (A-B) delay. For the gate/cell

delay calculation, lookup table-based nonlinear delay models (NLDMs) are widely used and

represent functions of input slew and output capacitance in library (Synopsys Liberty) files. With

the NLDM, cell delay and slew estimation from a signoff timer (ST) can be reproduced with

negligible errors. However, incorrect wire slew estimation (in pin B) can lead to large errors in

the slew and delay estimation for cell2.

wire cell2cell1
wire delay

(a)

SA B

A

C

S

B

C(b)

A B

C

S

(c)

v0 v1 v2

v3

v4 v5

C0 C1 C2 C5

C3

R0-1 R1-2

R2-3R3·4 =R0-1 +R1-2

C4

cell3

R2-4

R4-5

wire slew

75%

25%X Y

Figure 3.4: Interconnect modeling; (a) wire between cell1 and cell2, (b) wiring tree with a

Steiner point S, and (c) RC segment tree with RC nodes (N = 5).

Delay Modeling. We consider Elmore delay (EM) [82], D2M [40], and two 2-pole (DM1, DM2)

[133] interconnect models. More complex models, such as PRIMA [182] and RICE [198],

are more difficult to implement and too slow for high-performance gate sizing. Furthermore,

empirical results in Section 3.2.8 show that our modeling is conducive to highly competitive

results.

In an RC tree with nodes v0, ..., vN (v0 is the source) as shown in Figure 3.4(c), let Ci be

the capacitance at node vi for 0 < i ≤ N , and let Rki be the total resistance of the intersection

(overlap) between the unique path from v0 to vi and the unique path from v0 to vk. The Elmore

delay from node v0 to node vi is given by

EMi =
N∑
k=1

Rki × Ck. (3.3)

Elmore delay is the first moment of impulse response and can be inaccurate when there is

a high degree of resistive shielding. Alpert et al. [40] propose the D2M (delay with 2 moments)
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metric which is a simple function of the first two circuit moments, m1 and m2 respectively.

Starting with m0 = 1, the jth moment of the impulse response [40] for node vi is defined as

m
(i)
j = −

N∑
k=1

Rki × Ck ×m
(k)
j−1 (3.4)

Higher moments for each subnode in a net can be calculated by traversing the RC tree recursively.

We can express the delay models in terms of the first and second moments as follows.

EM = −m1 D2M = ln 2
m2

1√
m2

(3.5)

DM1 =
1
2
(−m1 +

√
4m2 − 3m1

2) ln(1− m1√
4m2 − 3m1

2
) (3.6)

DM2 = ln 2
√

2m2 −m1
2 (3.7)

Wire Slew Model. We consider the PERI [135] and scaled S2M [37] models. The PERI model

is given as

PERI(vj) =
√
T 2
vi

+ (ln 9×m1)2 (3.8)

where Tvi and PERI(vj) are the slews at nodes vi and vj , respectively, and m1 is the first

moment of node vj . The S2M model is given as

S2M(vj) =

√
T 2
vi

+ ln 9
√
−m1

4
√
m2

√
2m2 −m2

1 (3.9)

where m1 and m2 are the first and second moments of node vj and Tvi is the slew of node vi.

Capacitance Model. Empirical formulas for delay and transition time of gates depend only on

the input slew rate and a single load capacitance, called effective capacitance, which represents

the cumulative effect of the load. We have implemented McCormick’s effective capacitance

model [173] based on a normalized 2D lookup table. The method is iterative and converges to

an effective capacitance value, but is slower than closed-form delay models. For ISPD-2013

testcases, total capacitances are very close to effective capacitances for more than 85% of nets,

providing sufficient accuracy for our delay and slew calculation in early optimization stages.

Therefore, our calculations of gate delay and transition time use total capacitance instead of

McCormick’s effective capacitance model; this improves runtime without any noticeable loss

of accuracy. Repeated calibration with signoff timing increases accuracy of modeling at later

stages.
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Figure 3.5: Endpoint slack error distribution reported by the signoff timer (x-axis: slack error

(ps), y-axis: percentage of endpoints; testcase: fft fast).

Model Selection. To select appropriate wire delay and slew models, we evaluate the timing

discrepancy between our sizer and the signoff timer. We implement each model for wire delay

and slew, then perform STA on ISPD-2013 benchmarks. Figure 3.5 illustrates endpoint slack

error distributions for several combinations of delay models (EM, D2M, DM1 and DM2) and

slew models (PERI and S2M). Total capacitance is used instead of the effective capacitance

model. The plots show that (D2M, PERI) and (DM1, PERI) exhibit negligible error at around

60% of endpoints, while for other models this statistic is < 50%. The error distribution for the

(D2M, PERI) combined model exhibits smaller mean (-15.9ps) and standard deviation (25.9ps),

which is why we select it for STA. We validate the overall optimization flow in Section 3.2.8 on

ISPD-2013 contest benchmarks with a signoff timer.
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3.2.2 High-Performance Gate Sizing

We follow the general outline of the Trident methodology [111] that is based on stochas-

tic importance-sampling metaheuristics and sensitivity-guided optimization. A major improve-

ment upon [111] is accounting for interconnect delay and additional constraints — both ex-

tensions require the development of several new algorithmic components and closed-loop con-

trol techniques.6 During early optimization stages, our framework performs similar parameter

sweeps (including power exponent and commit ratio) to those in [111], but with coarser steps, so

as to accommodate slower STA and stringent runtime constraints.7 In response to the inclusion

of interconnect delay, sensitivity functions have been revised and additional optimization steps

are developed.

Calibration-Free Early Optimization. Given that calibration with the signoff timer is time-

consuming, we first “warm-up” metaheuristics with a low-accuracy internal timer in order to

optimize parameters of individual search heuristics. When timing constraints are loose, this

stage may be sufficient to produce feasible or near-feasible solutions quickly. In general, it also

enables more effective use of parallel computing resources.

Offset-Based Timing Calibration. Moon et al. [177] introduced the idea of improving the

accuracy of a given STA engine by periodically invoking a signoff timer and storing slack dif-

ferences (offsets) at every timing endpoint. When the STA engine produces new estimates (e.g.,

during optimization), they are adjusted by slack offsets. Following up on this idea, we perform

calibration with the signoff timer at every iteration of heuristic search. We use slack offsets both

in full and incremental STA. As a result, there is a perfect agreement with signoff timing imme-

diately after calibration, but the discrepancy slowly increases as cells are changed during gate

sizing optimization. The frequency of calibration is determined by the maximal fraction of cells

that are allowed to change. We evaluated possible thresholds of 5%, 10%, 15% and 30% of cells

in terms of average slack errors. Figure 3.6 shows the results, e.g., with the 5% threshold we

see that slack errors average < 10ps. Based on these observations, we have chosen 5% and 10%

thresholds for our overall optimization flow.

Dedicated Critical Path Optimization. After GTR attempts to satisfy timing constraints, we

further optimize critical paths by (i) downsizing of non-critical fanout cells, (ii) peephole opti-

mization with Gray codes, and (iii) critical path optimization with heuristics.
6Compared to interconnect delay modeling, cell delay modeling is relatively straightforward with lookup table-based NLDMs.

At the ISPD-2012 contest, most teams implemented fast internal STA engines that exactly matched Synopsys PrimeTime results on
ISPD-2012 benchmarks.

7Thus, further runtime-quality tradeoffs are possible.
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Figure 3.6: The impact of calibration frequency on slack error while sizing fft fast benchmark.

(i) Downsizing of non-critical fanout cells. Large and low-Vt cells can be faster and can help

reducing path delays, but their larger input capacitances degrade upstream slews and delays. The

presence of interconnects aggravates this effect by increasing the overall capacitance. Given both

cell and wire delay increase, upsizing alone is insufficient for reliable timing recovery. Our in-

sight is that downsizing certain non-critical cells can reduce critical path delay. In particular, we

focus on fanout cells of the cells lying on critical paths — downsizing these fanout cells reduces

capacitance driven by critical cells. As a side effect, the delay of those fanout cells increases,

thus they should not themselves lie on critical paths. We select downsizing candidates as fanout

cells of critical path cells c based on the sensitivity function, SFdown = size(c)/Cout(c), where

Cout(c) is the capacitance driven by cell c. If downsizing a candidate cell decreases negative

slack, we restore previous size and continue to the next candidate.

(ii) Peephole optimization using a Gray code. We consider several cells at a time and exhaus-

tively evaluate size combinations within a given radius of current sizes. For example, if three

choices are considered for three cells — one size up, one size down and no change, — then

27 combinations would be evaluated. The use of a Gray code, i.e., traversing all size combina-

tions by modifying one cell at a time, accelerates incremental timing analysis. In particular, our

incremental STA engine performs timing updates faster when the amount of change is smaller.

(iii) Critical path optimization with heuristics. We optimize the delay of critical paths using

several gate sizing methods. Cell delay in the critical path can be reduced in three ways: (a)

increase the drive strength; (b) reduce output loads; and (c) improve input slew. These methods

are implemented into our sizer as described in Figure 3.7, Algorithm 3 and Algorithm 4. In the

procedure, critical paths are enumerated first. Then, a problematic cell that has the largest delay
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Figure 3.7: Critical path optimization with heuristics.

Algorithm 3 Critical path optimization with heuristics (OptCritPath).

Procedure OptCritPath(C)
Input : critical path C
Output : sizing solution S

1: UP GB ← init up gb;
2: DN GB ← init dn gb;
3: curTNS ← TNS;
4: while (TNS < 0) do
5: for each cell instance, ci in the netlist N do
6: m.target← ci;
7: m.sensitivity ← −cellDelay(ci);
8: M ←M ∪ {m};
9: end for

10: while M.size()! = 0 do
11: Pick a modification m with maximum sensitivity in M ;
12: UpsizeCellGreedy(m.target, UP GB);
13: DownsizeFOCellGreedy(m.target,DN GB);
14: Pick the pin p that has the largest input slew;
15: Get fanin cells FIs of pin p;
16: for all cell, fi in FIs do
17: UpsizeCellGreedy(fi, UP GB);
18: DownsizeFOCellGreedy(fi,DN GB);
19: end for
20: M ←M \ {m};
21: end while
22: Run STA to evaluate the current sizing solution S;
23: if prevTNS ≤ curTNS then
24: Decrease DN GB;
25: Decrease UP GB;
26: end if
27: end while

is picked from the most timing-critical path (in Lines 5–9, Line 11). To fix the problematic cell,

cell upsizing (Line 12) and fanout downsizing (Line 13) are tried in turn. Since large input slews
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Algorithm 4 Upsize cells and downsize cells procedures.

Procedure UpsizeCellGreedy(c, UP GB)
Input : target cell c, a guardband for upsizing UP GB
Output : sizing solution S

1: if c is upsizable then
2: Upsize cell c;
3: prevTNS ← curTNS;
4: Run STA to evaluate the current sizing solution S;
5: if ∆slack < UP GB or curTNS < prevTNS then
6: Revert cell c;
7: end if
8: end if

Procedure DownsizeFOCellGreedy(c,DN GB)
Input : target cell c, a guardband for downsizing DN GB
Output : sizing solution S

1: Get fanout cells FOs of cell c;
2: for each cell instance, fo in FOs do
3: if fo is downsizable then
4: Downsize cell fo;
5: prevTNS ← curTNS;
6: Run STA to evaluate the current sizing solution S;
7: if ∆slack < DN GB or curTNS < prevTNS then
8: Revert cell fo;
9: end if

10: end if
11: end for

make large cell delays, we also optimize the fanin cells (Lines 16–19) to improve the input slew.

Each cell sizing is made in a greedy manner, i.e., if the sizing makes a current TNS worse (Lines

5 and 7 in Algorithm 4), then we revert the sizing. Guardbands (UP GB, DN GB) are used

to control cell changes. If the slack improvement (∆slack, Lines 5 and 7 in Algorithm 4) is

not greater than the guardbands, our sizer does not commit the cell change. We have observed

that our sizer cannot find a feasible solution if the cells are oversized too much. Thus, to avoid

the oversizing, we use a larger guardband for upsizing than that for downsizing. In the loop in

Figure 3.7, the optimization might get stuck if there is no cell to change. In this situation, we

decrease the guardband (with the range of -5ps – -10ps) to allow more cells to be changed (Lines

23–25 in Algorithm 3). For the timing analysis, either ST or our timer can be used. Although

our timer gives inaccurate timing estimates (it can be either pessimistic or optimistic depending

on each path), as it is much faster than ST access, we can use our timer at the first round of

optimization and then use ST to obtain accurate timing at the later round of the optimization

procedure.
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Sensitivity Functions. To identify the most promising cells to size, several stages of our op-

timization take into account (i) the direct impact of sizing a given cell on its slack, (ii) the

required increase in leakage power, and (iii) the number of critical paths whose slack is im-

proved. These parameters are combined into a sensitivity score, by which candidate cells are

ranked. Thus, non-critical cells are not considered for upsizing during sensitivity-guided op-

timization, but small cells lying on numerous critical paths (bottleneck cells) are given higher

priority. In practice, no single sensitivity function dominates other functions and the most ac-

curate computations are prohibitively expensive. In Trident [111], the authors approximate the

impact of single-cell changes on total negative slack. Significant efficiency is achieved by only

propagating cell delay, and this abstraction works well for the ISPD-2012 contest infrastructure

where only gate delays are computed. In contrast, the ISPD-2013 contest adds interconnect

considerations and requires more comprehensive delay modeling. In particular, one must model

slew degradation in wires on a timing path and the impact of slew on delay.

To track the impact of single-cell changes more accurately, we calculate slack updates

considering both delay and slew. In our two GTR stages, we account for slack change (∆slack),

the number of paths passing through the cell (#paths), and the change in leakage (∆leakage

power). The latter is raised to power (power exponent) — a configurable parameter for the

sensitivity function (SF).

SFGTR =
∆slack ×#paths

∆leakage powerpower exponent
(3.10)

The PRFT stage uses sensitivity functions from Trident [111].

3.2.3 Overall Optimization Flow

Figure 3.16 introduces our optimization flow. We initially rely on an internal timer. A

multi-threaded metaheuristic optimizes individual parameters of lower-level search heuristics,

similar to the GTR (global timing recovery) stage in Trident [111], but with interconnect delay

models and constraints. The second stage performs timing calibration with the signoff timer

and seeks to produce a feasible solution with respect to signoff timing. This stage also uses

techniques from GTR [111], but is more accurate and more constrained in terms of runtime. The

third stage performs power reduction with feasible timing and roughly corresponds to PRFT in

[111].
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Figure 3.8: Overall optimization flow.

Stage 1. GTR without a Signoff Timer (GTRwoST). This stage seeks to satisfy timing con-

straints with respect to our internal STA engine. Due to discrepancies with the signoff timer,

this solution may not be signoff- feasible. Further improvements will be performed by slower

yet more accurate optimization stages. However, much of the work in exploring the overall so-

lution space is performed at this early stage with a fast timer. Moreover, this stage optimizes

the configurations of sensitivity functions (e.g., power exponent α and commit ratio γ in Trident

[111]) by metaheuristic search based on importance sampling. If a timing feasible solution can-

not be found, guardband (GB)8 is applied until a feasible solution is found with a loose timing

constraint.
8A positive (negative) GB means tighter (looser) timing constraint than the original clock period.
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Stage 2. GTR with a Signoff Timer (GTRwST). With the best parameters from first phase of

GTR, this phase finds a feasible solution based on the signoff timer. To remove the timing dis-

crepancy versus the signoff timer, we calibrate internal slack values as described in Section 3.2.2.

In this step, our sizer tries to find a feasible solution with the GB obtained from GTRwoST. If our

sizer finds a feasible solution, it increases the GB until that the GB is zero or that it cannot find a

feasible solution. If no feasible solution is found in GTRwST, our sizer invokes timing recovery

with dedicated critical path optimization techniques that are discussed previously. The use of

GB helps to avoid excessive oversizing in GTR stages and balance timing paths. If our sizer is

forced to recover timing, it will keep upsizing cells on critical paths more, which might degraded

timing due to side effects (e.g., interconnect delays, large load capacitances). By decreasing GB

to loose timing constraints for all timing paths, the oversizing can be avoided and the slacks of

all paths may become evenly distributed.

Stage 3. Power Reduction with Feasible Timing (PRFT) is performed in two phases. Starting

with the best feasible solution from GTRwST, our sizer performs a sensitivity-guided greedy

downsizing to reduce leakage power subject to timing constraints. The greedy optimization is

attempted with different sensitivity functions, and violations that occur as a result of downsizing

are fixed with timing recovery iterations (upsizing). We keep track of the best seen solution from

different sensitivity functions and carry it over to the second phase (or otherwise, the configu-

ration with the smallest amount of violations). Downsizing occasionally introduces constraint

violations, which we fix on-demand with iterative upsizing, peephole optimization and critical

path optimizations (similar to GTRwST). The latter two optimizations are also capable of im-

proving leakage. The second phase of PRFT uses the most successful sensitivity function from

the first phase and performs additional greedy (down) sizing with kick-moves. Kick-moves de-

scribed in [111] can be viewed as large-step Markov chain (LSMC) optimization [172].

3.2.4 Signoff Timer Interface

Given frequent timing calibration, the interface between the internal timer and the sig-

noff timer must be efficient. ISPD-2013 contest infrastructure [19] includes a file-based interface

that requires saving and reading large files, and starting a new instance of the signoff timer on

each invocation. This interface is particularly inefficient for incremental STA and when per-

forming targeted optimization of critical paths. Instead, we interface with the signoff tool using

a Tcl-socket interface, similar to the one in UCSD SensOpt [35].9 Our interface is illustrated in
9Unix sockets are a standard mechanism for interprocess communication. Commercial signoff timing tools, such as ExtremeDA

GoldTime [10] and Cadence Encounter Timing System [2], provide API access to the core timing engine (e.g., attributes of pins and
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Table 3.6: Results for our sizer (GTR + PRFT) on ISPD-2013 benchmarks in fast mode.

benchmarks leakage (mW) CPU time 1st place team 2nd place team 3rd place team

GTR PRFT total limit leakage CPU leakage CPU leakage CPU

(min) (min) (mW) (min) (mW) (min) (mW) (min)

usb phy fast 1.78 1.60 0.14 48 1.64 0.25 2.63 2.71 1.61 0.58

usb phy slow 1.12 1.08 0.13 48 1.08 0.25 1.09 0.67 1.08 0.40

pci b32 fast 155.39 105.30 2.40 48 112.64 2.91 504.98 48.03 96.11 23.61

pci b32 slow 67.60 60.20 1.80 48 60.17 2.25 136.95 48.02 57.89 9.58

fft fast 678.90 342.10 5.50 48 361.30 6.93 974.60 48.03 224.53 30.54

fft slow 144.40 96.25 3.48 48 98.15 4.1 418.99 48.03 90.32 22.78

cordic slow 1546.30 394.70 25.70 50 563.09 26.16 1961.09 60.06 323.71 49.65

des perf slow 616.40 391.90 19.23 72 395.86 20.48 2823.88 72.26 353.80 67.85

edit dist fast 1260.40 689.90 42.20 84 704.82 44.25 9769.38 84.18 — —

edit dist slow 721.30 487.90 31.60 84 489.47 33.21 7485.66 84.18 90.31 22.78

matrix m slow 1118.48 562.40 77.30 84 570.74 65.17 7540.34 84.16 — —

netcard fast 5764.40 5277.40 190.77 310 — — — — — —

netcard slow 5371.04 5184.20 148.60 310 5371.10 336.30 — — — —

Figure 3.9, including client-server Tcl socket code [32].

When timing calibration is initiated, we launch the signoff timer and open a Unix socket.

An open socket allows a program to send commands (e.g., cell sizing and timing query com-

mands) to the signoff timer and receive data (e.g., updated transition time and slack). Changes

made to gate sizes during optimization (GTR and PRFT) are communicated to the signoff timer,

which returns results of incremental STA used to re-calibrate our internal timer. In our sizer,

communications with the signoff timer are always performed in conjunction with the internal

timer.

3.2.5 Handoff Between Optimization Stages

As noted earlier, each optimization stage in our sizer pursues its own goals, often using

parallel search, and hands off the best solutions found to the next stage. This modularity is

not only convenient for software development, maintenance and testing, but also allows us to

combine optimizations with very different runtime-quality tradeoffs as well as carefully tune

each stage for reliability and performance. Two GTR stages seek violation-free (timing feasible)

solutions; GTRwoST is more computationally efficient than GTRwST, but less accurate. PRFT

stage iteratively reduces total leakage power while respecting timing constraints. Combining

arcs in the timing graph) through sockets.
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Table 3.7: Results for our sizer (GTR + PRFT) on ISPD-2013 benchmarks in normal mode.

benchmarks clock # of cells leakage (mW) runtime leakage from top ranked teams

period GTR PRFT total limit 1st place 2nd place 3rd place

(ps) (min) (min) (mW) (mW) (mW)

usb phy fast 300 608 1.63 1.77 0.14 240 1.61 1.68 6.55

usb phy slow 450 608 1.11 1.07 0.13 240 1.08 1.07 1.12

pci b32 fast 750 30603 145.5 102.52 2.40 240 96.51 106.93 —

pci b32 slow 1000 30603 65.1 59.07 1.80 240 57.89 59.26 77.18

fft fast 1400 32766 592.02 301.84 5.50 240 226.20 321.45 637.81

fft slow 1800 32766 128.01 93.24 3.48 240 90.34 97.71 106.68

cordic fast 2626 42903 3893.34 1098.43 25.70 300 — — —

cordic slow 3000 42903 1546.35 492.16 25.70 300 323.79 443.61 1077.73

des perf fast 1140 113112 3662.49 1498.12 19.23 360 — — —

des perf slow 1300 113112 513.87 368.62 19.23 360 353.00 380.44 2391.83

edit dist fast 3000 126665 1049.54 621.94 42.20 420 596.32 639.01 —

edit dist slow 3600 126665 632.52 466.44 31.60 420 447.40 468.45 —

matrix m fast 2200 156440 4571.79 2339.75 77.30 420 — — —

matrix m slow 2800 156440 957.26 501.58 77.30 420 469.73 512.85 1381.37

netcard fast 2000 982258 5764.43 5278.1 190.77 1650 5317.84 — 19152.00

netcard slow 2400 982258 5371.04 5179.95 148.60 1650 5302.27 5371.10 5245.66

such diverse optimization stages requires particular attention to the handoff between them. Note

that for all of benchmarks where timing constraints were satisfied after GTRwST stage (Table

3.7), GTRwoST finds timing-feasible solutions in eight, and the signoff timer takes < 50%

runtime in those cases. Thus, using our internal timer without calibration during early search is

compatible with later optimization stages, helps reduce runtime and allows the sizer to explore a

larger solution space.

3.2.6 Scalability

Support for Parallelism. The initial search for a timing-feasible configuration (GTRwoST) is

performed in parallel. Our implementation uses up to 16 threads. As these threads are essen-

tially independent, further scalability is mostly limited by memory usage and diminishing returns

in terms of solution quality. While searching for feasible cell sizes/configurations, GTRwoST

identifies best parameters for search heuristics in GTR, as explained in Section 3.1. To exploit

parallelism in further stages, it is important to parallelize invocations of the signoff timer and

have multiple licenses available. The file-based interface provided with the ISPD-2013 contest
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proc accept {sock addr port}
fileevent $sock readable \\

[list svcHandler $sock]
fconfigure ...

set server xx.xx.xx
set chan [socket $server $port]

proc GetData {}
set data [gets $chan]
return $data

proc SendData {data}
puts $chan $data

Figure 3.9: Socket interface between our sizer and the signoff timer: (a) Tcl socket code and

(b) timing calibration using the socket interface.

infrastructure does not support parallel invocation of the signoff timer. We found such extensions

challenging with our socket- based interface as well, mostly due to non- deterministic race con-

ditions. Assuming a reliable infrastructure for parallelism, last- stage local optimizations appear

a priori amenable to parallel execution. However, one must first study runtime breakdown and

identify bottlenecks.

Runtime Breakdown and Bottleneck Analysis. Figure 3.10 shows the runtime breakdown

of our sizer for individual ISPD- 2013 benchmarks and the fraction of runtime taken by the

signoff timer. In both fast and normal modes, difficult netlists such as cordic and edit dist take

longer in GTRwoST because it is harder to satisfy timing constraints, even with respect to our

internal timer. Once a timing- feasible solution is found, GTRwST runtime is less sensitive to

the difficulty of the benchmark, even though GTRwST is much slower due to calibration with

the signoff timer. This trend is also apparent in the percentage contribution of the signoff timer

being comparatively small for these benchmarks in both modes. When GTRwoST does not find

a timing- feasible solution (pci b32 fast, fft *), relatively more time is spent in signoff timer calls.

3.2.7 Comparisons to Prior Research

ISPD- 2012 and 2013 Gate Sizing Contests [184] [185] have dramatically changed the

landscape of research in the field. In particular, the benchmarking infrastructure developed by



52

Figure 3.10: Runtime breakdown for our sizer on ISPD-2013 benchmarks in fast mode (above)

and normal mode (below).

Intel researchers does not have academic precedents in terms of

• using discrete gate sizes and Vt assignment,

• relying on an industry-standard signoff timer,

• increasing the scale of optimization to netlists with hundreds of thousands of cells,

• using realistic technology models (cell timing, drive, power) and timing constraints, and

• imposing capacitance and slew constraints.

UCSD SensOpt [35] uses sensitivity-guided optimization for post-layout discrete gate

sizing. It communicates with an industry signoff timer through a Tcl socket interface. UCLA

OA Sizer [33] implements greedy optimization, linear programming, Lagrangian relaxation and

dynamic programming, while relying on the OAGear-Static-Timer [9]. The two ISPD contests

themselves attracted several dozen research teams from all over the world, but few teams pro-

duced competitive solutions. Consequently, few publications describe relevant algorithms.
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Core optimization techniques used in our work — metaheuristic optimization with im-

portance sampling and sensitivity-guided search — have been developed in [111], and we extend

them. Our implementation runs approximately ten times faster on ISPD-2012 benchmarks than

results in [111] indicate, but results in slightly higher leakage power. Unlike [111], we keep

track of interconnect delay and slew, and per-pin timing slack (plus, offsets with respect to a

signoff timer). Given the relatively simple timing models used in the ISPD-2012 contest, [111]

did not need to directly invoke a signoff timer. Our optimization must invoke a signoff timer that

leads to major structural changes; timing calibration with the signoff timer is required to make

metaheuristics from Section 3.1 successful when interconnects are considered.

The performance of Lagrangian relaxation techniques on ISPD-2012 benchmarks is de-

scribed in [161] [165]. Empirically, runtimes show significant improvement over [111], but at

the cost of increased leakage. Interconnect delay modeling and optimization are not discussed

in [161] [165]. These considerations completely change the nature of the overall optimization,

making it impossible to reliably extrapolate the performance of Lagrangian relaxation to the

ISPD-2013 benchmark suite, as several algorithmic components must be developed to enable a

full comparison.

3.2.8 Empirical Validation

Optimization Trajectories Pursued by Our Sizer. Figure 3.11 illustrates the reduction of nor-

malized worst negative slack (WNS) with GTR iterations during GTRwoST and GTRwST on

multiple ISPD-2013 benchmarks. GTRwoST reduces WNS quickly because many cells can

be upsized to improve circuit delay. Figure 3.12 illustrates the progress of normalized leakage

power with GTR iterations during GTRwoST and GTRwST. When our sizer does not find a fea-

sible solution in GTRwoST in the first 8-10 iterations, leakage power quickly increases with the

number of changes made to cells, but then saturates when few possible cell moves are available.

The Impact of Timing Calibration. We evaluate leakage-power optimization with PRFT in

five cases: (i) frequent calibration (after every 5% of cells change), (ii) one-time calibration

before PRFT, (iii) no calibration, (iv) using a 5ps guardband (GB) without calibration, and (v)

using a 10ps GB without calibration. For each case, Figure 3.13 shows leakage (normalized to

case (i) after timing recovery), total negative slack (TNS) and worst negative slack (WNS) after

PRFT and timing recovery. Frequent calibration achieves smallest leakage power without timing

violations.
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Figure 3.11: Normalized WNS during GTR without (above) and with (right) signoff timer in

fast mode.

Without calibration (Case 3), solutions may be infeasible with respect to signoff timing.

Feasible solutions can sometimes be produced without any calibration by using a guardband

(Cases 4 and 5), but this pessimism will limit leakage reduction. For example, violation-free

solutions are produced with a 10ps guardband for pci b32 fast and 5ps for fft fast, but leakage

power increases by 6% versus frequent calibration, due to the excessive cell upsizing. At the

PRFT stage, WNS and TNS are larger (better) with calibration due to pessimism in our internal

timer (Figure 3.5). One-time calibration exhibits the largest errors in WNS and TNS, suggesting

that the timing discrepancy with the signoff timer increases as more cells undergo size changes.
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Figure 3.12: Normalized leakage during GTR without (above) and with (below) signoff timer

in fast mode.

Comparisons to ISPD-2013 Contest Results. Tables 3.6 and 3.7 report our results on ISPD-

2013 benchmarks and official ISPD-2013 contest results. Our sizer finds violation-free solutions

for all test benchmarks in normal mode. By the primary contest metric (leakage power), our

sizer places between the first- and second-place teams. Our results with the secondary metric

(based on leakage power and runtime) are ahead of the first-place team; we achieve smaller

leakage, spend less runtime, and find feasible solutions on more benchmarks.
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Figure 3.13: The impact of calibration on leakage reduction and timing recovery: (a)

pci b32 fast, (b) fft fast.

3.3 Construction of Realistic Benchmarks with Known Optimal

Solutions

As we have seen, the sizing problem in VLSI design seeks to assign design parameters

(width and/or length and/or threshold voltage) to each gate, so as to optimize timing, area and/or

power of the design subject to constraints. The problem has been extensively studied, and a

number of heuristics have been proposed. However, finding an optimal gate sizing solution is

NP-hard [181], and the suboptimality of sizing solutions has never been adeqautely quantified

and analyzed for existing heuristics. Real circuits have unknown optimal solution quality, and

thus do not shed much light on heuristic suboptimality. On the other hand, artificial circuits with

known optimal solution quality – along with any implications they might have for suboptimality

of heuristics – are viewed as unrealistic. Thus, the need for further research and development on

gate sizing methods has been unclear. In this section, we focus on sizing for leakage reduction,

and propose a new method for generating realistic sizing benchmark circuits with known optimal

sizing solutions, which enables systematic and quantitative comparisons of available gate sizing

heuristics.

For evaluation of CAD heuristics, several methods of generating synthetic benchmarks
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Figure 3.14: Generation of benchmark circuits with known optimal solutions.

that match real designs have been proposed. Darnauer and Dai [76] generate random benchmark

circuits based on Rent’s rule. Their code generates random circuits with a specified number

of inputs, outputs, blocks, terminals per cell, and Rent parameter. Hutton et al. [118] define

properties such as size, delay, physical shape, edge-length distribution and fanout distribution,

and generate combinational circuits to match a given parameterization. Stroobandt et al. [220]

provide parameterized (by Rent exponent and net degree distribution) benchmarks with user-

selected library cells. With these synthetic benchmarks, various CAD heuristics can be compared

to each other, but the suboptimality of the heuristics cannot be measured.

Suboptimality of existing heuristics has been studied for VLSI problems such as syn-

thesis, placement, partitioning, and buffer insertion. Hagen et al. [104] show how to quantify

the suboptimality of heuristic algorithms for NP-hard placement and partitioning problems aris-

ing in VLSI layout. They construct scaled instances from the original problem and execute the

heuristic. If the heuristic solution cost increases at a faster rate than the scaling of the heuris-

tic instance itself, then a lower bound on the heuristic’s suboptimality can be inferred. PEKO

(placement examples with known optimal solutions) [57] and its extension PEKU (placement

examples with known upper bounds) [74] enable estimation of suboptimality of several timing-

driven placement algorithms; the core approach involves perturbing an original design to obtain

a new design with similar topological properties and a known optimal solution.

Our present work builds on the recent work of Gupta et al. [99], which to our knowledge

is the only work in the literature to address suboptimality of (leakage-driven) gate sizing heuris-

tics. The authors of [99] (i) propose eyechart benchmark circuits which can be optimally sized

using dynamic programming methods, and (ii) use eyecharts to evaluate the suboptimalities of

several gate sizing algorithms. However, [99] does not address the difference or similarity be-

tween real designs and eyechart circuits. In [99], the eyechart circuits are built from three basic
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Figure 3.15: Circuit characteristics for two real designs (EXU: OpenSPARC T1 execution unit;

JPEG: JPEG encoder).

topologies – chain, mesh and star – and the resulting topologies differ substantially from those of

real designs in terms of Rent parameter, path length and other parameters.10 Thus, the eyecharts

may be helpful in measuring suboptimality of heuristics, but do not have clear implications for

heuristic performance on real designs. Furthermore, [99] does not provide any automated flow

for eyechart circuit generation.

In this section, we provide more realistic benchmarks with known optimal solutions for

gate sizing problems. Figure 3.14 shows the flow of our benchmark circuit generation. (i) To

create a circuit with known optimal gate sizing solution, we construct multiple chains (for which

optimal sizing solutions can be found by dynamic programming), then connect the chains with

inter-chain nets without affecting the property of having a known leakage-optimal sizing solution.

(ii) During the circuit construction, circuit topology is constrained according to user-specified

parameters (path depth, and fanin/fanout distributions) so that the constructed benchmarks show

similar characteristics to real designs. (iii) The inter-chain connections can be added in many

possible ways, which gives the potential for greater topological diversity than the previous con-

struction of [99].

3.3.1 Benchmark Considerations

For benchmark circuit generation, realism and tractability to analysis are opposing goals

since (i) determining the optimum solution is usually intractable in real designs, and (ii) con-

structions for which optimum solution costs are known are often considered “artificial” [104].

We begin by considering this tension between realism and tractability in benchmark circuits.

First, to construct a realistic benchmark, we must use characteristic design parameters
10Eyecharts used in [99] have large depth (650 stages) and small Rent parameter (0.17). Table 3.11 below shows

that real designs have path depths of 20 – 70, and Rent parameter values of 0.72 – 0.86.
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in the benchmark generation. Many works in the literature classify or parameterize circuits ac-

cording to an empirical power-law scaling phenomenon that governs statistics of interconnects

among and within subcircuits (cf. the well-known Rent parameter or Rent exponent [153]). Dis-

tributions of net degrees, or of the numbers of fanins and fanouts per cell instance, are additional

important circuit characteristics. Figure 3.15 shows circuit characteristics (fanin, distribution,

fanout distribution, average net degree and Rent parameter) of two real design blocks; each

shows different characteristic parameters. In our work, to construct realistic benchmarks we use

four design characteristic parameters: (i) number of primary (PIs and POs), (ii) (maximum) path

depth, (iii) fanin distribution, and (iv) fanout distribution. These four parameters can be con-

figured in advance, and our benchmark generator makes net connections according to the given

parameters subject to a given (setup) timing constraint.

Second, for generated benchmarks to permit known optimal gate sizing solutions, some

simplifications are required. The eyechart work of [99] achieves tractable optimal solutions by

simplifying the cell timing library to eliminate slew dependency. In this work, we consider both

input slew and output capacitance in the library (Synopsys Liberty) characterization, but ignore

interconnect delay. By omitting interconnect delay, it is possible to find an optimal sizing solu-

tion for simple (chain) topologies using dynamic programming (DP). Compared to the previous

eyechart work, we would also like to consider all possible topologies so as to satisfy our goal of

realistic benchmark topologies.

Our key insight is that instead of separating the netlist generation and optimization stages

as in the eyechart approach, we can find optimal cell sizes during the benchmark netlist gener-

ation. We then augment the benchmark circuit without disturbing the existing, known optimal

solution. More precisely: (i) we construct gate-chains to realize a specified number of primary

input/output ports and a specified path depth; (ii) we add fanins and fanouts to cells on the

chains to match given fanin and fanout distributions; (iii) we find optimal sizing solutions for

cells in each chain using DP; and (iv) finally, we connect the chains using connection cells while

preserving the optimal gate sizing solution of each chain.

3.3.2 Benchmark Generation Details

Table 3.8 shows input parameters to our benchmark generation process. To simplify the

procedure, we assume that the numbers of primary inputs and primary outputs are both equal to

N . I and O respectively indicate the maximum numbers of fanins and fanouts to any given cell

instance. Given the five input parameters, our flow generates N chains, each of which consists
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of K cells. We connect the chains using connection cells according to the prescribed fanin and

fanout distributions. The result is a netlist with K × N + C cells, where C is the number of

connection cells.

Table 3.8: Input parameters for benchmark generation.

parameter description

T timing path delay upper bound

N number of primary inputs/outputs

K (maximum) data path depth

fid(i) fanin distribution (# of cells with i = 1, ..., I fanins)

fod(j) fanout distribution (# of cells with j = 1, ..., O fanouts)

To generate the circuit properly, the input parameters must satisfy three constraints.

1. The timing budget T should be larger than minimum delay of a chain of K cells.

2. The total numbers of fanins and fanouts in the circuit should satisfy the equality of Equa-

tion (3.11).

3. The prescribed proportion of single-fanout cells, fod(1), should be larger than the propor-

tion of connection cells since connection cells have only one fanout.

We note that in real circuit designs (such as shown in Figure 3.15), fanout distribution tends to

follow a power law, with fod(1) typically greater than 0.6. Thus the third constraint above can

be easily satisfied in realistic benchmarks.

I∑
i=1

i× fid(i) =
O∑
o=1

o× fod(o) (3.11)

Algorithm 5 describes the procedure of benchmark generation. In the pseudocode,

gate(i, j) represents a gate at the jth stage of the ith chain. Gco is the set of connection cells.

Gfi is the set of gate cells with open fanin ports. DP (Gchain, T ) is a dynamic programming

procedure which finds an optimal cell sizing to minimize leakage power subject to the timing

constraint T . We consider arrival times at the output side of any given gate, e.g., the arrival time

at the output of gate g is denoted by ag. Cell delay along the timing arc of cell g from the input

that is connected to cell c is denoted by dcg. Finally, net delay along the net connecting c and g is

denoted by wc,g.
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Algorithm 5 Netlist generation flow.

Procedure NetlistGen(T, K, N)
Input : timing budget T , number of depths K, number of chains N
Output : netlist with known optimal solution

1: Initialize gate(i, j), where i = 1, ..., N and j = 1, ...,K;
2: Gco ← ∅, Gfi ← ∅;
3: for j = 1 ; j ≤ K ; j ← j + 1 do
4: for i = 1 ; i ≤ N ; i← i+ 1 do
5: Assign fanin number to gate(i, j).fanin;
6: Assign fanout number to gate(i, j).fanout;
7: for k = 2 ; k ≤ gate(i, j).fanout ; k ← k + 1 do
8: Attach connection gate c to gate(i, j);
9: Gco ← Gco ∪ {c};

10: end for
11: if gate(i, j).fanin > 1 then
12: Gfi ← Gfi ∪ {gate(i, j)};
13: end if
14: end for
15: end for
16: for i = 1 ; i ≤ N ; i← i+ 1 do
17: Gchain ← gate(i, j), where j = 1, ...,K;
18: DP (Gchain, T ); // find optimal gate size under T
19: end for
20: Update timing for all gates (gate(∗) and Gco);
21: while Gco 6= ∅ do
22: Select gate c from Gco with maximum arrival time;
23: for each gate g ∈ Gfi do
24: Select gate g with minimum arrival time;
25: if ac + wc,g + dc

g ≤ ag then
26: Connect c and g;
27: Gfi ← Gfi \ {g};
28: break;
29: end if
30: end for
31: Gco ← Gco \ {c};
32: end while
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First, we generate N chains, each with depth K (Lines 1–15), as shown in Figure

3.16(a). For each of the K × N cells, we assign (i.e., instantiate) a gate according to the fanin

distribution fid (Line 5). Cells in the first stage (stage1) should be assigned one-input gates.

Then, we assign the number of fanouts to the output of each cell (Line 6). Cells in the last stage

(stagek) have a single fanout. For remaining cells, the number of fanouts is assigned according

to the fod. We have explored two alternative strategies for the fanin and fanout assignments:

(i) arranged assignment, which assigns larger fanins to later stages and larger fanouts to earlier

stages, and (ii) random assignment, which assigns fanins and fanouts in arbitrary order. The

arranged assignment improves connectability among the chains, while the random assignment

improves diversity of the resulting topology.

Second, we attach connection cells to open fanouts (Lines 7–10), as illustrated by the

red lines in Figure 3.16(a). The number of connection cells, C, is the same as the number of

open fanin ports, as expressed by Equation (3.12).

C = K ×N
I∑
i=1

(i− 1)× fid(i) (3.12)

The fanin number of connection cells follows the fanin distribution (fid). For connection cells

which have more than one fanin, open fanouts in the same stages are connected to the connection

cell (Lines 11–13), as illustrated in Figure 3.16(b).

After attaching all connection cells, we perform dynamic programing (DP) with timing

budget T for each chain (Line 18). The DP finds the optimal gate sizing which minimizes the

leakage power for the chain. After the gate sizing, the sizes of attached connection cells will be

set to minimum possible values since they do not have a timing constraint.

Finally, we connect all connection cells to other cells having open fanin ports (Lines 21–

32). Before connecting them, the arrival time for each cell is computed by static timing analysis

(STA), which is run with the timing budget T (Line 20). Connections between connection cells

and open fanin cells are made only if the timing constraints are satisfied. In Figure 3.16(c), cell

c and cell g can be connected when the arrival time of g via c (ac + wc,g + dcg) is less than the

arrival time of g through the chain path. If timing slack of the connection cell is large, sizing

heuristics can recognize them easily and the problem complexity will be the same as with a

chain topology. To prevent this situation, we minimize timing slack of connection cells when

making connections. Connection cells and open fanin ports are sorted according to their arrival

times. Then, a connection is tried first between a connection cell with large arrival time and

an open fanin port with small arrival time (Lines 22, 24). The connection cells do not change
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Figure 3.16: Netlist generation flow.

the optimal chain solution since they have minimum gate size. If we upsize them, there is no

benefit to the timing slack of the main chain, and the optimal gate sizing of the chain does

not change. Without timing constraints, our algorithm guarantees complete connection between

open fanins and fanouts by virtue of Equation (3.11). With timing constraints, some ports can

remain unconnected, which we address in Section 3.3.4 below. The open input ports are assigned

with logic high (Vdd) or low (Vss) according to the logic type of the cell. This assignment does

not change the optimal solution.

After completing all the connections, we end up with a benchmark circuit ofK×N+C

cells with known optimal gate sizing for minimum leakage. (A small detail: when we use the

generated circuit as a sizing benchmark, we initially assign maximum cell size (with highest

leakage and fastest timing) to each instance, so as to avoid giving the leakage optimization tool

any information about the optimal solution.)

3.3.3 Experimental Setup

Our netlist generator is implemented in C++ and produces a benchmark netlist in Ver-

ilog HDL (.v) with the corresponding delay models (.lib). Two types of delay and power models
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are used from the previous eyechart work [99]11 – (i) LP: linear increase in power with size for

gate sizing context, and (ii) EP: exponential increase in power with size for Vt or gate-length

bias. The LP and EP power models have eight and three gate sizes (i.e., cell variants per mas-

ter), respectively. We also use the delay models (.lib) from the ISPD-2012 Gate Sizing Contest

[184] to generate realistic benchmark circuits. To analyze the problem complexity of gener-

ated netlists, and suboptimality of standard sizing tools, we perform experiments on a 2.8GHz

Linux workstation with 64GB RAM, using six different gate sizing methods – (i) two commer-

cial gate sizing and leakage optimization tools (BlazeMO v2013 [1] and Cadence Encounter

v11.1 [6]);12 (ii) two publicly available academic sizers (a web-available UCLA sizing tool [9]

(Greedy) which greedily swaps cells according to a ∆power/∆delay sensitivity function, and

the UCSD sensitivity-based leakage optimizer [35] (SensOpt) with ∆power × slack sensitiv-

ity function);13 and (iii) two gate sizing programs under the ISPD-2012 contest infrastructure

(Trident [111] and LPRS [87]). To generate realistic benchmark circuits, we use eight ISPD-

2012 testcases. In our experiments, we measure the suboptimality of the various gate sizing

heuristics, defined as

Suboptimality =
powerheur − poweropt

poweropt
(3.13)

3.3.4 Generated Benchmarks

We now present observations regarding generated benchmarks and their difficulty in

power (leakage) optimization. We furthermore compare the benchmarks and real designs in

terms of characteristic parameters. Figure 3.17 shows the schematic of a generated netlist with

10 chains and path depth of 20. In the netlist, chains are connected to each other in arbitrary

order, and various topologies can be found.

A connection between chains can be made when the newly generated path has positive

(or zero) slack with respect to the timing constraint. As a result, some cells in the chain will have

open ports and some connection cells will remain unconnected. If the number of unconnected

cells is large, the generated netlist will deviate from the specified fanin and fanout distributions.

As noted above, to improve the connectability we can assign the larger fanins to later stages,
11According to the authors of [99], EP corresponds to the multi-Vt context, and LP corresponds to the gate-length

biasing context.
12These are referred to as Comm1 and Comm2 below. We do not give the mapping – i.e., which tool is Comm1 and

which is Comm2 – in order to maintain anonymity as required by the tools’ licenses.
13Details of the UCSD SensOpt tool are available at the website [35]. The tool performs post-layout cell swapping

using the Tcl socket interface to a golden STA tool, Synopsys PrimeTime.
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Figure 3.17: Schematic of generated netlist (N = 10, K = 20).

and larger fanouts to earlier stages. However, such an arranged assignment can reduce the

difficulty of the sizing optimization for the benchmark: many connection cells will have loosely

constrained timing (i.e., large slack), and this makes it easy to find the optimal solution. To

consider both connectability and optimization difficulty, we mix the two alternative strategies

– arranged and random assignments – in Algorithm 5, Lines 5 and 6. Table 3.9 shows the

failure rate of connections among chains and problem complexity (suboptimality) according to

the different mixtures of the arranged and random assignments. In the experiment, N and K

values are fixed (40), and the EP power model is used. Suboptimality and runtime are obtained

for the commercial tool (Comm1). The results show that 25% arranged assignments in practice

results in over 99% connectivity, while also affording a sufficient problem complexity (11.2%

suboptimality). The 100% random assignment shows smaller suboptimality (7.7%) for gate

sizing because it results in many unconnected gates (17%). In all experiments reported below,

we use the mix of 75% random and 25% arranged assignments.

Since our benchmark generator makes chains first, then connects the chains to each

other, we have assessed the problem complexity of benchmarks before and after the chain con-

nection. Table 3.10 shows the suboptimality of leakage reduction for the commercial tool and

the greedy method. The results show that the complexity (difficulty) of gate sizing increases

with the number of chain connections. The chain-only structures are easy to solve, and heuris-

tics show small suboptimalities (∼3%). However, with added chain connections, the observed

suboptimality (and inferred instance difficulty) increases significantly.

Table 3.11 shows the characteristic parameters of ISPD-2012 testcases for the bench-

mark generation. The real circuits do not follow the second constraint of our netlist generator



66

Table 3.9: Connectability and complexity (suboptimality) of generated netlists according to
different proportions of arranged and random assignments.

arranged random unconnected subopt. runtime

100% 0% 0.00% 2.6% 108sec

75% 25% 0.00% 6.8% 97sec

50% 50% 0.25% 10.3% 120sec

25% 75% 0.75% 11.2% 225sec

0% 100% 17.0% 7.7% 311sec

Table 3.10: Instance complexities and tool suboptimalities (in percent) for chain-only and
connected-chain topologies.

# of # of chain-only connected

chains stages Comm1 Greedy Comm1 Greedy

(a) EP library

40 20 2.4% 0.3% 10.4% 8.7%

40 40 2.1% 1.3% 10.3% 11.1%

80 20 2.0% 0.5% 10.3% 10.9%

80 40 2.1% 1.3% 9.9% 10.9%

(b) LP library

40 20 1.7 % 3.1% 7.7% 17.9%

40 40 2.4 % 3.5% 12.0% 18.5%

80 20 1.9 % 3.3% 12.3% 19.1%

80 40 2.5 % 3.5% 15.9% 19.6%

(Equation (3.11)) since the numbers of primary inputs and primary outputs are different. For

this reason, we select fanin and fanout distribution numbers that are only similar (not identical)

to those of the real designs when we perform the benchmark generation. From the results, gen-

erated circuits show similar design size, path depth and average fanin (fanout); this offers hope

that our benchmark generation approach can provide realistic benchmark circuits for gate sizing.

3.3.5 Suboptimality of Heuristics

Figure 3.18 (respectively, Figure 3.19) shows suboptimality and runtime of heuristics

(including Comm1) when the number of chains (respectively, number of stages) increases in the
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Table 3.11: Characteristic parameters of real designs and generated benchmarks.

testcase
# of # of clock cycle fanin distribution fanout distribution

cells depth (fast/slow) 1 2 3 4 1 2 3 4 5 6

dma 25K 29 770/900 0.222 0.595 0.082 0.099 0.777 0.059 0.072 0.036 0.008 0.006

pci b32 33K 30 660/720 0.309 0.621 0.037 0.030 0.847 0.045 0.064 0.013 0.004 0.002

des perf 111K 29 735/900 0.353 0.493 0.112 0.040 0.625 0.213 0.073 0.038 0.015 0.011

vga lcd 165K 26 610/700 0.292 0.607 0.034 0.065 0.850 0.031 0.078 0.004 0.001 0.001
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Figure 3.18: Suboptimality and runtime for different numbers of chains N (number of stages

K = 40) with EP and LP libraries.

benchmark circuits.14 From Figure 3.18, we see that the suboptimality increases slightly accord-

ing to the design size, while runtime increases exponentially with the number of chains since the

total number of paths increases rapidly with chain number. When the number of stages increases

(Figure 3.19), the suboptimality increases especially for the Comm1 and SensOpt solvers. We re-

call that the LP library model has a larger number (eight) of sizing candidates than the EP library

model (three). We believe that this is a contributing factor behind the greedy and sensitivity-

based optimizations showing larger suboptimality and runtime with LP library-based instances.

Figure 3.20 shows suboptimality and runtime results when the testcases have different
14The same fanin and fanout distributions have been used for the experiments in Figure 3.18 and Figure 3.19 –

fid: 0.3, 0.6, 0.1, fod: 0.6, 0.1, 0.2, 0.1 .
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Figure 3.19: Suboptimality and runtime for different numbers of stages K (number of chains

N = 100) with EP and LP libraries.

1

10

100

1000

10000

8%

9%

10%

11%

12%

13%

14%

40 80 160 320 640

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 
number of chains 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt) 1

10

100

1000

10000

10%

12%

14%

16%

18%

20%

22%

24%

40 80 160 320 640

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

number of chains 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt)

1

10

100

1000

8%

9%

10%

11%

12%

13%

14%

20 40 60 80 100

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

number of stages 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt) 1

10

100

1000

10000

10%

12%

14%

16%

18%

20%

22%

24%

20 40 60 80 100

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

number of stages 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt)

0.1

1.0

10.0

100.0

0%

2%

4%

6%

8%

10%

12%

14%

1.2 1.6 2 2.4

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

average net degree 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt) 0.1

1.0

10.0

100.0

1000.0

0%

20%

40%

60%

80%

100%

120%

1.2 1.6 2 2.4

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 
average net degree 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt)

1

10

100

1000

10000

8%

9%

10%

11%

12%

13%

14%

40 80 160 320 640

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

number of chains 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt) 1

10

100

1000

10000

10%

12%

14%

16%

18%

20%

22%

24%

40 80 160 320 640

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

number of chains 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt)

1

10

100

1000

8%

9%

10%

11%

12%

13%

14%

20 40 60 80 100

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

number of stages 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt) 1

10

100

1000

10000

10%

12%

14%

16%

18%

20%

22%

24%

20 40 60 80 100

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

number of stages 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt)

0.1

1.0

10.0

100.0

0%

2%

4%

6%

8%

10%

12%

14%

1.2 1.6 2 2.4

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

average net degree 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt) 0.1

1.0

10.0

100.0

1000.0

0%

20%

40%

60%

80%

100%

120%

1.2 1.6 2 2.4

ru
nt

im
e 

(m
in

) 

su
bo

pt
im

al
ity

 

average net degree 

subopt.(Comm)
subopt.(Greedy)
subopt.(SensOpt)
runtime(Comm)
runtime(Greedy)
runtime(SensOpt)

Figure 3.20: Suboptimality and runtime for different average net degrees (number of chains N

= 40, number of stages K = 40) with EP and LP libraries.
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Figure 3.21: Suboptimality and runtime for different timing constraints (number of chains N =

40, number of stages K = 40, average net degree = 2.0) with EP and LP libraries.

topological complexities. To estimate the effect of netlist complexity, we change fanin and fanout

distributions in the benchmark generation, such that each benchmark has a different average net

degree. From the results, we see that suboptimality and runtime increase significantly according

to the design complexity. With average net degree of 2.4 and the LP library, large suboptimality

(> 70%) is apparent for each heuristic.

In addition, we study the effect of delay constraints on suboptimality and complexity.

Figure 3.21 shows suboptimality and runtime results when the testcases are generated with dif-

ferent delay constraints. The testcases have the same topology (number of chains, number of

stages and net degree). However, the suboptimalities achieved by each heuristic differ widely

according to the timing constraint. From the results, netlists with tight delay constraint lead to

greater heuristic suboptimality, especially with the LP library.

Table 3.12 shows suboptimality and runtime results for the generated netlists in Table

3.11. The results show that prevailing sizing methods are suboptimal for realistic benchmark

circuits by up to 76.7%, 22.0% and 271.0% for Trident [111], LPRS [87] and the commercial

tools, respectively. Among the testcases, ng des perf fast shows the largest suboptimality; we

believe that this is a consequence of having a tighter timing constraint than the other testcases.
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Table 3.12: Suboptimality with respect to known optimal solution for generated netlists.

testcases
optimal Trident LPRS [87] Comm1 Comm2

leakage (W ) subopt. runtime subopt. runtime subopt. runtime subopt. runtime

ng dma fast 0.2795 77.20% 121 18.20% 121 111.60% 73 206.30% 24

ng dma slow 0.1326 23.90% 109 8.80% 125 47.40% 104 104.50% 30

ng pci b32 fast 0.5115 60.60% 116 10.30% 118 73.30% 95 163.90% 35

ng pci b32 slow 0.2631 81.00% 114 9.30% 129 77.00% 87 199.20% 41

ng des perf fast 0.8770 76.70% 574 22.00% 970 152.00% 456 271.10% 108

ng des perf slow 0.4329 14.80% 917 8.50% 767 28.90% 497 96.60% 154

ng vga lcd fast 1.9468 74.40% 543 11.10% 1125 75.80% 862 218.10% 161

ng vga lcd slow 0.8647 44.50% 523 7.00% 1078 22.00% 779 105.10% 219

When we compare the results over actual ISPD-2012 testcases (Trident and LPRS results

from Table 3.3), the artificial and real netlists suggest different relative and absolute suboptimal-

ities for the sizing heuristics. We believe that this is for several reasons, notably (i) our enhanced

eyechart-like benchmarks can be more challenging for a given heuristic since they have connec-

tion cells, and (ii) we use the same path depth for each chain, while real circuit will have different

depths for the various critical paths. We continue to explore ways to improve the matching to

results on real designs and real libraries, while maintaining the important property of having a

known optimal sizing solution.

3.4 Conclusions and Future Directions

Thirty years of research on gate sizing have generated a large number of interesting

ideas, but leave unclear how to architect and develop a leading-edge gate sizing tool. Significant

improvements made by recent industry tools [186] suggest that newer, more powerful optimiza-

tion methods could find even better power-performance tradeoffs in practice. This possibility

has been confirmed at the ISPD-2012 Gate Sizing Contest, organized by researchers from Intel

[184], where none of the contestants dominated on the entire benchmark set. Each team excelled

on a small subset of benchmarks, and the best results on some benchmarks have been produced

by teams not in the top three. These data reflect the importance and complexities of the (discrete)

gate sizing problem, as well as the amount of room for further improvement, despite significant

recent progress.

The most sophisticated published techniques for gate sizing are analytical in nature and
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assume continuous sizing and/or Vt assignment, and sometimes implicitly assume convexity in

their optimization approach. These techniques can be frustrated by the combinatorial nature of

discrete sizing and by the nonconvexity of circuit delay caused by side capacitance and tabular

delay lookups. Combinatorial techniques can also be found in the literature, but either do not

scale to large circuits (e.g., branch-and-bound) or remain limited to greedy optimization, which

can become stuck in local optima due to the nonconvexity of delay. Significant progress has

been recently achieved using dynamic programming, e.g., by some ISPD-2012 contestants [186].

However, these techniques may be less efficient on circuits with significant reconvergence, and

may require long runtimes for large circuits or libraries.

In this chapter, we observe that gate sizing retains some aspects of convexity in the

global sense, and that carefully prioritized greedy optimization can bring significant improve-

ment. To this end, we develop several insights into (i) the sensitivity functions that lead to effec-

tive prioritization of gate upsizing and (ii) how these functions can be implemented efficiently.

The best configurations of sensitivity functions apparently depend on circuit structure (depth,

width, number of paths, etc.). Therefore, we parameterize the space of sensitivity functions, and

develop metaheuristics that traverse this space by independently invoking lower-level heuristics

at individual points. This optimization leverages sequential importance sampling from statistical

physics [94], in the form of the go-with-the-winners (GWTW) metaheuristic that was previously

analyzed in [39] and shown to perform on par with simulated annealing. To make this approach

practical, we develop high-performance implementations of individual heuristics.

Empirical results on ISPD-2012 benchmarks, following the ISPD-2012 Gate Sizing

Contest protocol, show that our implementation outperforms the best results recorded at the

contest for all but one benchmark. Our implementation outperforms each individual contestant

by a large margin, but by no means does it give the last word on the subject. Rather, many

opportunities opened by our research remain unexplored, and we foresee that empirical perfor-

mance can be improved further. Such improvements, as well as the ones reported in our work,

will significantly enhance the power-performance tradeoffs in future generations of integrated

circuits.

Our development of a high-performance gate sizing optimization has brought to light

several major challenges, including: major challenges.

• identify interconnect delay models whose accuracy-vs.-complexity tradeoffs are compati-

ble with large-scale optimization;

• develop an internal timer fast enough for move-based optimization, yet accurate enough
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to track a signoff timer;

• satisfy timing, slew and capacitance constraints;

• obtain sharp tradeoffs between timing and power reduction; and

• use parallel computing resources effectively.

In solving these challenges, we have put significant effort into not only individual techniques

and components, but also into the entire system, paying attention to the stability and scalability

of optimization. Our software achieves highly competitive results compared to the ISPD-2013

contest winners. In particular, it outperforms the winners according to the secondary metric and

places between first and second according to the primary metric. Given how recently the ISPD-

2013 contest concluded, it is likely that our ongoing research will yield further improvements in

the near future.

In addition to the gate sizing heuristics, we have proposed a new benchmark generation

technique for gate sizing which constructs realistic circuits with known optimal solutions. Our

generated netlists closely resemble real designs in terms of instance count, path depth, intercon-

nect complexity, and net degree/fanin/fanout distributions; all of these attributes are parameters

of the netlist generation. When we compare our generated benchmarks with real designs, we

also see similarities with respect to other circuit characteristics such as average net degree and

Rent parameter.

Our benchmarks with known optimal solutions enable systematic and quantitative study

of the suboptimality of common sizing heuristics, with respect to key parameters of the circuit

topology. In particular, our experimental results with web-available academic tools and com-

mercial tools show that prevailing leakage-driven sizing methods are suboptimal for realistic

benchmark circuits by up to 76.7%, 22.0% and 271.0% for Trident [111], LPRS [87] and the

commercial tools, respectively. At the same time, our results also show discrepancies between

inferences obtained using our generated circuits and those obtained using real circuits. However,

all of our results suggest that commercial tools may still suffer from significant suboptimality,

and/or that existing methods have “similar” degrees of suboptimality.15 Our ongoing work

seeks to address the above-mentioned discrepancies. In addition, we are working to handle more

realistic delay models, possibly in the context of realistic benchmarks with tight upper bounds

on the optimal gate leakage.
15This being said, we would like to make it clear that our study is not intended to imply or make any value judgment

whatsoever regarding any commercial tools; certainly, it has not been our intent to perform any ‘benchmarking’
through our study.
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Chapter 4

Active-Mode Leakage Reduction with

Data-Retained Power Gating

The use of clock gating and power gating to reduce dynamic power and static leakage

power, respectively, is well-understood by both researchers and IC designers [17]. Clock gating

is considered to be one of the most effective techniques to reduce dynamic power, and its auto-

matic application is supported by EDA tools [45]. Clock gating masks the clock signal when the

corresponding circuits are not performing useful computations. Power gating [213] drastically

reduces leakage power by introducing a switch between the voltage supply (and/or ground) and

a given block of functional circuitry; the block’s leakage is stopped when the switch cuts off the

current path from supply to ground.

To reduce active-mode leakage power, several approaches have been reported which

combine clock gating and power gating [229] [49] [169] [160] [207]. However, these previous

approaches have associated design complexity and overhead issues which limit their practical

implementation.

In this chapter, we propose a new circuit-level technique which enables power gating

of flip-flops during active mode. We combine both clock gating and power gating, such that

flip-flops are power gated during clock masked periods. Our key contributions are as follows.

• The proposed technique enables concurrent clock and power gating, and thus achieves

significant leakage power reduction during active mode.

• We introduce a data retention switch which sustains the voltage level of virtual ground to

retain data in flip-flops.
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Figure 4.1: Proposed circuits to combine clock gating and power gating.

• We provide empirical confirmation of the leakage power reduction achieved by the pro-

posed technique over conventional power gating approaches.

4.1 Data-Retained Power Gating

4.1.1 Integrated Clock and Power Gating

Most commercial logic synthesis tools [7] [26] support automatic insertion of clock gat-

ing logic without any modification of RTL codes. The inserted clock gating logic has clock gat-

ing control and enable signals. Clock signals are transparent during enable periods, and masked

during disable periods. During a given masked period, the state of clock-gated flip-flops stays

unchanged. As a consequence of recent product architectures as well as commercial synthesis

tools’ capabilities, flip-flops are masked for most of a given IC’s operating time [145]. This

offers an immediate motivation: If we could apply a power gating scheme to flip-flops during

this masked period, then we could reduce active-mode leakage power. However, active-mode

power gating requires that internal data state be retained, and according to existing practice, this

requires huge overheads on both operation (e.g., data control to save and restore) and circuit

design (e.g., retention flip-flops).

We introduce a new switch circuit to combine clock gating and power gating as shown

in Figure 4.1. In the figure, the switch consists of two transistors; one is a normal sleep switch

and the other is a retention switch. When the clock gating is disabled, the sleep switch is off.

However, the retention switch induces a threshold voltage drop between virtual ground and real

ground. This voltage drop reduces the operating voltage of flip-flops as well as leakage current.

At the same time, the flip-flops can retain state with the reduced voltage.



76

The idea of a retention switch has been previously proposed by Kim et al. [142]. How-

ever, their technique requires additional layout area to implement N-well for the PMOS transis-

tor. The PMOS can be replaced with an NMOS transistor by connecting the source and gate

terminals to virtual ground. With such an approach, although the virtual ground may rise up to

Vn,t (NMOS threshold voltage), the flip-flops can retain state with reduced leakage.

Figure 4.2 shows HSPICE simulation results for data-retained power gating of a DFQ

flip-flop in TSMC 65GP technology. Figure 4.2(a) shows the voltage of virtual ground according

to the clock enable signal (en). Figure 4.2(b) shows the current (on Vss) of the flip-flop for both

the DRPG and conventional (no power gating) cases. During the clock- and power-enabled

period (en = 1), both cases show the same leakage power consumption. During power-gated

(clock-disabled) periods (en = 0), the proposed retention switch sustains the voltage of virtual

ground as 0.25V, which achieves significant leakage savings (35%). The internal status of logic

can be retained since 0.75V of supply voltage is sufficient to retain the flip-flop data [53].

In the conventional power gating, the voltage of virtual ground goes to supply voltage

upon wake-up, which causes a large inrush current. However, in our approach, inrush current

((x) in Figure 4.2) is small due to the suspended virtual ground voltage, and the inrush current

overhead is compensated during the idle state; charge stored at the virtual ground rail can be

used to supply leakage power ((y) in Figure 4.2).

(a)

(x)(b)

active leakage 
reduction (y)

Figure 4.2: HSPICE results for DFQ (TSMC 65GP) cell. (a) Gated-clock (clk), clock enable
(en) signals and virtual ground voltage (vssv). (b) Current plot on Vss (black: without power

gating, red: DRPG).
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4.1.2 Flip-Flop Implementations

The suspended virtual ground affects the output value of the flip-flop during power gat-

ing. Non-zero output value causes significant leakage overhead on the flip-flop’s fanout cells. To

solve this problem, we add a level-shifter circuit into the flip-flop. Figure 4.3 shows a schematic

of the proposed flip-flop circuit. We add P0, N0 andN1 switches into the conventional flip-flop

circuit to adjust the voltage level of output port (Q).

A conventional level shifter which is placed at the output of the flip-flop has significant

delay and area overhead. For example, HSPICE-measured delay overhead can be over 400ps

in a 65nm LP process at worst corner; such a delay impact cannot be ignored. We observe

that a conventional level shifter changes operating voltage level between two different operating

voltages, while the proposed circuit changes ground level from Vn,th to 0V . In light of this

requirement, the level shifter circuit can be located at the input rather than at the output of the

final buffer. This reduces the delay overhead, and also allows use of minimum transistor size in

the implementation.

When the gate voltage of the Pinv transistor is Vn,th, Pinv turns ON and Q will be

Vdd. Hence, the P0 and N0 transistors turn OFF and N1 is completely ON. Finally, the gate

voltage level of Ninv transistor goes to 0V . On the other hand, when the gate voltage of the

Pinv transistor is Vdd, then the gate voltage of P0 is low and P0 completely turns ON. Hence,

the gate voltage ofN0 will go high and theNinv transistor turns ON. Finally, the output voltage

of the final inverter is 0V and N1 transistors will turn OFF. The transistor ratio of P0||N0 and

N1 should have a large value to minimize delay overhead. We have empirically determined

transistor sizes based on HSPICE simulation results. Since N1 is only used to achieve 0V for

the gate voltage of Ninv, its transistor width is minimum (120nm). Widths of P0 and N0 are

400nm and 200nm, respectively, in the TSMC 65GP process.

With the additional devices, the flip-flop has a delay overhead, which we examine in

detail in Section 4.2.2 below.

4.1.3 Physical Implementation

During standard-cell placement, flip-flops driven by the same clock gating logic are

placed within a bounded region. In other words, since they are tightly coupled to each other

and have the same clock behavior, commercial place-and-route (P&R) tools place them closely

together. In addition, the clock gating logic is placed near its related flip-flop cluster – e.g.,

in the center of the cluster. Thus, a sleep control signal (enable signal of clock gating logic)
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Figure 4.3: Flip-flop implementation with a level shifter. We add P0, N0 and N1 switches to
adjust the voltage level of output port (Q).

requires just one or two buffers to control the sleep switch transistors, and can immediately turn

on the sleep switches. To guarantee the correct operation of DRPG, flip-flops should be woken

up before the arrival time of the clock signal that comes from clock gating logic. The feasibility

of DRPG is validated in Section 4.2.2.

Our data-retained power gating can be implemented with global power gating (data is

not retained) as shown in Figures 4.4(a) and (b) for the header switch and footer switch cases.

For the footer switch case, additional AND gates are required. PGEN is a global power gating

enable signal and CKEN is a clock enable signal. When DRPG is combined with global power

gating, flip-flops will have three modes – (i) active mode (PGEN = 1 & CKEN = 1), (ii)

retention mode (PGEN = 1 & CKEN = 0) and (iii) standby mode (PGEN = 0).16

Some modern design methodologies use multi-bit flip-flop cells, which can reduce phys-

ical design overhead since each can be treated as a single standard cell. This is also amenable

to data-retained power gating by including sleep and retention switch inside as shown in Fig-

ure 4.4(c). A global power gating switch is not included in the standard cell implementation,

and can be connected as shown in Figure 4.4(a). Figure 4.5 shows the physical layout of a four-

bit DRPG flip-flop. In this layout, four DRPG flip-flops share a single sleep switch, which is

controlled by a clock enable signal.
16In standby mode, current paths from supply to ground are cut off with conventional power gating. In this chap-

ter, we do not address advantages and overheads of conventional power gating techniques, since they have been
extensively studied in previous works (e.g., [213]).
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Figure 4.5: Physical layout of a four-bit DRPG flip-flop.

4.2 Experimental Results

To analyze leakage power, cell delay, and functionality of the proposed power gating,

we perform circuit-level and design-level experiments. We implement our data-retained flip-

flop with high Vt (HVT), normal Vt (NVT) and low Vt (LVT), and gate-length biasing, and

evaluate delay and leakage power consumption of the implemented flip-flops (Section 4.2.2).

We compare our data-retained flip-flop and a conventional retention flip-flop when they are used

within a DRPG context (Section 4.2.3). Finally, with design-level implementations, we provide

empirical confirmation of the leakage reduction afforded by DRPG (Section 4.2.4).
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Table 4.1: Delay, leakage and area results of proposed data-retained flip-flops.

flip-flops delay (ns) delay overhead single flip-flop multi(8)-bit flip-flop

Vt cell-type rising falling rising falling
leakage leakage area leakage leakage area

(uW) reduction overhead (uW) reduction overhead

HVT

SDFQ 0.172 0.173 9.5% 19.3% 0.134 33.8% 15.0% 0.735 53.5% 8.0%

SDFCNQ 0.190 0.177 4.3% 18.6% 0.140 36.4% 15.2% 0.750 56.5% 8.1%

SDFSNQ 0.189 0.178 3.7% 19.5% 0.141 35.9% 17.6% 0.756 56.1% 9.4%

NVT

SDFQ 0.142 0.143 12.5% 20.7% 0.377 32.8% 15.0% 2.587 41.7% 8.0%

SDFCNQ 0.168 0.146 14.3% 20.1% 0.416 34.5% 15.2% 2.823 43.9% 8.1%

SDFSNQ 0.148 0.152 11.9% 20.1% 0.422 33.8% 17.6% 2.863 43.3% 9.4%

LVT

SDFQ 0.130 0.124 15.0% 19.1% 0.910 38.8% 15.0% 5.383 45.7% 8.0%

SDFCNQ 0.155 0.127 16.9% 18.7% 0.982 42.0% 15.2% 5.737 49.6% 8.1%

SDFSNQ 0.134 0.132 14.3% 18.2% 1.008 40.7% 17.6% 5.947 48.2% 9.4%

4.2.1 Experimental Setup

For the circuit-level experiments, we implement SPICE netlists of the proposed flip-

flops (Figure 4.3) using TSMC 65GP SPICE models. To measure the cell delay and leakage

power of implemented circuits, we use Synopsys HSPICE vE-2010.12 [27]. For the design-level

experiments, we use 11 open-source designs from the OpenCores site [22]. We use a TSMC

65GP cell library for the design implementation, and timing library models (Synopsys Liberty)

for our data-retained flip-flops are prepared using Cadence Library Characterizer v9.1 [3]. We

synthesize the designs using Synopsys DesignCompiler vF-2011.09 [26] and perform place-and-

route with Cadence Encounter Digital Implementation System v9.1 [6]. During synthesis, we use

the clock gating optimization of DesignCompiler, which inserts clock gating cells automatically.

We execute leakage optimization in DesignCompiler to replace clock-gated flip-flops with our

data-retained flip-flops. After the placement and routing, we perform a post-layout leakage

optimization with UCSD SensOpt.

4.2.2 Circuit-Level Implementations

We implement three types of flip-flops: SDFQ (D flip-flop with scan input), SDFCNQ

(D flip-flop with scan and asynchronous reset signal), and SDFSNQ (D flip-flop with scan and

asynchronous set signal). We also implement HVT (high Vt), NVT (normal Vt) and LVT (low

Vt) versions for each flip-flop. We perform SPICE simulations for the implemented flip-flops

with sleep and retention switches as shown in Figure 4.1. Table 4.1 shows clock-to-Q delay, cell
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SDFSNQD2XLVT 1.25E‐10 1.78E‐10 1.48E‐05 1.20E‐05 1.53E‐05 1.58E‐05
SDFQD2LSLVT 1.61E‐10 1.45E‐10 6.76E‐06 6.01E‐06 1.12E‐05 1.37E‐05 normal FF (LV
SDFCNQD2LSLVT 1.86E‐10 1.48E‐10 6.55E‐06 6.92E‐06 1.14E‐05 1.71E‐05 normal FF (NV
SDFSNQD2LSLVT 1.71E‐10 1.56E‐10 7.98E‐06 5.91E‐06 1.54E‐05 1.58E‐05 normal FF (HV
Flip‐flop rise_delay fall_delay leak0 leak1 onleak0 onleak1 data‐retained
SDFQD2XHVT 1.65E‐10 2.15E‐10 1.67E‐06 1.49E‐06 1.67E‐06 1.67E‐06 data‐retained
SDFCNQD2XHVT 1.94E‐10 2.18E‐10 1.63E‐06 1.81E‐06 1.67E‐06 2.01E‐06 data‐retained
SDFSNQD2XHVT 1.94E‐10 2.18E‐10 1.63E‐06 1.81E‐06 1.67E‐06 2.01E‐06
SDFQD2LSHVT 1.98E‐10 1.95E‐10 8.50E‐07 6.21E‐07 1.69E‐06 1.70E‐06
SDFCNQD2LSHVT 2.33E‐10 1.99E‐10 8.23E‐07 6.77E‐07 1.69E‐06 2.04E‐06
SDFSNQD2LSHVT 2.12E‐10 2.09E‐10 9.25E‐07 5.87E‐07 2.15E‐06 1.96E‐06

leakage reakage area overheadleakage reakage area overhead
SDFQ 0.124 0.132 14.83% 23.01% 0.377 32.80% 14.98% 2.587 41.7% 7.98%
SDFCNQ 0.151 0.136 16.68% 23.20% 0.416 34.53% 15.15% 2.823 43.9% 8.08%
SDFSNQ 0.131 0.141 14.07% 22.40% 0.422 33.83% 17.57% 2.863 43.3% 9.37%
SDFQ 0.150 0.160 11.49% 21.52% 0.910 33.81% 14.98% 0.735 53.5% 7.98%
SDFCNQ 0.182 0.165 12.77% 21.42% 0.982 36.37% 15.15% 0.750 56.5% 8.08%
SDFSNQ 0.168 0.171 4.22% 25.90% 1.008 35.88% 17.57% 0.756 56.1% 9.37%

multi‐bit flip‐flop
multi(8)‐bit flip‐flopdelay delay overhead single flip‐flop
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Figure 4.6: Delay and leakage power comparison for normal flip-flops and data-retained
flip-flops (multi(8)-bit SDFQ flip-flop).

leakage and area information of the implemented flip-flops. Delay overheads, leakage reductions

and area overheads are compared with those of the conventional versions of the flip-flops. The

area overheads include the sleep and retention switches as well as the level-shifter circuit.

We measure the data for both the single flip-flop case and the multi(8)-bit case in which

eight flip-flops share a sleep and retention switch together. We consider the multi(8)-bit case

specifically since most data processing modules treat byte-based data. From the results, our

proposed flip-flops can reduce active-mode leakage power by 36.5% with 15.9% area overhead

on average with the data-retained power gating. When eight flip-flops are implemented in the

same cluster (or multi-bit flip-flop is assumed), we can achieve further leakage reduction with

smaller area overhead by sharing the sleep and retention switches. The area overhead has been

measured with the sleep and retention switches as well as the shifter circuits, and compared with

the area of conventional flip-flops. The clustered (or multi-bit) flip-flops show 48.7% leakage

reduction with 8.5% area overhead, on average. Due to the level-shifter circuit, the proposed

flip-flops have an average of 15.4% delay overhead over the corresponding conventional flip-

flops.

Figure 4.6 shows the delay and leakage comparison for normal flip-flops and data-

retained flip-flops. From the results, our data-retained flip-flop (HVT type) clearly extends the

available tradeoff, and it hence provides more usable options for cell sizing and swapping opti-

mizations. We explore gate-length (Lgate) biasing cases of +2nm and -2nm for each NVT, HVT

and LVT cell. The results show that data-retained flip-flops offer more leakage-delay choices

even when Lgate biasing is available as well. (The LVT data-retained flip-flop will never be used

since it has no leakage-delay benefit over the normal NVT flip-flop.)
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For correct operation during clock-enable periods, the wake-up latency when coming out

of power gating should be less than the delay of the gated clock signal. In Figure 4.7(a), the sum

of EN -to-Q delay in the CG (clock gating) cell and clock tree synthesis (CTS) buffer delays

is typically larger than 200ps. Figure 4.7(b) shows the waveform of the clock enable signal

and virtual ground voltage from SPICE simulation. From the waveform, the voltage of virtual

ground goes to zero within 30ps. This means that the wake-up time of DRPG is sufficiently

fast for correct flip-flop operation. On wake-up, the measured inrush current is 40.2uA (peak),

which is 45% of peak current in the normal power gating case. Power overhead from the inrush

current is compensated as shown in Figure 4.2.
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Figure 4.7: (a) Clock and enable signal connections for data-retained power gating; (b)
waveforms of the clock enable signal and virtual ground voltage.

4.2.3 Comparison with Conventional Retention Flip-Flops

Conventional retention flip-flops retain data during power gating, and can also be used

for DRPG. Figure 4.8 shows a schematic of the live-slave type of retention flip-flop, which

provides power into a slave latch during power gating. If we replace the flip-flop in Figure 4.1

with the retention flip-flop, we do not need to use the retention switch. We can remove the clock-

mask circuit (Figure 4.8(a)) since the clock is masked from the clock gating circuit. To preserve

the proper voltage level at the output port, we should connect real (true) ground to the output

inverter (Figure 4.8(b)).

We have implemented the live-slave type of retention flip-flop as shown in Figure 4.8,

and used this flip-flop for DRPG. Figure 4.9 shows (a) virtual ground voltage and (b) current

results for live-slave retention flip-flop (blue color) and retention switch (red color). From

the results, the conventional retention flip-flop can achieve 25% active-mode leakage reduction
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without delay overhead compared with normal flip-flops. However, as discussed above in Sec-

tion 4.1.1, the voltage of virtual ground goes to near high voltage (Vdd) during the power gating,

and there is significant inrush current when the sleep (footer) switch is turned on. Because of the

inrush current, the conventional retention flip-flop is not suitable for active-mode power gating.

(a)

(b)

slave latch

Figure 4.8: Live-slave retention flip-flop. To use the flip-flop for DRPG, (a) the clock-mask
circuit can be removed, and (b) the output inverter should be connected to the real ground.

(a) clock enable = 0

(b)

Figure 4.9: (a) Virtual ground voltage (vssv) and (b) leakage current for normal flip-flop (green
color), live-slave retention flip-flop (blue color) and power gating with retention switch (red

color).
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4.2.4 Leakage Reduction for Implemented Designs

We implement 11 benchmark designs to assess the active-mode leakage reduction from

our power gating approach. We use multi-Vt (HVT, NVT and LVT) standard library cells in-

cluding data-retained flip-flops (N.B.: recall from Section 4.2.2 above that the LVT data-retained

flip-flop is never instantiated). Three different timing constraints are used – (a) tight (maximum

available frequency), (b) normal (20% longer clock period than the tight constraint), and (c)

loose (50% longer clock period than the tight constraint). Figure 4.10 shows area breakdowns of

combinational logic, non-clock-gated flip-flops, and clock-gated flip-flops for the implemented

designs with the normal timing constraint. From the results, the portion of clock-gated flip-flops

varies according to the designs. Some designs (e.g., AES and CONMAX) do not permit signif-

icant clock gating. However, we can see that most of the designs can use clock gating logic

extensively.

0%

20%

40%

60%

80%

100%

clock‐gated flip‐flops non‐clock‐gated flip‐flops combinational logic

Figure 4.10: Breakdown of area for implemented designs (clock-gated flip-flops,
non-clock-gated flip-flops and combinational logic).

We have applied our power gating technique to the implemented designs. Table 4.2

shows the implemented results and leakage power reduction over the conventional designs,

which do not power gate during active mode. The amount of leakage reduction depends on

(i) the portion of clock-gated flip-flops as shown in Figure 4.10 and (ii) the timing constraints,

which are given in nanoseconds in the table. Designs with smaller proportions of clock-gated
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Table 4.2: Leakage reduction achieved by data-retained flip-flops on benchmark designs
[CG-FF: clock-gated flip-flops].

design
clock # of CG-FFs leakage power (W) leakage reduction

period (ns) normal DRPG flip-flops total flip-flops total

AES

1.15 2 154 3.50E-05 4.55E-04 2.9% 6.5%

1.38 0 156 3.32E-05 2.94E-04 6.4% 2.9%

1.73 0 156 3.10E-05 1.94E-04 5.5% -1.0%

ETH

1.15 140 9936 2.97E-04 1.51E-03 44.0% 2.4%

1.38 64 10012 2.71E-04 7.05E-04 45.8% 12.3%

1.73 21 10055 2.61E-04 4.05E-04 47.5% 23.9%

JPEG

1.25 133 4192 2.08E-04 1.38E-03 54.9% 13.1%

1.50 69 4257 1.63E-04 8.59E-04 38.7% 7.5%

1.88 17 4309 1.26E-04 5.81E-04 43.4% 10.2%

MC

1.25 18 705 4.39E-05 1.10E-04 24.2% 8.1%

1.50 7 716 3.74E-05 7.32E-05 23.2% 11.3%

1.88 3 720 3.02E-05 5.47E-05 49.4% 17.5%

MPEG2

0.95 165 2351 1.12E-04 2.43E-04 31.6% 12.9%

1.14 90 2425 9.86E-05 1.87E-04 38.0% 12.3 %

1.43 48 2468 8.12E-05 1.23E-04 43.5% 23.5 %

PCI

0.95 292 2480 1.32E-04 2.85E-04 33.0% 13.0%

1.14 166 2606 1.17E-04 2.19E-04 30.1% 11.9%

1.43 67 2705 9.29E-05 1.45E-04 35.4% 16.4%

TV80S

1.30 35 307 2.60E-05 1.16E-04 41.6% 9.1%

1.56 28 314 2.32E-05 7.27E-05 35.4% 9.8%

1.95 15 327 1.55E-05 4.78E-05 52.4% 15.0%

USBF

0.95 137 1011 8.49E-05 1.89E-04 25.8% 12.1%

1.14 70 1078 6.21E-05 1.29E-04 27.3% 12.0%

1.43 24 1132 5.06E-05 9.23E-05 29.4% 15.7%

VGA

1.30 0 16643 4.14E-04 1.27E-03 48.1% 11.1%

1.56 1 16642 4.09E-04 6.96E-04 48.7% 21.8%

1.95 4 16639 4.08E-04 5.71E-04 49.1% 25.7%

CONMAX

1.20 146 238 5.21E-05 2.94E-04 -5.9% 1.7%

1.44 83 301 2.80E-05 1.76E-04 16.9% 5.0%

1.80 1 383 2.54E-05 1.22E-04 15.7% 4.3%

DMA

0.75 81 236 3.72E-05 7.04E-05 16.0% 5.7%

0.90 50 267 2.39E-05 4.23E-05 32.5% 17.9%

1.13 9 308 1.63E-05 2.79E-05 39.5% 17.6%
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Figure 4.11: Leakage reduction for different timing constraints – tight constraint (maximum
available frequency), normal constraint (tight constraint + 20% clock period) and loose

constraint (tight constraint + 50% clock period).

flip-flops (e.g., AES and CONMAX) show small (or no) leakage reduction from our DRPG tech-

nique. As shown in Table 4.1, the proposed data-retained flip-flop has delay overhead. There-

fore, we cannot replace normal flip-flops with the data-retained flip-flops if the timing slack is

less than the delay overhead; we only exploit available slack, and do not permit performance

(timing) degradation, i.e., DRPG is not applied to flip-flops in timing-critical paths. Table 4.2

shows that more data-retained flip-flops are used with looser timing constraints. With tight tim-

ing constraints, more flip-flops are in timing-critical paths, and hence fewer flip-flops can be

replaced with the data-retained flip-flops. Moreover, with tight timing constraints, the leakage

contribution of combinational cells increases more than that of flip-flops, since buffer insertion

and gate sizing are mainly performed on the combinational cells. As a result, timing constraint

effects on achievable leakage reduction vary across testcases, as shown in Figure 4.11. We esti-

mate area overheads of the DRPG implementation based on Figure 4.5, and consider additional

areas for DRPG flip-flops and sleep switches in this estimation. As shown in Table 4.2, our

DRPG technique incurs 3.09% area overhead on average.

From the results, we conclude that our DRPG technique can reduce leakage power over

conventional designs by up to 13.1% (average 8.7%), 21.8% (average 11.3%) and 25.7% (av-

erage 15.3%) with tight, normal and loose timing constraints, respectively. We note that these

leakage reductions are for digital portions only. We expect that larger design cases will show

similar leakage reductions as in our current experimental results.
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4.3 Conclusions and Future Directions

In this chapter, we propose a new circuit-level technique which enables power gating of

clock-gated flip-flops during active mode. We combine clock gating and power gating techniques

together, such that the flip-flops are power gated during clock masked periods. We introduce a

retention switch which retains data during the power gating. With the retention switch, cor-

rect logic states and functionalities are guaranteed without additional overheads. With small

area and performance overheads, our proposed technique can achieve significant dynamic leak-

age reduction over conventional designs. Using 65nm libraries and 11 open-source designs,

we demonstrate that the proposed power gating technique can achieve maximum and average

leakage savings of 25.7% and 11.8% over conventional designs.
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Chapter 5

Exploiting Error Resilience in

Low-Power Design

Conventional hardware is designed and optimized using techniques that aim to ensure

correct operation of the hardware under different conditions. Conservative design techniques

seek to ensure correct hardware operation under worst-case conditions. Better-than-worst-case

design techniques [41] save power by eliminating guardbands, but are still aimed at ensuring

correct hardware operation under nominal conditions.

Our research has asked the question: Should the availability of an error-resilience mech-

anism change the way we approach hardware design and optimization? I.e., given that mecha-

nisms exist to tolerate hardware errors, should hardware continue to be designed for correct oper-

ation or should it be optimized for a target error rate even during nominal operation? To address

this question, we propose and evaluate a novel approach to hardware design, called recovery-

driven design. Rather than optimizing for correct operation, a recovery-driven design deliber-

ately allows timing errors [108] [83] to occur during nominal operation, while relying on an

error-resilience mechanism to tolerate these errors. In other words, a recovery-driven design op-

timizes a circuit for a non-zero target error rate that can be gainfully tolerated by hardware- [83]

or software-based [108] error resilience. The motivating expectation behind recovery-driven

design is that the “underdesigned” hardware will have significantly lower power or higher per-

formance than hardware optimized for correct operation. Also, because errors are now allowed,

the design methodology can exploit workload-specific information (e.g., activity of timing paths,

architecture-level criticality of timing errors, etc.) to further maximize the power/performance

benefits of underdesign.

88
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In the first part of this chapter, we show that optimizing power for a target timing error

rate for voltage overscaling-induced errors indeed results in significant power savings for similar

levels of performance. We show that this is true when errors are detected and corrected by a

hardware error-tolerance mechanism [83] or allowed to propagate to an error-tolerant applica-

tion [56] where the errors manifest themselves as reduced performance or output quality [108].

Increasing the target error rate for a processor module increases the potential for power savings,

since the module can be operated at a lower voltage. In practice, the target error rate is chosen

such that an error recovery mechanism can correct the resulting errors and still reduce energy

(after considering the error recovery overhead) for an acceptable degradation in performance or

output quality. The power benefits of exploiting error resilience are maximized by redistributing

timing slack from infrequently-exercised paths that cause very few errors to frequently-exercised

paths that have the potential to cause many errors. This reduces the error rate at a given voltage,

and hence reduces the minimum supply voltage and power for a target error rate.

We present a detailed evaluation and analysis of a slack redistribution-based recovery-

driven design methodology that minimizes the power of a processor module for a target error

rate. Our cell sizing-based, design-level methodology has been used to create recovery-driven

processors that are optimized for different target error rates or error-resilience mechanisms.

Since some error-resilience mechanisms (e.g., error-tolerant applications) require adaptation to

multiple reliability targets, we have also extended our recovery-driven design approach to create

gradual slack designs – designs that are optimized not for a single error rate, but for a range of

error rates. Such gradual slack designs (or soft processors) have the ability to trade performance

or output quality for energy savings over a range of reliability targets.

The second part of this chapter focuses on the cost of error tolerance in the chip imple-

mentation context. Error-tolerant design can reduce design constraints by allowing timing errors,

and obtain power and area benefits over conventional designs which always operate correctly.

However, the error-tolerant design requires additional circuits to detect and correct timing errors.

Figure 5.1 shows the structure of three error-tolerant register designs: (a) Razor flip-flop [83],

(b) Razor-Lite flip-flop [143], and (c) TIMBER flip-flop [69]. The Razor flip-flop has an ad-

ditional shadow latch and other error-tolerant circuits (comparator, multiplexer and OR gate).

When compared to a conventional flip-flop, the total power overhead of the Razor flip-flop is

30% [77]. The overhead of additional circuits will diminish the benefit of error-tolerant design,

and we must ensure that the benefit (in terms of area and power reduction from the error re-

silience) outweighs the additional cost of error-tolerant registers. With this in mind, the second
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part of this chapter develops a design flow that optimizes the mix of resilient and non-resilient

circuits within a given implementation, so as to minimize the overhead of error resilience.

Figure 5.1: Structure of error-tolerant registersr: (a) Razor flip-flop [83], (b) Razor-Lite
flip-flop [143], and (c) TIMBER flip-flop [69].

We make the following contributions in this chapter.

• To the best of our knowledge, we present the first design flow for power minimization that

deliberately allows errors under nominal conditions. We demonstrate that such a design

flow can result in power savings of 11.8%, on average, over all modules and error rate

targets, and up to 29.1% for individual modules.

• We explore the heuristic choices and tradeoffs that are fundamental to the optimization

quality of slack redistribution-based, recovery-driven designs. Within the context of the

heuristic presented in Section 5.1.3, we evaluate choices for path priority and traversal

during optimization, optimization radius, accuracy of path selection, error budget utiliza-

tion, starting netlist, voltage step-size granularity, and iterative optimization in terms of

their effects on the optimization result, heuristic runtime, and sensitivity to target error

rate.

• To support the proposed recovery-driven design flow, we present a fast and accurate tech-

nique for post-layout activity and error rate estimation. We use collected functional in-



91

formation to redistribute slack efficiently in a circuit and significantly extend the range of

voltage scaling for a target error rate.

• We extend our recovery-driven design methodology to create recovery-driven processors

(processors that are optimized for different target error rates or error recovery mechanisms)

and soft processors (processors that are optimized for efficiency over a range of target error

rates). We demonstrate the power and energy benefits of such processor designs.

• We demonstrate that the power benefits of recovery-driven processors and soft proces-

sors increase when a hardware- or software-based error-resilience mechanism is used. We

consider Razor [83] and application-level noise tolerance [234] as examples and show ad-

ditional energy reductions of 19% and 20% with respect to the best correctness-optimized

processors that exploit the same error-resilience mechanisms.

• We propose a selective-endpoint optimization in error-tolerant design that reduces timing-

critical endpoints with small cost of timing optimization. With the optimization, we can

replace the error-tolerant registers and minimize the overhead of error resilience.

• We propose a clock skew optimization which adds a guardband to normal registers without

changing data path circuits. This optimization can improve reliability and robustness over

process, voltage and temperature variations.

• We also analyze the effectiveness of our proposed optimizations across a range of error-

resilience scenarios having different overheads and safety margins associated with the

error-tolerant register.

5.1 Recovery-Driven Design

In this section, we propose a recovery-driven design approach that optimizes a processor

module for a given target timing error rate instead of correct operation. We show that significant

power benefits are possible from a recovery-driven design flow that deliberately allows errors

caused by voltage overscaling to occur during nominal operation, while relying on an error

recovery technique to tolerate these errors. We present a detailed evaluation and analysis of such

a CAD methodology that minimizes the power of a processor module for a given target error

rate.
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5.1.1 Motivation

The goal of recovery-driven design in the context of voltage overscaling can be stated

formally as follows. Given an initial netlist N0, a set of cell libraries characterized for allow-

able operating voltages, toggle rates for the toggled paths in the netlist, and a target error rate

ERtarget, produce the optimized netlist NVopt and operating voltage Vopt that minimize the total

power consumption WVopt of the circuit, such that the error rate of the optimized netlist does not

exceed ERtarget. Figure 5.2 demonstrates the goal. Our recovery-driven design optimization

redistributes slack from infrequently-exercised paths to frequently-exercised paths and performs

cell downsizing for average-case conditions. These optimizations reduce the power consump-

tion of a circuit and extend the range that voltage can be scaled before a target error rate is

exceeded. The combination of these factors produces a design with significantly reduced power

consumption.

In the following, we present a cell sizing-based design methodology that relies on ef-

ficient redistribution of timing slack from infrequently-exercised critical paths to frequently-

exercised paths to reduce the error rate at a given voltage, allowing a reduction in voltage for a

given target error rate.
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Figure 5.2: The goal of recovery-driven design.

5.1.2 An Abstract Heuristic for Power Minimization

Our heuristic for slack redistribution-based power minimization uses a two-pronged ap-

proach – extended voltage scaling through cell upsizing on critical and frequently-exercised

circuit paths (OptimizePaths), and leakage power reduction achieved by downsizing cells in non-
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Figure 5.3: The slack distribution during the power minimization procedure.

critical and infrequently-exercised paths (ReducePower). The heuristic searches for the combi-

nation of the two techniques that results in the lowest total power consumption for the circuit,

by performing path optimization and power reduction at each voltage step and then choosing the

operating power at which minimum power is observed.

Figure 5.3 illustrates the evolution of the circuit path slack distribution throughout the

stages of the power minimization procedure. Each iteration begins with voltage scaled down by

one step (a). After partitioning the paths into sets containing positive- and negative-slack paths,

OptimizePaths attempts to reduce the error rate by increasing timing slack on negative-slack

paths (b). Next, the heuristic allocates the error rate budget by selecting paths to be added to the

set of negative-slack paths, and downsizes cells to achieve area/power reduction (c). This cycle is

repeated over the range of voltages to find the minimum power netlist and corresponding voltage

(d). In Figure 5.3, P+ is a set of paths that must have positive slack after power reduction, and

P− is a set of paths that are allowed to have negative slack. We ensure positive slack for P+

paths by characterizing timing with worst-case libraries.

Figure 5.4 presents the algorithmic flow of our power minimization heuristic, which

couples path optimization to extend the range of voltage scaling (OptimizePaths) with area min-

imization to achieve power reduction (ReducePower). In the figure, Pa is the set of all paths

toggled during simulation. Pp is the set of all positive-slack paths. Pn is the set of all negative-

slack paths in Pa. χtoggle(p) is the set of cycles in which path p is toggled.
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Figure 5.4: Algorithmic flow of a heuristic for minimizing power for a target error rate.

5.1.3 Heuristic Procedures

Path Optimization. The goal of the path optimization procedure (OptimizePaths) pre-

sented in Algorithm 6 is to minimize the error rate at a voltage level by transforming negative-

slack paths into positive-slack paths. This is accomplished by performing cell swaps within the

negative-slack paths to increase path slack. Negative-slack paths with maximum toggle rates are

selected first during optimization, since they have the most potential to reduce the error rate if

converted into positive-slack paths.

When a path is targeted for optimization, cell swaps are attempted on all cells in the

path to increase slack as much as possible until positive path slack is achieved.17 Once a cell has

been visited during optimization, it is marked to prevent degradation of timing slack on any path

containing the cell. Before accepting a cell swap, path slack is checked on all paths containing

that cell or any visited fanin/fanout cell. If the swap has caused a decrease in slack for any such
17We consider only setup timing slack, since hold violations can typically be fixed by inserting hold buffers in a

later step.
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path, the move is rejected, and the original cell is restored. Previously optimized (visited) fanin

and fanout cells are protected from slack decrease because they belong to paths that have higher

toggle rates and, thus, higher priority of optimization. If cell swaps on a path fail to shift the path

back into the set of positive-slack paths, then the path is ignored during subsequent iterations of

path optimization.

Any cell swap that increases the error rate (by causing a path to switch from the set of

positive-slack paths to the set of paths allowed to have negative slack) is rejected. Otherwise, we

recompute the sensitivity of the swapped cell and all cells in its fanin / fanout network and select

the next cell for downsizing.

Algorithm 6 Path optimization (OptimizePaths) procedure.
Procedure OptimizePaths(P,NVi

, Vi)
Input : timing paths P, netlist NVi

, operating voltage Vi

Output : optimized netlist NVi

1: Clear ‘visited’ mark in all cells in the netlist NVi
;

2: while P 6= ∅ do
3: Select path p from P with maximum toggle rate;
4: for each cell c in path p do
5: if c.visited == true then continue;
6: c.visited← true;
7: for each logically equivalent cell m for the cell instance c do
8: Resize cell c with logically equivalent cell m;
9: Q← {c} ∪ {visited fanin and fanout cells of c};

10: for each path q in P that contains a cell in Q do
11: if ∆slack(q, c,m, Vi) < 0 then restore cell change;
12: end for
13: end for
14: end for
15: P ← P \ {p};
16: end while

Power Reduction. After path optimization, the error rate of the circuit is minimized at the

present voltage. From this state, we proceed to minimize the power at the present voltage by

utilizing the available error rate budget. Algorithm 7 (ReducePower) describes our power reduc-

tion procedure. The goal of the power reduction heuristic is to efficiently allocate the remaining

error budget to infrequently-exercised paths in order to maximize power reduction achieved by

cell downsizing. Typically, cells on P− paths can exploit additional downsizing, because these

paths are not bound by the normal timing constraints for the circuit.

The first step in power reduction is to choose additional paths to become negative-slack

paths until the target error rate of the circuit is matched. Paths are selected in order to minimize

the additional contribution to the error rate of the circuit. After defining the partition between
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Algorithm 7 Power reduction (ReducePower) procedure.

Procedure ReducePower(Pp, Pn, NVi
, Vi, ERtarget)

Input : positive-timing paths Pp, negative-timing paths Pn, netlist NVi
, operating voltage Vi, target

error rate ERtarget

Output : optimized netlist NVi

1: P+ ← Pp and P− ← Pn;
2: while P+ 6= ∅ do
3: Select path p from P+ with minimum ∆ER(p);
4: ER← ComputeErrorRate(P−);
5: if ER ≤ ERtarget then
6: P− ← P− ∪ {p}; P+ ← P+ ∪ {p};
7: else
8: break;
9: end if

10: end while
11: Insert all downsizable cells into set C;
12: ComputeSensitivity(C,NVi

, Vi,−1);
13: while C 6= ∅ do
14: Downsize cell c from C with minimum sensitivity(c);
15: Q← {c}∪ {fanin and fanout cells of c};
16: for each path p in P+ that contains a cell in Q do
17: if slack(p, Vi) < 0 then
18: Restore cell change;
19: C ← C \ {c};
20: continue while loop;
21: end if
22: end for
23: ComputeSensitivity(Q,NVi

, Vi,−1);
24: if cell c is not downsizable then
25: C ← C \ {c};
26: end if
27: end while

negative- and positive-slack paths, cell downsizing is performed for all cells in the circuit in

order of minimum sensitivity. We define the sensitivity of a cell in Equation (5.4) as the change

in cell slack (∆sc) divided by the change in cell power (∆wc) when the cell c is downsized by

one size. The slack of cell c is defined as the minimum slack on any timing arc containing c. The

power of cell c is the sum of static power (wstat(c)) and dynamic power (wdyn(c)) for the cell.

This formulation of sensitivity is similar to those proposed by previous works targeting leakage

power reduction [100] [102].

sensitivity(c) =
sc − sc′
wc − wc′

, where wc = wstat(c) + wdyn(c) (5.1)
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5.1.4 Path Extraction and Error Rate Estimation

Path Extraction. Our heuristic has many path-based procedures – OptimizePaths, Reduce-

Power, and ComputeErrorRate – and it is impractical to consider all of the topological paths in

these procedures. Therefore, we reduce the number of paths that we consider by extracting only

paths toggled during functional simulation. The value change dump (VCD) file can be used to

extract toggled paths. To produce a VCD file, we perform gate-level simulation with Cadence

NC-Verilog [5] at a frequency slow enough to capture all possible signal transitions. Figure 5.5

shows an example VCD file and the path extraction method. The VCD file contains a list of

toggled nets at each time when a transition occurs, as well as their new values. We can use

this information to extract toggled paths in each cycle. Glitched or toggled nets in each cycle

are marked, and these nets are traversed to find toggled paths. We detect a toggled path when

toggled nets compose a connected path of toggled cells from a primary input or flip-flop input to

a primary output or flip-flop output. In Figure 5.5, nets a, x, and y have toggled in the first and

third cycles (#1, #3), and nets b and y have toggled in the second and fourth cycles (#2, #4). We

extract two paths: a −→ x −→ y and b −→ y.

Toggle Rate and Error Rate Estimation. In order to accurately minimize power for a target

error rate, we must be able to produce accurate estimates for error rate during our optimization

flow. Thus, we propose a novel approach to error rate estimation that enables design for a target

error rate.

We calculate the toggle rate of an extracted path using the number of cycles in which

the path toggles. χtoggle(p) represents the set of cycles in which path p has toggled during the

simulation. TR(p) represents the toggle rate of path p and is defined as

TR(p) =
|χtoggle(p)|

Xtot
(5.2)

where |χtoggle(p)| is the number of cycles in which path p has toggled, and Xtot is the total

number of cycles in the simulation. Using the toggled cycle information of negative-slack paths,

we can calculate the error rate precisely. The error rate (ER) of the design is calculated as

ER =
|
⋃
p∈Pn

χtoggle(p)|
Xtot

(5.3)

where Pn is the set of negative-slack paths in the set of all toggled paths. In Figure 5.5, if paths

a −→ x −→ y and b −→ y both have a toggle rate of 0.4 (number of toggled cycles is 2, and

total number of cycles is 5), and if path a −→ x −→ y has negative slack, then timing errors

will occur in cycles #1 and #3. Therefore, the error rate is 0.4 for this example.
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Our novel technique for error rate estimation has proven to be much faster than func-

tional simulation and more accurate than previous estimation techniques. Results comparing our

VCD-based technique to functional simulation and previous estimation approaches can be found

in [128].
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Figure 5.5: VCD file format and path extraction.

5.1.5 Heuristic Design Choices

In this section, we discuss heuristic design choices.

Experiment 1: Path Ordering During Optimization. The order in which we select paths for

optimization affects the optimization result, since we prevent cells from being visited multiple

times during optimization. The order also matters because we protect previously optimized

paths from slack degradation due to other attempted cell swaps, as previously optimized paths

have a higher optimization priority. We evaluate two prioritization functions for path selection

during optimization. The first ranks paths in order of decreasing toggle rate TR(p). Paths with

the highest toggle rates have the greatest potential to decrease error rate when optimized. We

compare against a function that ranks paths in order of decreasing value of TR(p)/|slack(p)|.
In this alternative, we prefer paths with smaller negative slack, since the least effort is required

to convert these paths into positive-slack paths.

Experiment 2: Optimization Radius. The goal of optimization is to maximize the slack of a

targeted path through cell swaps. We evaluate two alternatives for the radius of optimization. In

one case, we only swap cells on the target path. In the second case, we target both the cells on

the path as well as cells in their fanin/fanout networks, since swaps in the fanin/fanout network

can also affect cell slack.

Experiment 3: Path Traversal During Optimization. When optimizing a path, the order in

which cells are visited can have an effect on the optimization result, since cell swaps affect input
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slew and output load. We consider two options – traversal from front to back, and traversal from

back to front. We iterate over the cells in a path and make swaps until there is no further increase

in the path slack.

Experiment 4: Accuracy of Path Selection During Power Reduction. During power reduc-

tion, positive-slack paths are selected to be added to the set of paths allowed to have negative

slack, thus utilizing the available error rate budget. Paths are prioritized in order of increasing

incremental contribution to error rate, ∆ER(p). However, after moving a path from P+ to P−,

∆ER(p) can change for paths that shared error cycles with the moved path.

To obtain precise ordering in terms of error rate contribution, we can update ∆ER(p)

dynamically after each path selection. However, this introduces a runtime overhead, since we

must continuously update ∆ER(p) for all remaining P+ paths. We compare such precise pri-

oritization against the alternative case where ∆ER(p) is calculated only once for all P+ paths

before path partitioning.

Experiment 5: Error Rate Budget Utilization. During power reduction, the final error rate

after cell downsizing could be less than the target error rate, ERtarget, since some paths in P−

might still have positive slack, even after maximum downsizing on the path cells. In this case,

we might continue to reduce the power of the design by selecting more paths to add to P− and

downsizing cells again. We evaluate two cases – one where a single pass is performed for path

selection and cell downsizing, and one where the ReducePower procedure is repeated until there

is no further reduction in power (i.e., repeat ReducePower whenever some paths added to P−

still have positive slack after cell downsizing).

Experiment 6: Starting Netlist. Here, we evaluate heuristic performance for different starting

netlists corresponding to loose (clock period increased by 10%) and tight (clock period reduced

by 40%) timing constraints. This can significantly affect the final voltage reached, the depen-

dence on ECO, and the amount of power savings afforded by the power minimization algorithm.

Experiment 7: Voltage Step Size. In each iteration of the power minimization heuristic, we

step down the voltage by a value Vstep and run the OptimizePaths and ReducePower procedures

to produce a netlist for the present level of voltage scaling. The size of Vstep can influence the

optimization result and runtime of the heuristic. Thus, we compare two values of Vstep – 0.01V

and 0.05V – and compare the characteristics of the final netlist as well as the heuristic runtime.

Experiment 8: Iterative (Incremental) Optimization. In each iteration of the heuristic, we

perform optimization of negative-slack paths at that voltage level. At the next iteration, we have
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a choice between starting from the latest optimized netlist (NVi−1) or the original netlist (N0).

We compare the results produced with each alternative to expose any systematic differences in

power and runtime characteristics.

5.1.6 Gradual Slack Design

We extend our design methodology to implement another form of recovery-driven de-

sign called gradual slack design [129], which reshapes the slack distribution of a processor to

create a gradual failure characteristic, rather than the typical critical wall. While error rate-

optimized, recovery-driven designs achieve better energy efficiency at a single target error rate,

gradual slack designs have the ability to trade reliability, throughput, or output quality for energy

savings over a range of error rates. Figure 5.6 illustrates the optimization approach for gradual

slack design. The goal of the ‘gradual slope’ slack optimization is to transform a slack distri-

bution having a critical ‘wall’ into one with a more gradual failure characteristic. This allows

performance–power tradeoffs over a range of error rates.

To achieve a gradual slack distribution with our recovery-driven design flow, we do not

optimize for a single target error rate by selecting P− paths. Instead, we select the maximum

target error rate corresponding to the desired range of scalability, and optimize only the negative-

slack paths in the scaling range with the highest switching activity, in order to maximize the range

of voltage scalability for target range of error rates. We downsize only cells that have negligible

activity so that the slack distribution for the active paths and the error rate of the processor are

not affected. In this way, we maintain the desired gradual sloping slack distribution rather than

creating a critical wall distribution with a cluster of active paths in the permanent negative-slack

region.
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5.1.7 Processor Power Reduction

Algorithm 8 Processor-level design heuristic.

Procedure OptimizeProcessor (ERtarget, MODULES, DOMAINS)
Input : target error rate ERtarget, design modules, voltage domains
Output : optimized design modules

1: for each module m in the optimization list of MODULES do
2: for each error rate ER < ERtarget do
3: PowerOptimizer(N(m), ER);
4: end for
5: Use the results from PowerOptimizer to characterize Pm(V,ER);
6: end for
7: for each voltage V ∈ Vrange do
8: Minimize Pcore(V ) = Σ(Pm(V,ER)) s.t. ERcore(ERmodule1 , ..., ERmoduleM

) ≤ ERtarget;
9: Record minimum power Pmin

core (V ) and module error rate assignment
S(V ) = [ERmodule1 , ..., ERmoduleM

];
10: end for
11: Select the voltage Vopt at which power Pmin

core is minimized;
12: Let V ∗(S(V )[m]) be the voltage that minimizes power for module m at ER = S(V )[m];
13: Locate theDOMAINS neighbors {V1, ..., VDOMAINS} nearest to the set of voltages V ∗(S(Vopt));
14: Assign each module m to the voltage domain VD[m] ∈ {V1, ..., VDOMAINS} that minimizes power

Pm(VD[m], S(Vopt)[m]);
15: Layout the processor, selecting for each module m ∈MODULES

Algorithm 8 is our heuristic for minimizing the power of a processor core for a target

error rate. The first step of the heuristic involves characterizing the modules of the processor

core in terms of their power consumption at different error rate and voltage targets. These data

are provided by PowerOptimizer and are used to select the optimal operating voltage(s) for

the processor core, as well as the error rate targets to assign to the processor modules.

The next step in the heuristic is to use the data from PowerOptimizer to solve an

optimization problem. The optimization objective is to minimize the power of the processor

core subject to the constraint that the processor error rate must be less than the chosen target

rate. Using the data from PowerOptimizer, we can formulate expressions for the power and

error rate of the processor core in terms of the module error rates and the operating voltage. Thus,

the goal of the optimization problem for a particular voltage is to find the assignment of error rate

targets to modules that satisfies the optimization objective. We use a disjunctively-constrained

knapsack-based [241] approach to solve the optimization problem. The knapsack solver selects

the voltage and error rate assignment for which the power of the processor core is minimized

and uses the selected error rate-optimized netlist of each module to lay out the processor.

For multiple voltage domain designs (DOMAINS > 1), the heuristic selects the volt-

age level of each domain, and the partitioning of modules to voltage domains, so as to min-
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imize core power. This involves first selecting the error rate targets for the modules based

on a minimum-power global assignment, then selecting the levels for the voltage domains and

module-to-level assignments such that the power of the modules is minimized. The latter step

is performed using a “Nearest-Neighbor” search to identify the neighbors nearest to the optimal

module voltages that respectively correspond to the module error rate assignments in the space

of voltages.

5.1.8 Recovery-Driven Processors

The proposed design methodology enables recovery-driven processors – processors that

are optimized to deliberately produce timing errors at a rate that can be gainfully tolerated by

an error recovery mechanism. Below, we describe two recovery-driven processor designs – one

targeting hardware-based error resilience and another targeting software-based error resilience.

Case Study: Circuit-level Timing Speculation. Recall that a popular hardware-based

scheme for error detection and correction is circuit-level timing speculation [83] [226]. Circuit-

level timing speculation-based techniques detect errors by sampling the same computation twice

– once using the regular clock and again using a delayed clock. If there is a mismatch, an error is

signaled. Correction involves treating the delayed clock output as the correct output. Razor [83]

and EDS [226] provide good examples of circuit-level timing speculation.

A recovery-driven processor design targeted for Razor takes into account the frequency

of errors that can be gainfully tolerated by Razor (determined by the dynamic error recovery

overhead) as well as the number of latches in which an error may occur (which determines the

cost of making the circuit robust to errors). For the design-level heuristic, this means that when

we define the partition between paths that are allowed have errors (P−) and paths that are error-

free (P+), we must consider the error rate contribution of each path, which adds to the dynamic

recovery overhead of Razor. We must also account for the cost of using a Razor flip-flop at

the endpoint of any path that may potentially cause a timing error, and buffering for any short

paths terminating at that endpoint. If downsizing a path during ReducePower requires that we

must replace a regular flip-flop with a Razor flip-flop, then we should ensure that the energy

benefit (in terms of power reduction for additional cell downsizing) outweighs the additional

cost of the Razor flip-flop and any short-path hold buffering. Since Razor assumes a maximum

delay constraint on all paths [203], in addition to checking P+ paths for negative slack (Line

16 of ReducePower) we must also ensure that all P− paths respect the delay constraint after a

downsizing move.
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Case Study: Application Noise Tolerance. Error-tolerant applications [234] represent

an opportunity to save power and increase performance by allowing errors to propagate to the

application level rather than expending power to detect and correct them at the hardware level.

For several such applications, data errors simply result in reduced output quality, instead of

program failure. Designing a recovery-driven processor for error-tolerant applications requires

several considerations. First, the set of processor modules is partitioned into two subsets – one

containing modules that produce errors that the applications can tolerate and another containing

modules that should not allow errors to propagate to the application level. For the class of error-

tolerant applications that we consider in this work, errors in the arithmetic units can be tolerated.

For this class of applications (which relies heavily on numerical computation), the arithmetic

units account for approximately 35% of the dynamic power consumption of the processor.

In addition to the list of modules to optimize, the OptimizeProcessor procedure re-

quires a target error rate. The error rate is chosen such that all applications in the class have

acceptable quality for the target error rate. For the modules that produce errors that the appli-

cation cannot tolerate, one of two approaches can be followed. One option is to operate those

modules on the same voltage rail as the modules in which faults are allowed (single rail de-

sign). In this case, we feed these modules to the optimization heuristic targeting some hardware

recovery mechanism that guarantees correctness, such as Razor. The two groups must agree

on a common voltage that minimizes power consumption for the entire processor, and the op-

timal voltage reported by the optimization heuristic can be used as a constraint for the second

optimization. Alternatively, the two groups can operate in separate voltage domains (dual rail

design), in which case each optimization can select a different optimal voltage.

Soft processor design can also be used to adapt the reliability of the processor for

reliability-diverse workloads, with more power savings available as the error rate target de-

creases. To create a soft processor design, the gradual slack module-level heuristic is used,

and the optimal voltage and error rate targets of the modules are chosen based on the range of

error rate targets that the processor should support.

5.1.9 Design-Level Methodology

Our methodology for demonstrating the benefits of recovery-driven design has two parts

– a design-level methodology to characterize the power and reliability of circuit modules opti-

mized for different voltage and error rate targets, and an architecture-level methodology to esti-

mate processor power and performance when the proposed design-level techniques are applied

at the processor-level.
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Figure 5.7: CAD flow incorporating the power optimization heuristic to minimize the power of
a design for a given error-tolerance technique.

We use the OpenSPARC T1 processor [25] to test our optimization framework. Table 5.1

describes the selected modules and provides characterization in terms of cell count and area.

Module designs are implemented in TSMC 65GP technology using a standard flow of synthesis

with Synopsys Design Compiler vY-2006.06-SP5 [26] and place-and-route with Cadence SoC

Encounter v8.1 [6]. Runtime is reduced by adopting a restricted library of 66 commonly-used

cells18 (62 combinational and 4 sequential). Conventionally constrained designs are synthesized

for the target operating frequency (0.8GHz), and tightly constrained designs are synthesized with

a 40% smaller clock period (guardband) to have enough timing slack.

Figure 5.7 illustrates our recovery-driven design flow. We perform gate-level simulation

to produce a VCD file19 using Cadence NC-Verilog v6.1 [5]. To find timing slack and power

values at specific voltages, we prepare Synopsys Liberty (.lib) files for each voltage from 1.00V

to 0.50V in 0.01V increments, using Cadence Library Characterizer v9.1 [3]. Complete char-

acterization for 51 voltage points takes a couple of days, but this is a one-time cost.

Timing information is continually available from Synopsys PrimeTime c2009.06 [29]

static timing tool through the Tcl socket interface [32], during the optimization process. After our

optimization, all netlist changes are realized using Cadence SoC Encounter in ECO (engineering

change order) mode.

Gate-level simulation is performed using test vectors obtained from full-system RTL

simulation of a benchmark suite consisting of integer and floating point SPEC benchmarks [23].

These benchmarks are each fast-forwarded to their early SimPoints using the OpenSPARC T1
18Heuristic efficiency depends on the number of available logically equivalent cells. Since we use all available cell

sizes for different drive strengths, our heuristic will also be effective with a full set of library cells.
19Gate-level simulation is performed for one million cycles, and the size of the VCD file is about 500MB for our

testcases. To implement larger designs, a compressed VCD file could be used – e.g., Synopsys VCD Plus format [31].
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system simulator, Simics Niagara [171]. After fast-forwarding in Simics, the architectural state

is transferred to the OpenSPARC RTL using CMU Transplant [72].

Our recovery-driven design techniques optimize for average activity. To ensure that

the activity profiles used during optimization (training) are representative and adequate, we use

mutually exclusive training and test workloads. We optimize based on the average activity of

half of our benchmarks and test using the other half. Training and test sets are chosen randomly

and contain half integer and half floating point benchmarks. Table 5.2 shows the benchmarks in

the training and test sets.

When characterizing Razor-based designs, we use worst-case timing libraries to deter-

mine any path that might have negative slack under worst-case PVT variations. We assign a

Razor flip-flop to the endpoint of any such path, add a maximum delay constraint of 1.5 cy-

cles to the path, and add a minimum delay constraint of 0.5 cycle to all paths ending at that

flip-flop. We add buffers to any path that does not meet the minimum delay constraint. An er-

ror triggers a recovery period during which the pipeline recovers to a correct state. During this

time, we assume that no progress is made, but we do account for the power and time consumed

during recovery when reporting processor throughput and energy. We assume a counterflow

pipeline-based Razor implementation [83] with a recovery penalty proportional to the depth of

the pipeline (i.e., nine cycles for our nine-stage pipeline). We use the error rate, in conjunction

with the rates of power consumption during normal operation and error recovery, as well as the

recovery time overhead of Razor to calculate the energy overhead of error recovery [83]. Fig-

ure 5.8 compares the energy and area overheads of Razor for each design style that we evaluate.

The fraction of Razor flip-flops ranges from 2.6% for a tightly constrained design to 5% for a

Razor-optimized recovery-driven design.20 Our Razor-optimized recovery-driven design heuris-

tic directly accounts for the overheads of adding a Razor flip-flop to ensure increased energy

savings, even if additional Razor flip-flops are required.

5.1.10 Architecture-Level Methodology

We use SMTSIM [228] integrated with Wattch [52] to simulate processors whose single

core parameters are in Table 5.3. The simulator reports performance and power numbers at

different voltages. Our evaluations are performed using the benchmarks listed in Table 5.2;

these are chosen to maximize diversity in terms of performance and reliability requirements. We

base our out-of-order processor microarchitecture model on the MIPS R10000 [242].
20In our previous work [129] [127], all flip-flops were Razor flip-flops, leading to different absolute power and area

numbers.
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Figure 5.8: Energy and area overheads for Razor-based design.

Table 5.1: Target modules for experiments.
module stage description # of cells area (um2)

lsu dctl MEM L1 Dcache control 4537 13850

lsu qctl1 MEM LDST queue control 2485 7964

lsu stb ctl MEM ST buffer control 854 2453

sparc exu ecl EX execution unit control 2302 7089

sparc ifu dec FD instruction decode 802 1737

sparc ifu errdp FD error data path 4184 12972

sparc ifu fcl FD L1 Icache and PC control 2431 6457

spu ctl SPU stream processing control 3341 9853

tlu mmu ctl MEM MMU control 1701 5113

To obtain a processor-wide error rate at a given frequency and voltage, we first sum the

error rates from all the sampled OpenSPARC modules and then scale up the sum based on area,

such that it includes all modules that we target for optimization. The error rate of a module that

has not been characterized is assumed to be proportional to the module’s area. We target only

logic modules with our recovery-driven design methodology. On-chip memories are assumed

to operate on a separate voltage rail [12] at the lowest error-free voltage for a given operating

frequency. At 45nm and below, such “split rail” designs are common. While we provision

for error-free SRAMs, logic that interfaces with SRAM structures, such as register read and

writeback logic, may still produce errors. For designs that rely on error-tolerant applications, we

scale the error rates of each module group separately, according to an error rate characterization

of sampled modules in the group. Once the processor core-wide error rate is calculated, we can
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Table 5.2: Benchmarks in the training and test sets.
benchmarks for design optimization (training set)

art image recognition and neural nets

bzip2 compression

mcf combinatorial optimization

mesa 3D graphics library

benchmarks for design evaluation (test set)

equake seismic wave propagation

gzip compression

twolf place and route simulator

sort sorting

additional benchmarks for processor-level evaluation

AMMP, APPLU, MGRID, PARSER, SWIM, CRAFTY, EON, WUPWISE

VPR, VORTEX-2, FACEDETECT†, CG†, LSQ† († error-tolerant application)

Table 5.3: Processor specifications.
property value property value

L1 cache 16KB, 4-way, one cycle regfile 72 (int), 72 (FP)

L2 cache 2MB, 8-way, eight cycles branch predict gshare (8K entries)

execution 2-way out-of-order memory access 315 cycles

use performance and power numbers reported by our simulators to estimate the throughput and

power impact of errors for a given error recovery overhead.

We use a similar methodology to obtain processor-wide power estimates. To obtain a

dynamic power estimate, we scale the dynamic power numbers reported by Wattch [52] for the

optimizable components by the ratio of (total module power for a given optimization technique)

over (total module power for the baseline design), as reported by Synopsys PrimeTime [29].

For designs that exploit application-based error resilience, we scale the power of the module

groups independently, as we did for error rate. For the non-optimizable components, the Wattch

numbers are scaled based on the minimum voltage at which those components can run without

producing timing errors. For static power estimation, we use the ratio of dynamic and static

module power for a given optimization technique, as reported by PrimeTime, to calculate static

power for a dynamic power value obtained using the above methodology.

When a processor designed for application-level reliability runs an application that re-

quires correctness, we scale down the frequency of the processor so that no timing violations

occur. The safe clock frequency of the design is determined by the most negative-slack timing
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path in the processor plus a safety margin. All of our application simulations are executed for

one billion cycles after fast-forwarding to the early SimPoints [210].

5.2 Minimization of Overheads for Error-Tolerant Designs

To reduce the overhead of error resilience, an intuitive strategy is to minimize the number

of timing-critical endpoints, so that some error-tolerant registers may be replaced with conven-

tional ones if their timing constraints are satisfied with sufficient margin. Figure 5.9 shows a

circuit with Razor flip-flops and a plot for area (or power) of fanin-cone logic. If we upsize gates

in the fanin cones until the corresponding endpoints have enough timing slack, the area (power)

of the fanin cones increase. However, if we replace the error-tolerant register with a normal one,

we save the overhead of error resilience. If the increased area (power) in fanin cones is smaller

than the error-tolerance overhead, the replacement will be beneficial to total area (power).
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In this section, we provide two design optimization techniques for error-tolerant de-

sign, (i) selective-endpoint optimization and (ii) clock skew optimization. Figure 5.10 shows

the slack distribution of timing endpoints with respect to our optimization flows. In the base-

line error-tolerant design (Figure 5.10(a)), several endpoints have timing violations, and error-

tolerant registers are used for those endpoints. In our selective-endpoint optimization (Figure

5.10(b)), we tightly optimize a set of selected endpoints to reduce error-tolerance overhead. In

the clock skew optimization (c), we increase timing margin for normal flip-flops by optimizing

the clock arrival time to individual endpoints.

5.2.1 Selective-Endpoint Optimization

To reduce the overhead of error-tolerant registers, we propose a selective-endpoint opti-

mization which minimizes a cost function (area, power) using tradeoffs between error-tolerance

overhead and data path optimization. In this approach, we determine (i) ‘how many endpoints

should be optimized?’ and (ii) ‘which endpoints should be optimized?’

For Question (i), the more endpoints are optimized, the less error-tolerant registers can

be used, but the cost of optimization increases as well. To minimize a given cost function,

we check the cost function (area, power) impact of additional optimized endpoints, and select

endpoints for optimization such that the resultant target number of design has minimum cost.

For Question (ii), each endpoint has a different cost of optimization. Figure 5.11 shows

the cost of optimization for each endpoint: we see that area and power cost increase as the spec-

ified maximum delay constraints are reduced. Furthermore, the optimization cost increases sig-

nificantly for the endpoint which has a large number of timing-critical fanin cells (i.e., negative-

slack cells in the fanin cone of the endpoint). Therefore, we prioritize the optimization of end-

points which have small magnitude of timing slack and few timing-critical fanin cells.

According to the results of Figure 5.11, we define a new sensitivity measure for end-

points p in Equation (5.4). slack(p) is the (worst negative) timing slack of endpoint p. fanin(p)

represents the number of timing-critical cells which are in the fanin cone of the endpoint p. In

our optimization, we choose endpoints with small sensitivity values.

sensitivity(p) = |slack(p)| × fanin(p) (5.4)

Algorithm 9 describes our selective-endpoint optimization to reduce the error-resilience

overhead. The procedure takes a netlist N which has error-tolerant registers (Razor flip-flops)
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Figure 5.11: Cost (area and power increment) of endpoint optimization. Three endpoints with
different numbers of timing-critical fanin cells (A: 5000, B: 1000, C:100) are optimized, and

different delay constraints (from 1.4ns to 0.8ns) are applied for each endpoint.

on negative-slack endpoints. The procedure runs static timing analysis (STA) and computes a

sensitivity for each endpoint p (Lines 1–8). The sensitivity function of Equation (5.4) is used.

The procedure finds all fanin cells by tracing backward from the endpoint register using depth-

first search (DFS). During the fanin-cone tracing, we only count timing-critical fanin cells since

non-critical fanin cells will have little effect on the cost of endpoint optimization. The pro-

cedure optimizes top-k endpoints according to the sensitivity in each iteration (Lines 11–26).

TimingOpt(N,P ) (Line 13) represents a timing optimization on the set of endpoints P in

netlist N . ISTA(N,P ) is an incremental static timing analysis (STA) after the optimization. If

the timing slack of endpoint p becomes positive, the procedure replaces the flip-flop of p with a

normal flip-flop. Then, the relevant cost (area or total power) of netlist (COST (N)) is updated.

After the iterations of endpoint optimization, the procedure returns a netlist (Nmin) which has a

heuristic minimum in area or power consumption cost.

5.2.2 Clock Skew Optimization

After selective-endpoint optimization, positive-slack endpoints are converted to normal

flip-flops. If PVT variations do not go beyond the worst-case bound that is implicit in the corner-

based timing library, timing yield is maintained. However, for many reasons, if any slight vari-

ation at the worst-case corner occurs, endpoints having near-zero slack values that are imple-

mented as normal flip-flops can result in timing error. To maximize the timing tolerance for

those endpoints, we propose to use clock skew optimization as a post-processing step following

our previously-described selective-endpoint optimization.
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Algorithm 9 Selective-Endpoint Optimization (SEOpt).

Procedure SEOpt(N)
Input: initial netlist N
Output: optimized netlist Nmin

1: Run STA to initialize slack values for the netlist N ;
2: P ← ∅;
3: for all timing endpoint p in the netlist N do
4: if slack(p) < 0 then
5: p.sensitivity ← |slack(p)| × fanin(p);
6: P ← P ∪ {p};
7: end if
8: end for
9: m← |P |/k;

10: Cmin ←∞;
11: for i = 1 ; i ≤ m ; i← i+ 1 do
12: Pick the top-k endpoints Pi with minimum sensitivity in P ;
13: Ni ← TimingOpt(Ni−1, Pi);
14: ISTA(Ni, Pi);
15: for all endpoint p in Pi do
16: if slack(p) ≥ 0 then
17: Replace Razor flip-flop by normal flip-flop at p;
18: end if
19: end for
20: Ci ← COST (Ni);
21: if Ci < Cmin then
22: Cmin ← Ci;
23: Nmin ← Ni;
24: end if
25: P ← P \ Pi;
26: Update sensitivity of all endpoints in P ;
27: end for

Clock skew scheduling or useful skew optimizes the arrival times of the clock signal to

individual sinks. Fishburn [85] presents two linear programs for clock skew optimization to im-

prove (i) minimum cycle time (LP SPEED) or (ii) timing tolerance (LP SAFETY), respectively.

In our work, the target clock is fixed, and we maximize timing tolerance for the positive-slack

endpoints, similar to Fishburn’s LP SAFETY. At the worst corner, to avoid double-clocking be-

tween flip-flops FFi and FFj , the clock arrival times to each flip-flop satisfy the following

inequality.

xi + Ti,j + Tsetup,j ≤ xj + Tclock (5.5)

where xi and xj are tunable clock arrival times for flip-flops FFi and FFj respectively, Ti,j is

the maximum signal delay of the timing paths from the clock pin of FFi to the data pin of FFj ,
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Tsetup,j is the setup time for FFj , and Tclock is the given clock cycle time. From Equation (5.5),

timing slack between two flip-flops FFi and FFj is defined as

slack(i, j) = (xj + Tclock)− (xi + Ti,j + Tsetup,j) (5.6)

The LP SAFETY introduces a new variable M for timing tolerance. M is added to each

endpoint that satisfies Equation (5.5) to determine clock arrival time xi for each endpoint, so

that the timing tolerance M for all endpoints is maximized. However, in the design with error-

tolerant flip-flops, LP SAFETY cannot determine the timing tolerance M , since the inequality

in Equation (5.5) is already broken due to the negative-slack endpoints. We have extended the

idea of LP SAFETY to be applicable to a design with negative-slack endpoints. Specifically, we

maximize M for only positive-slack endpoints while not worsening the slack of the negative-

slack endpoints beyond the safety margin Tsafety which is curable by the error-tolerant flip-flop.

The proposed Modified-LP SAFETY is formulated as

• Maximize: M

• Subject to: for all pairs of flip-flops FFi and FFj ,

xj − xi −M ≥ −Tsafety − slack(i, j), if slack(i, j) < 0 (5.7)

xj − xi −M ≥ Ti,j − Tsetup,j − Tclock, if slack(i, j) ≥ 0 (5.8)

Equation (5.8) is the same as in LP SAFETY, but we add Equation (5.7) to prevent the

slack of the negative-slack endpoints from being worsened beyond the safety margin Tsafety.

The maximum timing tolerance M can be found using linear programming (LP) solvers.

5.3 Experimental Results

We now evaluate our recovery-driven design implementations, which redistribute timing

slack to reduce the error rate at a given voltage, allowing a reduction in voltage and energy for a

given target error rate and operating frequency.

5.3.1 Evaluation of Heuristic Design Choices

Figure 5.12 shows power and runtime of the various heuristic design alternatives that

we have evaluated, as described in Section 5.1.5. For path ordering during optimization,

considering the slack in the prioritization function results in higher power than the case where

only toggle rate is used. Runtime is somewhat smaller, but since our optimization iterates over
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Figure 5.12: Evaluation of different heuristic design choices.
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a path multiple times until no slack increase is observed, both results perform similarly. For the

same reason, path traversal order has little effect on the optimization result. We choose the

toggle rate priority function for its simplicity and lower power.

The results for optimization radius show that swapping cells in the fanin and fanout net-

works not only increases power at some error rates, but also greatly increases runtime due to the

large amount of swaps that are performed. Thus, we choose to swap cells only on the optimized

path. In the experiments on accuracy of path selection and error rate budget utilization, we

observe no difference in power. Both updating the error rate contribution continuously during

path selection and ensuring full utilization of the error rate budget increase runtime significantly

without providing power benefits, and these techniques are not used in the final heuristic imple-

mentation.

The choices of starting netlist and voltage step size have a significant effect on power.

Our recovery-driven design heuristic employs two main procedures – OptimizePaths (cell upsiz-

ing to reduce the error rate) and ReducePower (cell downsizing to reduce area and power). When

starting the optimization flow from a loosely constrained design, path optimization provides the

most substantial contribution to power reduction by reducing the error rate and extending voltage

scaling. However, when starting from a tightly constrained design, much optimization has al-

ready been performed, and the power reduction stage of our heuristic is essential for power min-

imization. Although runtime increases due to evaluation of more downsizing moves, a tightly

constrained netlist provides a better starting point, since it permits more voltage scaling. Volt-

age scaling has a stronger effect on power reduction and scales the power of all cells, while

area reduction only affects the downsized cells. Also, starting from a tightly constrained design

reduces the dependence on ECO, which improves the optimization efficiency. Using a coarser-

granularity voltage step reduces runtime significantly, but comes at the cost of power, since the

heuristic cannot hone in on the optimal voltage as easily. For higher error rates, a large step

size can provide a near-optimal power result and a large reduction in runtime. Thus, an error

rate-aware adaptive step sizing can be beneficial.

In terms of iterative (incremental) optimization, we observe that our heuristic is able

to achieve the same result independent of the starting netlist. Thus, we choose the option that

minimizes runtime.
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5.3.2 Comparison with Alternative Flows

To demonstrate the benefits of our recovery-driven design flow, we compare five alter-

native design flows – traditional P&R implementations with conventional and tight timing con-

straints, a BlueShift-like path constraint tuning (PCT) approach, gradual slack design [129] [127],

and our heuristic for error rate-optimized recovery-driven design. Figure 5.13 compares the

power consumptions of the various design techniques at several target error rates.
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Figure 5.13: Power consumption of each design technique at various target error rates for
target modules in Table 5.1.

Recovery-driven designs reduce power by enabling extended voltage scaling and keep-

ing area overhead low with respect to other optimization techniques. Compared to a conven-

tionally optimized design, a recovery-driven design operates at a much lower voltage for a given

target error rate, due to the function-aware optimization approach that optimizes the paths that

cause the most errors. Compared against a highly-optimized design that uses tightly-constrained

P&R, a recovery-driven design reduces power by minimizing the amount of area spent on path

optimization. Traditional tightly-constrained designs are functionally agnostic and optimize all

paths heavily, incurring a large area overhead. Recovery-driven designs, on the other hand, use

functional information to target only the paths that cause the most errors, thereby minimizing

the area cost of additional voltage scaling. In scenarios where the cost of area is high, such as

when leakage currents increase as has been forecasted for future technology nodes [18], the cost

of functionally-agnostic optimizations will increase, and the benefits of recovery-driven design

will increase. Table 5.4 shows power savings for recovery-driven design for each module with

respect to traditional P&R at different target error rates.

In our power minimization heuristic, after deciding how to allocate the error rate bud-

get, the ReducePower stage performs aggressive cell downsizing to reduce circuit area and
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power. Table 5.5 compares the recovery-driven design against other design flows in terms of

area overhead with respect to the baseline design. Designing for a target error rate has similar

area overhead to PCT but still produces a design with lower power. The reason is that design-

ing for a target error rate allows more aggressive voltage scaling before the target error rate is

exceeded. At lower voltages, there are more negative-slack paths to be optimized during Opti-

mizePaths, which increases area overhead. However, aggressive downsizing keeps area overhead

low, and since the paths targeted by PowerOptimizer are the paths that cause the most errors

in the design, the area is well spent, and the additional voltage scaling contributes to a net ben-

efit in terms of power savings. PCT, on the other hand, adds tighter timing constraints to the

registers where the most errors are captured and optimizes all paths with endpoints at those reg-

isters. Since our heuristic targets paths individually, we can target the error-causing paths more

efficiently, reduce overhead, and increase voltage scaling and power savings.

Compared to tightly constrained P&R and gradual slack design, designing for a target

error rate incurs significantly less area overhead and reduces power. On one hand, tightly con-

strained P&R is functionally agnostic and fails to identify the set of paths that maximizes voltage

overscaling per unit area overhead. Gradual slack design, on the other hand, optimizes the design

to make tradeoffs between power, throughput, and reliability over a range of error rates. Thus, a

gradual slack design is over-optimized for any single target error rate.
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Figure 5.14: Comparison between recovery-driven design (PowerOpt) and gradual slack design
(SlackOpt).

Figure 5.14 compares recovery-driven design for a target error rate against gradual slack

design. The results show that designing for a target error rate minimizes power at the target error

rate. However, since a recovery-driven design can have a non-zero error rate even under nominal

conditions, power efficiency at error rates lower than the target may drop off steeply. Likewise,

since designing for a target error rate creates a slack wall at the error-optimal voltage, additional
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benefits for error rates higher than the target are limited. A gradual slack design, on the other

hand, is optimized for a range of error rates. Although this means that it is less efficient than

an error rate-optimal design for any single error rate, it also means that performance or output

quality can be efficiently traded for power savings over the entire range of error rates. Thus,

whenever more errors can be tolerated, a gradual slack design can reduce power consumption.

This may not be possible for an error rate-optimal design, since it forgoes scalability to achieve

additional power savings at the target error rate.

Recovery-driven design optimizes for errors in the average operating behavior of a de-

sign. If the frequently exercised paths during operation are significantly different from those

targeted during optimization, then too many errors may be produced, and voltage scaling may

be limited for a target error rate. To evaluate the robustness of recovery-driven design when the

workload changes, we compared the power reduction achieved when running the training (op-

timization) benchmarks against power reduction achieved for the test benchmarks. Figure 5.15

shows that power reduction is slightly higher for the benchmark set that the processor was opti-

mized for, but the difference is only about 1% on average.
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Figure 5.15: Total power reduction for training (optimization) and test benchmark sets.

5.3.3 Variation-Aware Analysis

Recovery-driven design increases energy efficiency by reshaping the slack distribution

of a design, such that error rate is reduced at a particular voltage. Figure 5.16 shows activity-

weighted slack distributions (sum of path toggle rate versus timing slack) from before and after

optimization, confirming that the optimization increases slack for frequently exercised paths,

which enables extended voltage scaling for a target error rate. However, due to random variations

introduced in the physical circuit by sources of static and dynamic non-determinism, the actual

slack distribution may be somewhat different than the designed distribution.



118

Table 5.4: Power savings (%) for error rate-optimized recovery-driven designs compared to
traditional P&R.

target error rate (ERtarget)

module 0.125% 0.25% 0.5% 1.0% 2.0% 4.0% 8.0%

lsu dctl 29.1 16.8 16.8 16.8 16.8 16.8 21.6

lsu qctl1 8.8 6.7 5.8 8.1 11.0 9.0 8.6

lsu stb ctl 17.9 17.9 18.1 15.4 9.6 19.2 2.9

sparc exu ecl 6.0 6.0 18.3 18.3 22.7 23.3 17.4

sparc ifu dec 13.7 10.1 8.6 14.3 15.9 18.5 15.1

sparc ifu errdp 2.2 2.8 5.7 5.7 5.7 9.3 9.3

sparc ifu fcl 14.5 15.4 16.5 19.2 19.2 19.2 19.2

spu ctl 13.1 13.1 13.1 13.2 8.8 1.6 8.9

tlu mmu ctl 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Table 5.5: Average area overhead with respect to the baseline.
tight P&R PCT SlackOpt PowerOpt 0.125% PowerOpt 0.25%

19.1% 5.0% 11.9% 3.9% 4.3%

PowerOpt 0.5% PowerOpt 1% PowerOpt 2% PowerOpt 4% PowerOpt 8%

4.8% 5.4% 5.8% 6.0% 5.3%
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recovery-driven design (testcase: sparc ifu dec).
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To test the benefits of recovery-driven design in the presence of variations, we have

implemented a model for inter-die and spatially correlated within-die variations based on the

models in [61] [106]. We use an exponential model for correlation between different die lo-

cations, in which the correlation function decays exponentially as a function of distance, with

parameters supplied by the authors of [106]. We extract standard deviations (σ) of cell delay at

each operating voltage from SPICE simulations, and use our variation model to assign a random

delay variation to each die and each gate within the die, based on its location. We then repeat

error rate and power estimation with one hundred different random variation maps. From the

Monte Carlo simulations, we report total power consumption of the target modules at each error

rate in Table 5.6. Table 5.6 shows that even when variations are accounted for, recovery-driven

design still achieves significant power savings over a conventional design. Furthermore, the av-

erage benefits do not noticeably change when variations are accounted for. (Power reduction in

Table 5.6 is somewhat lower for error rates below 1% because the test design was optimized for

a target error rate of 1%.) Random variations cause perturbations within a design but do not shift

the average-case behavior. Since recovery-driven designs are optimized for and operate at the

average-case operating point, they are naturally robust to random variations.

Table 5.6: Variation-aware analysis.

target error rate (ERtarget)

0.125% 0.25% 0.5% 1.0% 2.0% 4.0% 8.0%

power consumption (W) in baseline design

minimum 0.0126 0.0126 0.0122 0.0113 0.0108 0.0106 0.0095

maximum 0.0202 0.0201 0.0199 0.0196 0.0191 0.0186 0.0167

average 0.0162 0.0160 0.0156 0.0153 0.0149 0.0141 0.0127

power consumption (W) in recovery-driven design

minimum 0.0111 0.0106 0.0105 0.0096 0.0092 0.0088 0.0080

maximum 0.0187 0.0183 0.0175 0.0172 0.0165 0.0161 0.0151

average 0.0148 0.0144 0.0141 0.0134 0.0128 0.0123 0.0113

power reduction (%)

average 8.28 9.71 9.43 12.61 13.80 13.03 11.18

5.3.4 Recovery-Driven Processors

We now demonstrate the benefit of designing processors for specific hardware and soft-

ware error-resilience mechanisms, as described in Section 5.1.8.
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Circuit-Level Timing Speculation. Figure 5.17 compares the energy consumption of a

recovery-driven processor that has been designed and optimized for Razor against the power

consumption of processors designed for other objectives, such as gradual slack or PCT, and

against processors that have been designed for correctness but use the traditional Razor method-

ology to save energy. We assume a recovery overhead of nine cycles, proportional to the pipeline

depth of the processor.

Figure 5.17 demonstrates that the minimum energy is indeed achieved by a processor

that is designed to produce errors that can be gainfully tolerated by Razor. Designing the pro-

cessor for the error rate target at which Razor operates most efficiently allows us to extend the

range of voltage scaling from 0.84V for the best “designed for correct operation” processor to

0.71V for the processor designed for an error rate of 1%, affording an additional 19% energy

reduction.
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Figure 5.17: Comparisons of the energy consumption of a recovery-driven processor.

Error recovery with a circuit-level approach such as Razor imposes a throughput penalty,

since error recovery requires feeding correct values back into the pipeline. Figure 5.18 shows the

throughput reduction caused by error recovery for a correction overhead of five cycles. As can be

seen, a recovery-driven processor minimizes the recovery overhead even at the target operating

voltage.

Application Noise Tolerance. To demonstrate the benefits of recovery-driven design targeted

at application-level noise tolerance, we use a face detection algorithm [234] as the example

application. Face detection is naturally robust to errors in several processor modules and does

not require strict computational correctness. Rather than causing program failure, errors may

result in reduced output quality (false positive or negative detections) [204].
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Face detection, as well as the other error-tolerant applications we consider, tolerates

errors in the arithmetic units of the processor. For this class of applications (which relies heavily

on numerical computation), the arithmetic units account for approximately 35% of the dynamic

power consumption of the processor.
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Figure 5.19: Power consumption of processors using a single voltage rail design.

Figures 5.19 and 5.20 compare the power consumption of processors designed for appli-

cation-level error tolerance of arithmetic errors using single and dual voltage rail designs, as

described in Section 5.1.8. In these figures, all processors achieve the same output quality at

a given error rate, but processors designed to allow errors consume less power, and power is

minimized for these designs at their respective error rate targets. For example, at an error rate
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Figure 5.20: Power consumption of processors using a dual voltage rail design.

of 1%, where output quality is still maximized for the face detection application, the processor

designed for an error rate target of 1% consumes 19% less power for dual-rail design and 15%

less power for single-rail design than the baseline correctness-optimized processor. Benefits are

even higher for larger error rates if some application output degradation is permissible.

Note that we can always perform error-free computation on a core designed for appli-

cation-level noise tolerance by scaling down the frequency to the point where all paths have

positive slack. However, this may represent a performance penalty when compared to relaxed-

correctness operation. Further, trends in processor-level results may differ somewhat from trends

in averaged module-level results. Whereas the power reduction of a recovery-driven design is

limited by a module’s critical paths, the power reduction of a recovery-driven processor is biased

by the critical modules that begin causing errors first when voltage is scaled down. As we show

in the following discussion, results can be improved by utilizing multiple voltage domains.

5.3.5 Supporting Multiple Voltage Domains

Given a target error rate, the module-level power minimization heuristic in [128] selects

an optimal operating voltage for a given processor module. However, the proposed processor

core-level methodology (Algorithm 1, DOMAINS = 1) selects a common voltage for all

modules of a processor core. Table 5.7 shows that different modules vary (sometimes substan-

tially) in their optimal voltage operating points due to a number of factors, including module area

(number of paths/cells), slack distribution (fraction of paths that are critical), and activity factor

(frequency of paths toggling). In addition, the table shows that the range of optimal module

voltages increases when designing for a non-zero error rate target.
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Because of the above module-level variations, there can be a substantial difference in

power consumption between the locally and globally optimized module implementations. Fig-

ure 5.21 quantifies the difference between single and multiple voltage domain design for proces-

sor cores that tolerate different error rates. We compare designs with different numbers of voltage

domains, targeting different processor error rates in terms of their power consumption relative

to a processor optimized for a common operating voltage. The results show that the power

efficiency of recovery-driven processors improves significantly with the number of supported

voltage domains. In practice, the number of voltage domains should be chosen by carefully bal-

ancing the voltage overscaling benefits with the area and complexity overheads of supporting

multiple power rails. The results of Figure 5.21 do not consider the overhead of level shifter

circuitry.

Table 5.7: Optimal module voltages at different target error rates.

target error rate (ERtarget)

module 0.0% 0.125% 0.25% 0.5% 1.0% 2.0% 4.0%

lsu dctl 0.75 0.72 0.71 0.75 0.74 0.73 0.72

lsu qctl1 0.88 0.87 0.86 0.85 0.84 0.83 0.80

lsu stb ctl 0.77 0.76 0.75 0.75 0.70 0.68 0.66

sparc exu ecl 0.75 0.74 0.73 0.70 0.70 0.69 0.70

sparc ifu dec 0.68 0.67 0.66 0.63 0.70 0.58 0.57

sparc ifu errdp 0.77 0.58 0.57 0.56 0.55 0.54 0.53

sparc ifu fcl 0.79 0.77 0.76 0.75 0.74 0.73 0.72

spu ctl 0.78 0.65 0.64 0.63 0.62 0.63 0.58

tlu mmu ctl 0.85 0.52 0.51 0.51 0.51 0.51 0.51

range 0.20 0.35 0.35 0.34 0.33 0.32 0.29
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Figure 5.21: Benefits of multiple voltage domain design over single voltage domain design.



124

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

equake gzip sort twolf

Po
ew

r c
on

su
m

pt
io

n 
(W

)

Target workload (Target error rate: 0.125%)

Workload‐specific design

Design optimized for average activity

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

equake gzip sort twolf

(Target error rate: 0.25%)

Workload‐specific design

Design optimized for average activity

Figure 5.22: Comparisons between optimized designs; workload-specific and average cases.

5.3.6 Robustness to Application Diversity

Different workloads exercise the timing paths of a processor core differently. Thus,

the sets of frequently-exercised and infrequently-exercised paths may change, depending on the

workload. Since recovery-driven designs are optimized according to an average-case activity

profile, it is important to ensure that power efficiency is not degraded significantly when the

activity profile of a workload is not the same as the activity profile for which the processor was

optimized.

To gauge the robustness of recovery-driven design to workload diversity, we create sev-

eral recovery-driven designs, optimized for the activity profiles of each benchmark in the test set

– equake, gzip, sort, and twolf. Then, we compare the power consumption of each benchmark in

the test set, running on the design that was optimized for the average-case, against the design that

was optimized specifically for that benchmark. Figure 5.22 compares the power consumption of

average-case design against workload-specific designs for different target error rates.

On average, the difference is small – only 1.5% difference in power at an error rate of

0.125% and 0.9% difference at 0.25% – demonstrating the robustness of recovery-driven design

to application diversity. The difference decreases as the target error rate increases. The reason for

this robustness is that since some paths are allowed to cause errors, there is some “forgiveness”

when the priority of path optimization deviates somewhat from the optimal. Our recovery-driven

design heuristic bins paths into P− paths that are allowed to cause errors and P+ paths that should

remain error free. As long as the difference in activity for a path is not so large as to make the

path switch bins, the path dichotomy is preserved and power efficiency is not degraded. In the

worst case, we observe only 3% degradation in power efficiency.
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5.3.7 Selective-Endpoint Optimization

Table 5.8 shows area and total power results from the selective-endpoint optimization

for EXU module. In the optimization, negative-slack endpoints are sorted according to the sen-

sitivity, and 10% of the total endpoints are optimized in each iteration. Data in the first row (0%

optimization) show the power and area of the initial implementation. We assume 50% power

and 100% area overhead for the error-tolerant registers (i.e., Razor flip-flops). The design has

large overhead for error-tolerant registers, since a large number of endpoints have timing viola-

tions at the target frequency. By optimizing each selected endpoint, the number of error-tolerant

registers is reduced. However, power and area overhead from the path optimization increases.

From the results, we observe 4% area reduction and 6% total power reduction as compared to

the initial implementation, when 30% total endpoints are optimized.

Figures 5.23 and 5.24 compare results from endpoint optimization with two different

sensitivities – (a) considering timing slack only, and (b) considering both timing slack and the

number of timing-critical fanin cells. We observe that the overhead from path optimization in-

creases slowly in Figure 5.23 (b) – up to 30% endpoint optimization gives only 0.7% area and

0.3% power overhead. Therefore, consideration of both the slack and the number of timing-

critical fanin cells is beneficial for the endpoint selection. Figure 5.25 compares area and power

consumption across conventional design, error-tolerant design, and endpoint-optimized design.

In the endpoint-optimized design, total design area and power consumption are saved by reduc-

ing the number of error-tolerant registers.
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Figure 5.23: Total power results for selective-endpoint optimization – (a) considering timing
slack only, and (b) considering both timing slack and the number of timing-critical fanin cells.

(testcase: MUL)
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Table 5.8: Area and power consumption with endpoint optimization (MUL).

optimized without Razor flip-flop with Razor flip-flop

endpoint area power # of Razor area power

(um2) (W) flip-flop (um2) (W)

0% 40321 1.20E-02 840 48146 1.44E-02

10% 40349 1.20E-02 698 46891 1.41E-02

20% 40393 1.20E-02 611 46258 1.39E-02

30% 40641 1.21E-02 519 45676 1.37E-02

40% 41611 1.24E-02 371 45235 1.35E-02

50% 42028 1.24E-02 335 45307 1.35E-02

60% 42431 1.24E-02 290 45287 1.34E-02

70% 43418 1.26E-02 245 45850 1.34E-02

80% 47410 1.33E-02 161 49039 1.38E-02

90% 52685 1.41E-02 71 53412 1.43E-02

100% 55809 1.47E-02 0 55809 1.47E-02
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Figure 5.24: Total power results for selective-endpoint optimization – (a) considering timing
slack only, and (b) considering both timing slack and the number of timing-critical fanin cells.

(testcase: EXU)

To analyze the effect of overhead and safety margin of error-tolerant registers, we change

the parameters and implement each testcase. In the experiments, three safety margins for the

error-tolerant register are tested – 200ps, 300ps and 400ps. We also test with three cases of

overheads for the error-tolerant register – 50% (LOH ), 100% (MOH ) and 200% (HOH ) in area,

and 30% (LOH ), 50% (MOH ) and 100% (HOH ) in total power consumption. Table 5.9 shows the

achieved power reduction and percentage of optimized endpoints, Table 5.10 shows the achieved

area reduction. We see that endpoint-optimization does not give benefits with low error-tolerance
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Constraints vs. Area/Power
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Figure 5.25: Area and power consumption in each design – (a) conventional design, (b)
error-tolerant design, and (c) endpoint-optimized design. (testcase: MUL)

overhead; the error-tolerant registers are more beneficial in power and area than conventional

flip-flops. When there is high overhead of error-tolerance (HOH column), we observe more

substantial reductions in power and area, as one would expect. It is important to realize that we

cannot give a general trend with respect to the magnitude of safety margin, because for each

combination of {200ps, 300ps, 400ps} × {LOH ,MOH ,HOH} the baseline design is different,

and we report the power reduction achieved with the best percentage of optimized endpoints.

Table 5.9: Power reduction and best percentage of optimized endpoints for each combination
of Razor overhead and margin.

test safety power reduction optimized endpoint

case margin LOH MOH HOH LOH MOH HOH

200ps 0.0% 2.8% 7.9% 0% 20% 60%

MUL 300ps 1.5% 3.9% 9.5% 10% 20% 50%

400ps 2.5% 5.4% 13.0% 30% 50% 70%

200ps 3.2% 5.0% 12.0% 20% 40% 80%

EXU 300ps 3.0% 5.9% 11.9% 20% 50% 50%

400ps 3.1% 5.9% 11.8% 10% 50% 50%

200ps 3.1% 6.4% 14.4% 70% 80% 90%

SPU 300ps 3.3% 6.0% 11.8% 60% 60% 60%

400ps 2.7% 5.4% 11.1% 40% 60% 60%

200ps 7.2% 13.0% 23.8% 70% 70% 70%

FPU 300ps 10.2% 15.0% 24.0% 50% 50% 60%

400ps 7.4% 12.1% 21.5% 50% 50% 70%
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Table 5.10: Area reduction from the endpoint optimization.

test safety area reduction optimized endpoint

case margin LOH MOH HOH LOH MOH HOH

200ps 0.00% 0.97% 4.77% 0% 20% 20%

MUL 300ps 0.76% 3.16% 8.26% 10% 20% 20%

400ps 1.39% 4.09% 11.18% 20% 30% 50%

200ps 4.49% 5.13% 8.69% 20% 20% 40%

EXU 300ps 1.77% 3.92% 9.97% 30% 30% 50%

400ps 1.62% 4.31% 10.41% 20% 50% 50%

200ps 2.03% 4.19% 13.35% 30% 30% 90%

SPU 300ps 2.26% 4.70% 10.92% 30% 50% 60%

400ps 1.95% 4.78% 10.62% 30% 40% 60%

200ps 3.31% 7.44% 16.30% 30% 30% 70%

FPU 300ps 4.63% 9.99% 18.36% 40% 40% 60%

400ps 2.76% 7.78% 15.59% 30% 40% 50%

5.3.8 Clock Skew Optimization

Figure 5.26 shows how Modified-LP SAFETY modifies slack distribution profile for

MUL. We can observe that most of near-zero positive-slack endpoints are clearly moved to the

timing slack bin +0.18 – +0.20ns. Hence, higher tolerance to variation and thus higher timing

yield are expected.
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Timing slack (ns)

Figure 5.26: Slack histogram before and after applying Modified-LP SAFETY. Only slack of
the positive-slack endpoints is shown. Slack of the negative-slack endpoints does not exceed

the given safety margin (Tsafety = 300ps).

Table 5.11 summarizes the improved timing tolerance M , and the number of negative-

slack endpoints from our selective-endpoint optimization (SEOpt) and after applying Modified-
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LP SAFETY (MLP). From the table, we observe that the timing tolerance is always improved,

and can be improved by up to 187.37ps. However, when most near-zero positive-slack endpoints

are related to each other, timing tolerance improvement can be small as in the EXU testcase.

A side benefit from the clock skew optimization is that slack of negative-slack endpoints

can also be improved. Columns 3 and 4 in Table 5.11 show the number of negative-slack end-

points (i.e., the number of required Razor flip-flops.). The data suggest that we can further reduce

the number of required Razor flip-flops if we do not require a timing tolerance guardband. For

the four testcases (MUL, EXU, SPU and FPU) this implies respective further power reductions

of 1.03, 0.75, 1.73 and 5.67%, and area reductions of 0.98, 0.73, 2.13 and 4.86%. We recognize

that other combinations of selective-endpoint optimization and useful skew to find min-power

and min-area Razor-based designs are possible. We leave this tuning of our methodology to

follow-on work.

Table 5.11: Optimized timing tolerance M , and the number of negative-slack endpoints from
selective-endpoint optimization and from Modified-LP SAFETY.

Test Timing # of error-tolerant flip-flops Imp. over SEOpt

case tolerance (ps) SEOpt MLP Area Power

MUL 187.37 332 282 0.98% 1.03%

EXU 0.21 496 444 0.73% 0.75%

SPU 68.24 78 5 2.13% 1.73%

FPU 30.55 1421 1172 4.86% 5.67%

5.4 Conclusions and Future Directions

In this chapter, we propose recovery-driven design, a design-level approach that opti-

mizes a processor module for a target timing error rate instead of correct operation. We present a

detailed evaluation and analysis of a recovery-driven design methodology that minimizes power

for a target error rate. We extend our recovery-driven design flow to design recovery-driven pro-

cessors – processors that are designed and optimized for a target error rate. We also present an

extension of our recovery-driven design flow that creates a gradual slack design that is optimized

for a range of error rates rather than a single target. The gradual slack technique is used to de-

sign soft processors that can trade throughput or output quality for energy savings over a range of

reliability targets. While we have chosen to focus on improving the energy efficiency of error re-

silient designs, recovery-driven design can also be used to optimize other design characteristics,

such as yield.
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We also provide a new design flow for mixing of resilient and non-resilient circuits

within a given implementation, which minimizes the overhead of error resilience. We have pro-

posed a selective-endpoint optimization, which reduces timing-critical endpoints with small cost

of timing optimization. We also propose a clock skew optimization in error-tolerant design,

which improves robustness over process, voltage and temperature variations. From the proposed

optimization techniques, we achieve 7.7% power and 5.4% area reduction on average, over con-

ventional error-tolerant designs, and improve the timing variation tolerance by up to 187ps.

In our selective-endpoint optimization, we currently do not consider error-recovery over-

heads, such as the additional cycles needed for rollback or instruction replay [83]. The recovery

overheads increase with error rate, and this should be estimated from the activity information.

Another current limitation of our work is that two approaches – endpoint optimization and clock-

skew optimization – are performed independently of each other. are separated each other. By

combining the two optimization knobs, we would likely further improve the power efficiency

of error-tolerant designs. Our ongoing work seeks to (i) incorporate activity information into

the sensitivity metric to minimize the impact of recovery on throughput, and (ii) build a unified

framework for simultaneous data- and clock-path optimization.
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Chapter 6

Enhancing the Efficiency of

Energy-Constrained DVFS Designs

Given the energy overheads of DVFS designs produced by conventional multi-mode

CAD flows, we explore the DVFS design space to identify the sources of DVFS inefficiency and

scenarios in which DVFS designs are typically inefficient. Based on our insights, we propose a

context-aware multi-mode design flow to enhance DVFS efficiency. Our context-aware approach

takes into consideration the intrinsic characteristics of a design, the desired range of scalability,

the relative amounts of time spent in different operating modes, and the desired energy efficiency

metric to select appropriate design constraints and optimize the design for maximum efficiency

over multiple modes of operation.

We also propose a selective replication-based methodology that identifies modules for

which context-aware multi-mode designs are energy-inefficient; such modules are candidates for

replication. Selective replication employs multiple replicas of modules that have been optimized

for different performance targets, such that the appropriate replica is active for only a given

operating scenario. Since replication adds an area overhead, we suggest replication for only the

modules that are particularly inefficient in terms of scalability and energy efficiency.

Finally, our study of the sources of DVFS inefficiency allows us to identify microarchi-

tectural features that affect DVFS efficiency. Thus, we are able to suggest microarchitectural

changes that can improve DVFS efficiency in general or for a particular scenario.

The main contributions of our work are the following.

• We quantify DVFS inefficiency for different operating scenarios for conventional multi-

mode CAD flows and identify the sources of inefficiency. We observe that the average

131
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power of a conventional multi-mode design may be up to 28% higher than the ideal aver-

age power.

• We propose a context-aware approach to multi-mode design that considers intrinsic char-

acteristics of hardware, duty cycle and range of scalability to select energy-efficient design

constraints. Our context-aware multi-mode design flow reduces average power by up to

20% with respect to a conventional multi-mode design flow.

• We propose a selective replication-based approach to improve the energy efficiency of

DVFS in cases where context-aware design is inefficient. Our selective replication-based

methodology reduces average power by up to 25% with respect to a conventionally opti-

mized DVFS design, achieving average power consumption that is within 1% of ideal, on

average.

• We show that optimizing the microarchitecture of a DVFS design has the potential to

significantly improve DVFS energy efficiency. We observe that optimizing the microar-

chitecture reduces average power by up to 18% for a context-aware multi-mode design

flow.

6.1 Understanding DVFS Inefficiency

Conventional single-mode CAD flows optimize a design for a single design constraint.

Such a design may be inefficient at all operating points except the one for which the hardware

was optimized. Consequently, conventional single-mode CAD flows may be inadequate for

DVFS-based designs. Our present work points out that conventional multi-mode methodologies

may also be inefficient for DVFS-based designs – especially energy-constrained designs. This is

because the primary focus of a conventional multi-mode design methodology is to ensure timing

closure over multiple, fully-constrained operating modes, not to optimize a design over multiple

modes for a specific metric such as energy efficiency. As such, there exists no multi-mode

design flow that considers the operating scenario (i.e., both the range of scalability (X) and the

duty cycle (R)) during optimization. Range of scalability refers to the ratio of maximum and

minimum operating frequencies for the design (X = fhi/flo). Duty cycle refers to the fraction

of time spent in an operating mode (Rk = (time at fk)/(total time)). Likewise, there exists

no multi-mode design flow to optimize a design for minimum energy when the exact optimal

constraints (all operating frequencies and voltages) are not known at design time.
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To quantify the inefficiency of conventional CAD flows, Table 6.1 compares the power

consumption and characteristics of several designs, each with different timing constraints.21

Each design operates at its minimum safe voltage. Table 6.1 demonstrates that the design for

which power is minimized depends on the dominant operating frequency. At high frequency,

dynamic power (CV 2f ) dominates total power, and tightly constrained designs that allow more

voltage scaling have lower power consumption. These designs do well in scenarios that favor

high performance (high duty cycle (R), low range of scalability (X)). However, these designs

also have higher leakage and area due to their topology and cell composition (reduced fanout and

increased buffering, higher drive strength cells, more low threshold voltage (LVT) cells, fewer

high threshold voltage (HVT) cells). These characteristics reduce efficiency for scenarios that

favor low performance (low R, high X).

As the operating frequency is reduced, leakage power begins to dominate total power,

and designs that are optimized to reduce voltage are inefficient due to large leakage overheads. In

this regime, designs that favor low performance (low R, high X) do better. Thus, a conventional

single-mode design may be inefficient for DVFS, since it suffers from either area and leakage

overhead or higher voltage at the point for which it was not optimized. Table 6.1 also suggests

that even a multi-mode design may be inefficient if it is duty cycle-agnostic, because energy

efficiency requires that the design be constrained according to its dominant operating mode.

Figure 6.1 shows the single-constraint netlist that consumes minimum energy for a given

operating scenario, confirming that the minimum-energy netlist indeed depends on the amount

of time spent in each operating mode (R), the range of scalability between high and low perfor-

mance (X), and the tightness of the timing constraint. We quantify energy in terms of average

power, which accounts for the power consumption and fraction of time spent in each mode:

E = R× Pwr(fhi) + (1−R)× Pwr(flo).
Figure 6.1 also shows the average power overhead of the netlists compared to the ideal

average power. Ideal average power is calculated using the power consumption of the minimum

power implementation for each mode. In general, energy inefficiency is greater when duty cycle

is low and range of scalability is high. This can result in significant energy overheads for energy-

constrained designs that attempt to reduce energy by aggressively scaling down voltage and

frequency and spending more time in a low-power mode.

One reason for inefficiency compared to the ideal case is that the delays of different paths

scale differently with voltage, and thus, the set of critical paths changes as voltage scales. For
21In total, six netlists have been implemented at 1.0V with different setup timing constraints: NETi = 1.00ns +

i× 0.05ns.
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Table 6.1: Implementation statistics for the OpenSPARC multiplier.

area total total % of Avg. Avg. cell

case (um2) power @ power @ LVT fanout drive

1GHz 100MHz cells strength

NET0 60509 37.4mW 0.923mW 28% 2.26 1.30

NET1 59277 38.1mW 0.882mW 19% 2.28 1.29

NET2 55412 38.2mW 0.872mW 16% 2.31 1.18

NET3 52383 38.3mW 0.877mW 14% 2.32 1.08

NET4 49594 38.5mW 0.858mW 14% 2.35 1.00

NET5 48944 38.9mW 0.853mW 11% 2.34 0.97
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Figure 6.1: Single-constraint netlist with minimum average power in each (R, X) scenario and
average power overhead compared to ideal average power (testcase: OpenSPARC multiplier).
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example, Figure 6.2 shows two paths from the integer multiplier of the OpenSPARC core, along

with their timing slack at different minimum-energy operating points. At high performance

(1GHz, 0.95V), path B is a critical path, while path A is not. However, at low performance

(100MHz, 0.5V), path A is a critical path, while path B is not. The reason for this reversal is that

different paths have different delay sensitivities to voltage scaling. In high-performance mode,

paths with large logic depths tend to be critical, but such paths are also optimized with cells

that tend to be less sensitive to voltage scaling (e.g., cells with lower Vt, shorter interconnect,

etc.). Paths that have high Vt cells or long interconnects are more sensitive to voltage scaling.

While these conditions do not significantly affect delay near nominal voltage, they amplify the

increase of path delay when voltage is scaled down. In the example, voltage scaling causes delay

to increase faster for path A so that the delay of path A overtakes the delay of path B. This means

that path A, which was not critical at high performance, limits voltage scaling at low performance

if not properly optimized. Random logic structures may be naturally more susceptible to reversal

of critical paths under voltage scaling than regular memory structures, since path characteristics

in random logic vary more.

A conventional multi-mode design methodology spends resources to optimize the criti-

cal paths in all modes and is therefore over-optimized at any single operating mode. A context-

aware multi-mode design methodology increases DVFS efficiency over conventional multi-mode

design approaches by accounting for the operating scenario during constraint selection. How-

ever, in some scenarios, there can still be significant overhead, especially when the range of

scalability is large. For such scenarios, microarchitectural techniques may be useful for increas-

ing DVFS efficiency, as described in Sections 6.2.2 and 6.4.

Another factor that can influence DVFS efficiency is the amount of combinational logic

in a design. As we show in Section 6.1 (Table 6.1), combinational logic area can vary substan-

tially as the timing constraint changes, because the entire topology of the optimal implementation

can change (re-clustering, buffering, cell sizes and types, etc.). For sequential logic, changes are

limited to cell threshold voltages and drive strengths, so there is less variation between tightly

and loosely constrained designs. Designs heavy on combinational logic (e.g., ALUs) tend to

have worse DVFS efficiency, especially when the range of frequency scaling is large.

6.2 Maximizing DVFS Efficiency

In Section 6.1, we have discussed several reasons why modern DVFS designs may be

inefficient. We now propose a context-aware multi-mode design approach that considers operat-
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Figure 6.3: Context-aware multi-mode design flow – (1) Algorithm 10: Lines 1–14, (2)
Algorithm 10: Lines 15–25.

ing conditions, performance metric, and constraints to maximize energy efficiency over multiple

modes of operation.

6.2.1 Context-Aware Multi-Mode Design

Before implementing a multi-mode design, conventional EDA tools require all operating

modes to be completely constrained (frequency and voltage). However, as we have shown in

Section 6.1, multi-mode designs that are oblivious to the operating scenario can be energy-

inefficient. For this reason, we propose a design flow that postpones constraint finalization and

uses information about the design and operating scenario to select the most appropriate set of

constraints.

Figure 6.3 and Algorithm 10 describe our context-aware multi-mode design flow. The

figure shows the total power consumption (y-axis) of a design for each clock period (x-axis).

Circles with the same color indicate the same netlist.

The procedure takes as input the high-performance frequency target (fhi), the opera-

tional duty cycle (R), the range of scalability (X), and an initial high-performance voltage target

from which to start the optimization (vhi(0)). This flow implements energy-efficient netlistNmin
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Algorithm 10 Context-aware multi-mode design.

Procedure MultiModeDesign (fhi, vhi(0), R, X)
Input : high-performance frequency fhi, initial high-performance voltage vhi(0), duty cycle R, fre-
quency ratio X
Output : netlist Nmin, high-performance voltage vhi, low-performance voltage vlo

1: flo ← fhi/X; vhi ← vhi(0);
2: while true do
3: Emin ←∞;
4: for i = 1 ; i ≤ 2δ ; i← i+ 1 do
5: vi ← vhi + (i− δ)vstep;
6: Ni ← SM(vi, fhi);
7: Ei ← R× Pwr(Ni, fhi) + (1−R)× Pwr(Ni, flo);
8: if Ei < Emin then
9: vmin ← vi; Emin ← Ei; Nmin ← Ni;

10: end if
11: end for
12: if vmin == vhi then break;
13: else vhi ← vmin;
14: end while
15: vlo ← min. safe operating voltage of netlist Nmin at frequency flo;
16: while true do
17: N ←MM(Nmin, fhi, vhi, flo, vlo);
18: E ← R× Pwr(N, fhi) + (1−R)× Pwr(N, flo);
19: if E < Emin then
20: Emin ← E; Nmin ← N ; vlo ← vlo − vstep;
21: else
22: vlo ← vlo + vstep; break;
23: end if
24: end while

according to the scenario (R, X) and determines the voltage constraints that minimize average

power across high and low-performance modes (vhi, vlo). The first while loop in Algorithm 10

(corresponding to Figure 6.3 (1)) selects a design with minimum average power among single-

mode implementations with different timing constraints. The constraint is varied by changing

the target voltage (using different timing libraries characterized for each voltage). SM (vi, fhi)

(Line 6) represents a physical design implementation that has been optimized for a single design

point – voltage vi and frequency fhi. E is the average power consumption, and Pwr(N , f ) is the

power consumption of netlist N at frequency f and the minimum safe voltage available through

dynamic voltage scaling. δ defines the radius of a local comparison window to avoid selecting a

local optimum because of EDA tool noise.

While optimizing constraint specification encompasses a two-dimensional space (vhi,

vlo), performing a full evaluation of the constraint space would require too much computational

effort. We rely on the following observations to accelerate constraint selection. First, the tightest
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single constraint dominates the others in determining the amount of area spent to reduce voltage.

By considering the energy efficiency of vhi as varied, we can effectively constrain vhi to balance

leakage/area reduction and voltage scaling in an operating scenario (R, X), independent of vlo.

We hone in on the minimum-energy constraints by varying vhi first because delay sensitivity to

voltage is greater at low voltages. Small voltage changes around vlo cause large timing changes

and result in large netlist changes. Thus, initially tuning the constraint with the same precision at

vlo would require approximately an order of magnitude finer characterization of voltage libraries.

The second while loop of Algorithm 10 (corresponding to Figure 6.3 (2)) optimizes the

selected design for multiple operating modes. MM (N , fhi, vhi, flo, vlo) performs a multi-

mode (incremental) optimization for high-performance mode (fhi, vhi) and low-performance

mode (flo, vlo). We continue to reduce vlo (tighten the constraint on low-performance mode)

until average power E is minimized. Since multi-mode optimization considers high and low-

performance constraints, the second optimization stage optimizes critical paths in all modes

and enables further voltage scaling in low-performance mode. To further accelerate constraint

selection for vhi, we evaluate the effectiveness and runtime efficiency of using adaptive step

sizing for vstep. We add an optional pre-processing loop (Algorithm 11) and initially use a large

value of vstep to select an appropriate range for fine-tuning the constraint. The search space

for the pre-processing stage spans a radius of γ × vstep, centered around an initial estimate of

the high-performance constraint (vhi). For example, if γ = 3 and vstep = 0.05V , the pre-

processing stage will locate an efficient starting point for Algorithm 10 (vhi(0)) in the range of

vhi ± 0.15V . We observe the shape of the average power versus vi curve to locate the voltage

range that contains the minimum energy design point. Algorithm 11 describes the range selection

algorithm that feeds the selected initial constraint value (vhi(0)) to Algorithm 10. With the

coarse-grained search, our heuristic reduces the number of implementation steps required to

fine-tune the constraint, thus reducing runtime. We compare the runtime and average power

reduction of our context-aware multi-mode design heuristic with and without adaptive step sizing

in Section 6.4.

Although we focus on enhancing DVFS efficiency over two modes that define the bound-

aries of the range of scalability, the concepts presented here can be generalized for an arbitrary

number of modes. In Algorithm 12, we present a generalized, K-mode version of our context-

aware multi-mode design heuristic. Rather than a single (R,X) pair, we specify K frequency

constraints (f1, ..., fK) and the fraction of time spent in each mode (R1,2 , ..., RK). TheK-mode

design flow is similar to the previous two-mode flow (Algorithm 10). The formulation of aver-
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age power (Lines 7, 19) accounts for the contributions of each mode, and the second while loop

(Lines 17–26) is repeated K − 1 times to successively refine the multi-mode design and find the

voltage constraints for each mode that minimize average power. We demonstrate the generalized

context-aware multi-mode design for the case of three modes in Section 6.4.

Algorithm 11 Constraint selection pre-processing stage.

Procedure RangeSelection(fhi, vhi, R,X)
Input : high-performance frequency fhi, high-performance voltage vhi, duty cycle R, frequency ratio
X
Output : initial constraint vhi0

1: flo ← fhi/X; Emin ←∞;
2: for i = 1 ; i ≤ 2γ ; i← i+ 1 do
3: vi ← vhi + (i− γ)vstep;
4: Ni ← SM(vi, fhi);
5: Ei ← R× Pwr(Ni, fhi) + (1−R)× Pwr(Nsm, flo);
6: if Ei < Emin then
7: vhi(0)← vi; Emin ← Ei;
8: end if
9: end for

6.2.2 Replication-Based DVFS Design

As noted in Section 6.1, there are scenarios in which multi-mode designs exhibit sig-

nificant inefficiency with respect to the ideal, due to the area and power overheads of operating

in modes for which the design was not specifically optimized. In cases when the overhead is

substantial, replication-based design can be used to target each mode individually. We propose

a selective replication technique that identifies the modules that cause the most inefficiency and

suggests replication for only those modules. Other modules are optimized with context-aware

multi-mode design.

Figure 6.4(a) offers a high-level representation of replication and power gating circuitry.

A circuit module is replicated, and each replica is optimized for a different performance mode.

The control signal, mode, selects the active operating mode by power gating the appropriate

replica and selecting the correct MUX input. Figure 6.4(b) shows an example of selective

replication-based design.

The benefits of replication come at the cost of substantial area overhead due to replicated

circuitry, especially when replication is performed at a coarse granularity (i.e., large replicated

blocks). Replication overheads due to power gating and MUX circuitry can also be high when

replicating at a fine granularity. We evaluate replication decisions at the granularity of RTL
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Algorithm 12 Context-aware multi-mode design (K-mode version).

Procedure K-ModeDesign(v(0), f1, f2, ..., fK , R1, R2, ..., RK)
Input : initial voltage v(0), frequency constraint fi, duty cycle Ri (i = 1, 2, ...,K)
Output : netlist Nmin, voltage vi (i = 1, 2, ...,K)

1: v1 ← v(0);
2: while true do
3: Emin ←∞;
4: for i = 1 ; i ≤ 2δ ; i← i+ 1 do
5: vi ← v1 + (i− δ)vstep;
6: Ni ← SM(vi, f1);
7: Ei ← R1 × Pwr(Ni, f1) +R2 × Pwr(Ni, f2) + ...+RK × Pwr(Ni, fK);
8: if Ei < Emin then
9: vmin ← vi; Emin ← Ei; Nmin ← Ni;

10: end if
11: end for
12: if vmin == v1 then break;
13: else v1 ← vmin;
14: end while
15: for j = 2 ; j ≤ K ; j ← j + 1 do
16: vj ← min. safe operating voltage of netlist Nmin at frequency fj ;
17: while true do
18: N ←MM(Nmin, f1, v1, ..., fj , vj , ..., fK , vK);
19: Ei ← R1 × Pwr(Ni, f1) +R2 × Pwr(Ni, f2) + ...+RK × Pwr(Ni, fK);
20: if E < Emin then
21: Emin ← E; Nmin ← N ; vj ← vj − vstep;
22: else
23: vj ← vj + vstep;
24: break;
25: end if
26: end while
27: end for

modules, and we analyze replication at different granularities in this section. Partitioning the

design for optimal-granularity replication requires rewriting the RTL and is beyond the scope of

this work. We focus on finding the best way to optimize a given DVFS design.

Though replication area overheads can be substantial, most modules do not warrant

replication. Modules that are loosely constrained or that have a significant fraction of sequential

cells do not require many high-leakage cells or significant topology re-structuring to meet per-

formance constraints. Consequently, they do not impose significant power overheads at scaled

frequencies and voltages, and do not necessitate replication.

In addition, implementations of large structures, such as caches, that are optimized for

the lowest safe operating voltage or on a separate voltage rail are not significantly affected by

scaling. These structures do not necessitate replication. This is beneficial for consistency (no

state copying on mode switch), rapid switching between power-gated replicas, and reduction of
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the area overhead of replication. If replicas share access to a memory structure, the interface and

interconnect might require modification to accommodate the multiple replicas, possibly affect-

ing the access time for the structure. If this is the case, access time for the high-performance

replica can be minimized at the expense of the low-performance replica. This strategy avoids

performance degradation, since timing constraints in the low-performance mode are consider-

ably relaxed compared to the high-performance mode.

To accommodate aggressive voltage scaling, memory structures are typically optimized

for the lowest safe voltage or placed on a separate voltage rail. Low-voltage SRAMs [54] [88]

can safely operate at voltages below 400mV , which is the minimum voltage we consider in our

study. At 45nm and below, split-rail power distribution [12] is common. Except where noted

otherwise, our results assume split-rail power distribution with SRAMs on a separate voltage

rail.

In order to choose the most energy-efficient partitioning of modules between replica-

tion and context-aware multi-mode design, we solve a disjunctively-constrained 0-1 knapsack

problem [193] in which the knapsack items are the replication-based and multi-mode module

implementations. For each module, one implementation is selected. The profit for an item is

the average power savings afforded by selecting a certain optimization strategy for the module,

and the weight is the area of the implementation. For replicated modules, average power savings

must account for the energy consumed by the active replica, the power-gated replica, MUX logic,

and power gating cells. Area must account for both replicas, power gating cells, and MUXes.

The capacity of the knapsack is the area budget for the core. Thus, solving the knapsack problem

corresponds to choosing the partitioning of replicated and multi-mode modules that maximizes

energy savings while fitting within the core’s area budget.

Figure 6.5 shows a replication-based DVFS architecture at different levels of abstraction.

Subfigure (a) shows that replication for different performance targets can be performed at the

core level to create a heterogeneous multi-core architecture in which tasks with different power

and performance requirements are scheduled to different cores. Subfigure (b) zooms in on an

individual core, showing coarse-grained replication at the module level. The instruction fetch

unit (IFU) and load store unit (LSU) have been replicated. Subfigure (c) zooms further into the

floating point frontend unit (FFU) module to show fine-grained replication of the FFU control

unit.

Our replication strategy uses power gating to turn off the inactive replica. The overhead

of power gating depends on the number of gating cells required. Equation (6.1) calculates the
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required number of gating cells for a circuit module with maximum current Itotal.

δVdd = Itotal × (Rsw/Ng) < margin× Vdd (6.1)

In this equation, Rsw is the resistance of a power gating cell, Ng is the required number

of power gating cells, andmargin is chosen to be 1% of Vdd. We use SPICE simulation to obtain
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Rsw and gate leakage power at each voltage. We also account for the delay overhead from IR

drop. In addition to the overhead of power gates, replication requires that we place MUXes at

the ports of a replicated module. This incurs an additional power and area cost, and also adds

some latency to the timing paths of the module.

Figure 6.6: Implementation flow for selective replication.

Figure 6.6 shows the implementation flow of our selective replication procedure. The

proposed design approach replicates only the modules that maximize energy savings per area,

and performs multi-mode design for the rest. We first implement a target module and select sub-

modules to be replicated, using the knapsack optimization. We then change the implemented

netlist and make a floorplan for the top module. In the netlist modification, the selected module

is re-synthesized for high- and low-performance modes, and MUXes are connected to the output

ports of the replicas. Third, we partition each replica from the top module and implement (place

and route) them separately. The high-performance replica is optimized at high frequency, and

the low-performance replica at low frequency. Finally, we merge each partition and report timing

and power for the entire module.

6.3 Methodology

For our experiments, we use all modules (Table 6.2) that comprise the OpenSPARC T1

processor [25]. In Table 6.2, %seq is the percentage of sequential cell area in the module. As

we will show, %seq impacts DVFS efficiency. We also evaluate the Issue and Load Store Unit

(LSU) stages of the FabScalar [68] processor in different microarchitectural configurations to

understand the microarchitectural dependence of DVFS efficiency. We evaluate pipelining and

superscalar width in the Issue stage, from 1-wide, 1-deep to 4-wide, 3-deep, and we evaluate

the impact of changing the queue sizes and superscalar widths in both the Issue and LSU stages.

Since the maximum operating frequency of FabScalar is less than that of OpenSPARC, we con-

sider a smaller range of scalability (X) for FabScalar experiments. Consequently, we increase
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the range of R for these experiments to ensure adequate coverage of the interesting points in

the (R,X) space. Designs are implemented with TSMC 65GP (65nm) libraries, characterized

by Cadence Library Characterizer v9.1 [3] for low, nominal, and high threshold voltages over

a range of operating voltages. The initial netlists are synthesized with Synopsys Design Com-

piler C-2009.06 [26], and layout is performed in Cadence SoC Encounter v8.1 [6]. As described

in Section 6.2.1, we perform implementation at various voltages to find a minimum-energy so-

lution. To mitigate ‘inherent noise’ in EDA tools [132] [121], we implement each design three

times with a small variation in the timing constraint (+0.5ps, -0.5ps and no variation) and choose

the design with minimum average power. When evaluating conventional multi-mode design, we

choose the voltage constraint for each mode as the voltage that minimizes power for a single-

mode design at that mode’s operating frequency.

To estimate power consumption, we perform gate-level simulations for one million clock

cycles using real workloads. Test vectors for gate-level simulations are gathered from full-

system RTL simulations of SPEC benchmarks (art, bzip2, equake, gzip, mcf, mesa, twolf) on the

OpenSPARC and FabScalar processors. Leakage and dynamic power consumption are reported

by Synopsys PrimeTime-PX c2009.06 [29]. Note that our results assume the same workloads

for high and low-performance modes, whereas the activity characteristics may vary significantly

between a workload that runs at high frequency and one that runs at low frequency. Though

this may be the case, the duty cycle (R) can act as a catch-all to adjust the weighting between

the two modes during optimization, not only in terms of time spent in each mode, as originally

described, but also to account for factors such as disparity in average circuit activity.

Table 6.2: Target modules from OpenSPARC T1.

module stage description %seq area (um2)

EXU EX integer execution 20% 81902

FFU EX floating point front-end 30% 28584

IFU F/D instruction fetch & decode 40% 121458

LSU MEM/WB load store 45% 125725

MUL EX integer multiplier 15% 61978

SPU EX stream processing 45% 33580

TLU MEM/WB trap logic 47% 111902
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6.4 Experimental Results

In this section, we analyze our heuristic design choices, quantitatively demonstrate the

benefits of context-aware multi-mode and selective replication-based designs, and explore the

implications of microarchitecture on the energy efficiency of DVFS design.

6.4.1 Heuristic Design

We begin with an evaluation of the design choices that led to our chosen heuristic imple-

mentation for multi-mode design. Table 6.3 compares the average power and runtime efficiency

of heuristic implementations that vary in voltage step size (vstep) and whether or not the pre-

processing stage (Algorithm 11 in Section 6.2.1) is used. The pre-processing stage reduces run-

time significantly by reducing the number of single-mode implementations (row (a) in Table 6.3)

required for minimum-energy constraint selection. For a step size of 0.01V , pre-processing re-

duces the constraint search space by 48% while achieving the same energy efficiency. This

reduces runtime by 43%.

Increasing the size of vstep also reduces runtime, but with a potential cost in energy

efficiency, due to the coarser granularity of constraint tuning. Without pre-processing, doubling

vstep reduces runtime by 24% and increases average power by 3.7%. When the pre-processing

stage is also used, doubling vstep reduces runtime by 15% and increases average power by 6.1%.

Thus, the marginal benefit of increasing the step size is higher when pre-processing is not used.

Based on our analysis, we apply pre-processing with γ = 2, vhi = 0.80V , and vstep = 0.05V .

A step size of vstep = 0.01V is used for the main heuristic procedure.

Table 6.3: Analysis of design choices for multi-mode design heuristic implementation, for a
submodule of LSU.

without pre-processing with pre-processing

step 0.01V 0.02V 0.01V 0.02V

(a) # of implementations 23 18 12 11

(b) # of optimizations 7 4 7 4

(c) runtime (sec) 4199 3196 2395 2048

(d) average power (W) 3.26E-05 3.38E-05 3.26E-05 3.46E-05
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6.4.2 Context-Aware Multi-Mode Design

To gauge the effectiveness of context-aware DVFS design, we first present average

power results for the modules of the OpenSPARC processor. Table 6.4 shows the average power

reduction achieved by context-aware multi-mode and replication-based designs,22 compared to

conventional multi-mode design (high-performance clock frequency fhi = 1GHz). Table 6.5

shows average power overhead for context-aware DVFS with respect to the ideal. The “total”

rows represent processor-wide results.

From Table 6.4, we observe that context-aware multi-mode design improves DVFS effi-

ciency by up to 19.5% as compared to conventional multi-mode design. In general, benefits are

higher for low %seq (e.g., EXU, MUL) and low R, as is typical in energy-constrained designs.

Processors that have a higher fraction of area devoted to execution units (e.g., DSP processors)

or spend more time in a low-power mode (e.g., mobile devices), should see more benefits from

context-aware design. For combinational logic, area and leakage can change significantly with

different constraints, due to topological adaptations. Therefore, targeted designs for different

performance constraints can differ substantially. As such, any multi-mode design is necessarily

inefficient at one or more performance targets, especially when the range of scalability (X) is

high.

To analyze context-aware multi-mode design for more than two modes, we have evalu-

ated designs with more modes. Table 6.6 compares three-mode context-aware designs (f1, f2, f3

= 1GHz, 500MHz, 100MHz) against high-performance targeted designs (f = 1GHz) in terms of

power consumption in each operating mode. We have chosen the duty cycles (R1, R2 and R3)

such that each mode contributes roughly an equivalent fraction of average power. We also evalu-

ate the impact of split-rail design, where SRAMs are on a separate voltage rail versus single-rail

design, where the minimum operating voltage of the chip is limited to 0.6V . Although the min-

imum operating voltage of typical SRAMs is around 0.7V , some special-purpose SRAMs can

operate well at lower voltages with design overheads; 0.6V represents a voltage within the oper-

ating range of many low-power SRAMs (e.g., [54] [88] [194]). On average, context-aware multi-

mode design reduces average power by 12.4% for a design with low %seq (MUL) and 10.3% for

a design with high %seq. For the single-rail case, benefits for MUL decrease only slightly, since

limiting the minimum voltage reduces the disparity between optimal high-performance and low-

performance designs, such that the optimal design point shifts more toward high-performance
22In the replication-based results, power, area, and delay overheads from power gating cells, MUXes, and IR drop

have been included. We do not consider wakeup energy.
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Table 6.4: Average power reduction for context-aware multi-mode and replication-based
designs against conventional multi-mode design (higher is better).

context-aware multi-mode replication-based design

test
X

R = R = R = R = R = R =

case 0.5% 1% 5% 0.5% 1% 5%

EXU

5 1.5% 1.4% 2.3% 8.7% 8.3% 6.6%

10 4.1% 4.9% 4.4% 9.6% 9.1% 7.4%

20 13.0% 9.4% 2.6% 15.6% 12.1% 4.1%

FFU

5 3.8% 4.3% 6.9% 5.8% 6.2% 8.1%

10 4.6% 4.9% 3.3% 6.1% 5.5% 3.4%

20 4.0% 2.1% 1.8% 3.6% 2.1% -1.7%

IFU

5 2.7% 2.7% 9.0% 0.4% 1.1% 4.1%

10 2.7% 3.3% 7.1% 3.6% 3.5% 3.4%

20 1.5% 2.4% 2.6% 0.3% 0.8% 1.8%

LSU

5 4.4% 5.4% 9.8% 6.2% 7.3% 12.1%

10 1.6% 1.8% 9.7% 4.8% 6.2% 10.2%

20 3.6% 2.3% 5.4% 5.5% 6.1% 7.2%

MUL

5 19.5% 12.4% 8.7% 25.4% 24.0% 16.6%

10 4.0% 2.2% 5.4% 15.1% 14.2% 11.5%

20 16.2% 6.5% 5.7% 23.1% 19.7% 11.5%

SPU

5 4.0% 3.9% 4.7% 1.4% 1.7% 3.0%

10 2.6% 3.0% 4.4% 4.2% 3.9% 2.9%

20 5.9% 4.6% 1.8% 8.0% 5.9% 1.0%

TLU

5 5.3% 5.6% 7.0% 3.4% 3.9% 6.3%

10 7.0% 7.8% 3.6% 3.9% 4.7% 7.1%

20 6.5% 5.1% 3.6% 8.8% 8.6% 8.2%

mode. So, although power reduction decreases for low-performance mode (mode 3), it increases

for high-performance mode (mode 1). Average power reduction decreases more significantly for

SPU. Since SPU has high %seq, the difference between high-performance and low-performance

designs is not as significant. Thus, the primary source of power savings is power reduction in

low-performance mode (mode 3), and limiting the minimum voltage significantly cuts into those

savings; in the single-rail case, SPU shows only 3.66% average power reduction in mode 3, due

to the minimum voltage limitation.

To demonstrate the potential benefit of context-aware design in the three-mode case, we

implement context-aware multi-mode designs targeting seven different scenarios. Each scenario

has different duty cycles (R), as described in Table 6.7. The optimized netlist for scenario Si is

neti. Table 6.8 shows the average power consumption (normalized to the power of neti for Si) of
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Table 6.5: Average power overhead for context-aware multi-mode and replication-based
designs as compared to the ideal case (lower is better).

context-aware multi-mode replication-based design

test
X

R = R = R = R = R = R =

case 0.5% 1% 5% 0.5% 1% 5%

EXU

5 8.1% 8.0% 5.8% 0.2% 0.3% 1.0%

10 6.5% 5.3% 4.7% 0.4% 0.6% 1.5%

20 3.8% 4.2% 3.3% 0.7% 1.0% 1.7%

FFU

5 2.4% 2.5% 2.6% 0.2% 0.4% 1.3%

10 2.1% 1.4% 2.0% 0.4% 0.8% 1.9%

20 3.9% 3.9% 3.4% 4.3% 4.0% 3.3%

IFU

5 1.5% 2.1% 1.7% 3.9% 3.9% 3.6%

10 1.4% 1.2% 1.8% 0.6% 1.0% 2.2%

20 0.2% 0.1% 1.7% 1.0% 1.5% 2.6%

LSU

5 2.1% 2.4% 3.5% 0.2% 0.3% 0.9%

10 7.1% 5.3% 1.9% 0.4% 0.6% 1.3%

20 2.7% 5.0% 3.6% 0.6% 0.9% 1.6%

MUL

5 8.1% 15.7% 10.7% 0.2% 0.4% 1.1%

10 13.5% 14.8% 8.6% 0.4% 0.7% 1.6%

20 9.8% 17.7% 8.6% 0.8% 1.1% 2.0%

SPU

5 1.8% 2.2% 3.1% 4.6% 4.6% 4.9%

10 2.5% 2.4% 2.0% 0.9% 1.5% 3.6%

20 7.7% 6.8% 4.6% 5.3% 5.3% 5.4%

TLU

5 2.0% 1.8% 0.8% 1.6% 1.8% 2.0%

10 3.2% 3.3% 3.8% 2.1% 2.4% 2.7%

20 2.5% 3.8% 5.0% 1.8% 1.1% 1.4%

each netlist in each scenario. The context-aware design targeting a specific scenario minimizes

average power for that scenario. Since our heuristic pinpoints the minimum energy constraints

for a design by performing small explorations in the constraint space, the optimization result can

be improved by searching more design points or searching at a finer granularity (smaller step

size, Vstep). Our experiments use Vstep = 0.01V , and some netlists show only small benefits over

the netlist optimized for a different scenario. For example, net2 and net3 are nearly identical,

since the two scenarios are similar (mode 1 is dominant for S2 and S3). Similarly, net4 and net6

have similar average power in all scenarios, because mode 2 is dominant for S4 and S6.

Figure 6.7 quantifies runtime and average power savings for context-aware designs as

the number of modes increases from one to four. Increasing the number of modes causes runtime

to increase approximately linearly, since the complexity of Algorithm 12 is linear with respect
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Table 6.6: Comparison of average power consumption between single-mode design and
context-aware multi-mode design for three modes.

mode
freq.

R

single-mode (mode 1) context-aware multi-mode

voltage total power voltage total power reduction

(GHz) (V) (W) (V) (W) (%)

module: MUL

mode 1 1.0 0.02 0.92 2.950E-2 0.99 3.181E-2 -7.83%

mode 2 0.5 0.28 0.69 8.892E-3 0.69 7.755E-3 12.78%

mode 3 0.1 0.70 0.48 1.140E-3 0.46 8.405E-4 24.55%

average 3.877E-3 3.396E-3 12.41%

module: SPU

mode 1 1.0 0.02 0.86 1.050E-2 0.87 1.108E-2 -5.47%

mode 2 0.5 0.28 0.67 3.231E-3 0.63 2.875E-4 11.03%

mode 3 0.1 0.70 0.47 3.731E-4 0.41 2.968E-4 20.44%

average 1.376E-3 1.234E-4 10.30%

Table 6.7: Different scenarios for three-mode implementation.

scenario
energy consumption duty cycle (R)

mode 1 mode 2 mode 3 mode 1 mode 2 mode 3

S1 100% 0% 0% 1.000 0.000 0.000

S2 65% 30% 5% 0.100 0.660 0.240

S3 65% 5% 30% 0.060 0.070 0.870

S4 30% 65% 5% 0.020 0.830 0.150

S5 30% 5% 65% 0.020 0.030 0.950

S6 5% 65% 30% 0.002 0.498 0.500

S7 5% 30% 65% 0.002 0.172 0.826

to the number of modes. As the number of modes increases, average power decreases, since

context-aware design (i) enables a lower voltage for a given mode by optimizing the critical

paths in each mode and (ii) reduces area and leakage for the design by accounting for the duty

cycles and range of scalability.

6.4.3 Selective Replication-Based Design

Even though context-aware multi-mode design has significant benefits over conventional

multi-mode design, when %seq is low, it can still exhibit considerable inefficiency (up to 17.7%)

with respect to the ideal. This is because the ideal area and power consumption of combinational
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Table 6.8: Average power consumption in each scenario (testcase: MUL).

scenario net1 net2 net3 net4 net5 net6 net7

S1 1.000 1.043 1.043 1.092 1.084 1.126 1.136

S2 1.088 1.000 1.000 1.009 1.036 1.021 1.048

S3 1.067 1.000 1.000 1.033 1.005 1.049 1.026

S4 1.154 1.009 1.009 1.000 1.046 1.003 1.042

S5 1.171 1.031 1.031 1.064 1.000 1.070 1.003

S6 1.178 1.010 1.010 1.001 1.035 1.000 1.026

S7 1.215 1.023 1.023 1.027 1.013 1.024 1.000
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Figure 6.7: Results for context-aware implementations with different numbers of modes
(testcase: MUL). Frequencies for each mode are 1GHz, 500MHz, 250MHz and 100MHz, and
duty cycle values (Rk) are selected so that each mode consumes roughly an equal share of the

total power.

logic change considerably with the timing constraint. Fortunately, selective replication mini-

mizes average power in these cases, coming within 1% of the ideal average power, on average,

at the expense of area overhead. This suggests that an appropriate combination of context-aware

and replication-based approaches may be nearly ideal for maximizing DVFS efficiency. Note

that replication does not achieve significant benefits over multi-mode design for modules such

as SPU and IFU. Most of the benefits of replication come from reducing leakage and area over-

heads from the combinational logic. However, these modules have high %seq, so that the extent

of achievable benefits is considerably reduced. In fact, in a few scenarios, context-aware multi-

mode design even does better than replication, due to the timing and power overheads of replica-

tion. In many cases, the significant area overheads of module replication (94% on average) are

not justified. For a given area budget, we use our knapsack-based selective replication technique
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(a) Coarse-grained selective replication.

(b) Fine-grained selective replication.

Figure 6.8: Selective replication achieves additional (average) power reduction over
context-aware multi-mode design for the OpenSPARC processor, coming within 1% of the

ideal average power for only 5% area overhead.

to identify the processor modules to replicate, such that the average power of the processor is

minimized.

Figure 6.8 shows average power reduction achieved by selective replication for the

OpenSPARC processor with a given area budget. Note that the benefits shown in Figure 6.8

are in addition to those achieved by the best context-aware multi-mode design for the particular

scenario. The results demonstrate that in most cases, context-aware multi-mode design achieves

close to ideal average power, and that replicating only a small number of modules closes the gap

between context-aware design and ideal average power. The final result with both context-aware

and selective replication-based designs is a DVFS processor with average power that is within

1% of ideal, on average, with only 5% area overhead. Note that increasing the area budget be-

yond 5% yields only minimal incremental benefits, confirming that only a few modules need to

be replicated.
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Figure 6.9: Average power consumption and area comparison among multi-core,
context-aware, and selective replication-based design.

Figure 6.8 also compares replication at the module granularity (Table 6.2 modules) to

replication at the fine granularity of leaf modules. Typically, replication at the finer granularity

achieves larger average power reduction for a given area budget, as inefficient submodules can

be targeted more precisely without replicating the entire encompassing module. Also, fine-

grain replication can provide average power reduction even for small allowable area overheads,

whereas coarse-grain replication must overcome an initial area hurdle before any module can be

replicated. One disadvantage of fine-grain replication is increased overhead for power gating and

MUX logic, which can prevent several small leaf modules from achieving replication benefits.

As discussed in Section 2.2.2, a heterogeneous multi-core processor can also target mul-

tiple power and performance points. In Figure 6.9, we compare power reduction and area over-

head among heterogeneous multi-core, context-aware, and selective replication-based designs.

All designs target high-performance and low-power modes. Selective-replication-based design

achieves energy efficiency benefits within 2% of the heterogeneous multi-core with a signifi-

cantly smaller area overhead.

While area, power, and timing overheads of replication are carefully modeled in the

above studies, replication also affects the physical layout of the design, particularly in the neigh-

borhood of the replicated module. Figure 6.10 shows layouts for conventional multi-mode design

and selective replication-based design for the FFU module. In the selective replication-based im-

plementation, the CTL module has been replicated, affording 12% average power savings with

14% area overhead. This result demonstrates the feasibility of the proposed replication-based

approach described in Figure 6.6, in spite of the potential layout complications.
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Figure 6.10: Layout of FFU (Floating point Front-end Unit) module (a) without replication
and (b) with replication.

6.4.4 Variation Analysis

In general, it may not be possible to estimate duty cycle (R) precisely for all users of

a particular DVFS product. Figure 6.11 shows how average power savings may be affected

when Rhi differs from the average value of Rhi targeted at design time. In these experiments,

average power savings are reduced by at most 3% in the case where target Rhi is maximum

(5%) and duty cycle is 50 times lower. This is because when actual duty cycle is lower than the

target, the resulting design is over-optimized for the user scenario and exhibits area and leakage

overhead. Note that duty cycle variation does not affect the efficiency of a selective replication-

based design.

We also evaluate the impact of variations, including systematic and random within-die

(WID) variations on our DVFS designs. Since our DVFS designs scale between fixed operat-

ing points, and these operating points must be defined based on worst-case corners, variations

do not affect the voltage or frequency at which our designs operate. Variations can, however,

affect power consumption, primarily in terms of leakage power (e.g., due to changes in thresh-

old voltage and gate length). While we present results for 65nm process technology, it is well

known that in recent and future technology nodes (e.g., 32nm, 22nm), static power constitutes

a larger fraction of total power, and can vary more substantially (e.g., in response to temperature

changes). Analyzing the impact of leakage variations may be particularly relevant for context-

aware design, where design optimization accounts for the relative contribution of leakage in

different operating modes. The impact of variations may be felt most prominently for low Rhi,
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when leakage accounts for a larger fraction of total power. Following the methodology of [55],

we model WID variations, including lithography-induced systematic WID variations. We use

standard deviation (σ) of leakage for each standard cell following [55] and repeat power analysis

for 1000 different variation maps, recording the average power in each trial. Note that to model

lithography-induced, pattern-dependent WID variations, instances of the same standard cell have

the same systematic WID variations for a given Monte Carlo trial. Figure 6.12 compares average

power consumption for the processor observed during variation analysis for different multi-mode

design styles. Error bars show the min and max average power observed during Monte Carlo

analysis. For designs with low Rhi, where leakage power variations impact total power more

significantly, we see that variations impact average power savings by less than 2%.

Figure 6.11: Normalized average power consumption when the duty cycle (Rhi) varies from
the value targeted at design time (target Rhi).
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Figure 6.12: Normalized average power consumption with leakage variations (X = 5, Rhi ∈
{0.5%, 1%, 5%}).
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6.4.5 Impact of Microarchitecture on DVFS Efficiency

In Section 6.1, and in the results above (Table 6.4), we observe that the benefits of

context-aware multi-mode design depend on factors such as the relative amount of sequential

logic in a design and the tightness of the timing constraints. Since microarchitecture can influ-

ence these factors, DVFS energy efficiency can potentially be enhanced through microarchitec-

tural adaptations. To gauge the potential impact of microarchitecture on DVFS efficiency, we

evaluate the effectiveness of context-aware multi-mode design for different microarchitectural

adaptations, namely, pipeline depth, superscalar width, and queue sizes in the Issue and LSU

stages.

Pipeline Depth and Logic Complexity. To evaluate the effects of changing the pipeline

depth and superscalar width, we use FabScalar to generate six versions of the Issue stage of a

superscalar processor, with pipeline depths ∈ {1, 3} and superscalar widths ∈ {1, 2, 4}. Ta-

ble 6.9 shows how increasing the pipeline depth from 1 to 3 affects the average power of various

context-aware multi-mode designs with different superscalar widths in different scenarios.

Table 6.9: Percent reduction in average power from increasing pipeline depth from 1 to 3 for
different scenarios and superscalar widths.

width X R = 0.5% R = 1% R = 10% R = 50%

2 1.6 1.5 3.3 8.1

1 4 0.8 0.4 2.8 10.1

10 5.8 4.0 4.6 11.3

2 6.9 6.8 6.3 5.1

2 4 0.4 1.1 7.1 6.1

10 1.0 1.6 7.0 5.5

2 4.2 4.3 5.1 11.8

4 4 5.3 5.1 4.6 13.0

10 7.7 7.4 8.4 14.0

Table 6.9 shows that deeper pipelining in a context-aware multi-mode design improves

energy efficiency more for designs with higher R, X , and logic complexity (e.g., superscalar

width). Higher R means that high-performance mode is weighted more in the energy metric.

Deeper pipelining allows context-aware multi-mode design to reduce voltage significantly (10%)

at high frequency, where the impact of voltage (dynamic power) reduction is more pronounced,

providing benefits for designs with high R. At low frequency and voltage, delay sensitivity to

voltage is much higher, and pipelining does not allow our DVFS design flow to achieve signif-
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icant voltage reduction. Thus, the energy efficiency of context-aware multi-mode design does

not improve much with pipelining in scenarios with low R.

Designs that have more complexity (e.g., higher superscalar width) or shallower pipelines

have deeper logic depth and higher fanout. For such designs, the difference between high and

low performance targeted netlists is considerable, especially for larger X , since paths with deep

logic, high fanouts, and tight timing constraints require larger, more leaky cells and more buffer-

ing. to meet tight timing constraints. Deeper pipelining provides more benefits in such scenarios,

as it relaxes tight constraints, allowing a multi-mode design to meet timing in multiple modes

with considerably less overhead, especially when the range of scalability (X) is large.

In typical circuits, such as the FabScalar testcases discussed above, perfect pipelining

is not possible due to logic complexity. To investigate the potential influence of pipelining on

DVFS efficiency, we create a generic test circuit that can be subdivided cleanly. Figure 6.13

shows the different implementations of the pipelining test circuit. The basic, single-stage design

(a) is created by cascading four 8-bit multipliers end-to-end between a pair of latches. Two-

stage (b) and four-stage (c) versions of the circuit are created by placing pipeline latches at the

appropriate junctions between multipliers.
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Figure 6.13: Pipeline test circuit composed of cascaded multiplier blocks for pipeline depths of
1, 2, and 4.

Table 6.10 shows the DVFS power versus performance tradeoff for the pipelined mul-

tiplier testcase. Interestingly, each pipeline implementation is the minimum energy design over
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Table 6.10: Power comparison for DVFS in each pipelined multiplier implementation.

operating operating total leakage

pipeline frequency voltage power power

(MHz) (V) (W) (%)

1000 N/A N/A N/A

500 N/A N/A N/A

1-stage 200 0.96 4.53E-05 4.9

100 0.74 1.37E-05 7.7

50 0.62 5.04E-06 13.5

1000 1.16 5.15E-04 3.4

500 0.76 1.09E-04 4.7

2-stage 200 0.58 2.40E-05 9.3

100 0.51 1.06E-05 15.3

50 0.45 5.46E-06 21.8

1000 0.84 3.52E-04 3.0

500 0.65 1.07E-04 5.2

4-stage 200 0.53 2.99E-05 11.3

100 0.47 1.29E-05 19.9

50 0.41 6.10E-06 31.0

some portion of the frequency scaling range. At high frequency, the deepest pipeline (4-stage)

consumes the least average power, since a large fraction of total power is dynamic power. While

the 1-stage design cannot operate at 1GHz for any available voltage, the deeper pipelining of the

4-stage design enables a voltage reduction of 28% with respect to the 2-stage design, signifi-

cantly reducing dynamic power consumption. The 4-stage design remains the minimum power

design as frequency is scaled down to 500MHz. At the same time, the voltage differential be-

tween the 4-stage and 2-stage designs shrinks due to increasing delay sensitivity to voltage. Also,

as frequency is scaled down, leakage power accounts for a larger fraction of total power. Leak-

age increases faster for deeper pipelines due to increased latch area. By 200MHz, the voltage

advantage of the 4-stage design is only 9%, and reduced area and leakage due to fewer pipeline

latches make the 2-stage design more efficient. Scaling down to 50MHz, the 1-stage design takes

over as the most energy-efficient.

As demonstrated in Table 6.9 and Table 6.10, DVFS efficiency depends on microarchi-

tectural parameters, including pipeline depth. Thus, pipeline depths for the modules in a selective

replication-based DVFS design should be chosen appropriately to minimize average power. For

a design that weights high-performance mode more heavily (high R), a deeper pipeline is bene-
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ficial, since it allows more voltage scaling for reduced dynamic power. For a design that weights

low performance more heavily (low R), a shallower pipeline is beneficial for area and leakage

reduction. Consequently, duty cycle (R) plays a strong role in determining the optimal pipeline

depth of a multi-mode design. As R increases, optimal pipeline depth also increases. For a

replicated module in a selective replication-based design, high and low-performance replicas

may have different energy-optimal pipeline depths. Thus, module replicas, though identical in

functionality, may not have identical implementations. In addition to optimizing the design level

implementation of each replica for the performance target, the microarchitecture – including

pipeline depth – should also be optimized. For the multiplier at R = 1%, X = 10, a replication-

based design that optimizes the pipeline depths of each replica has 14% lower average power

than a replication-based design without microarchitectural optimization. Average power reduc-

tion is 9.5% with respect to a context-aware multi-mode design. Figure 6.14 shows normalized

average power consumption for each pipelined multiplier implementation, demonstrating that

the optimal pipeline depth for a DVFS design depends on the dominant performance mode.
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Figure 6.14: Power consumption of each pipelined multiplier (normalized to the 2-stage
implementation). The minimum-energy implementation depends on the dominant performance

mode.

Microarchitectural Structure Sizing. Besides pipeline depth, we also investigate the effect

on DVFS efficiency of changing the sizes of microarchitectural structures in the processor. We

evaluate the Issue stage of the FabScalar processor for issue queue (IQ) lengths ∈ {16, 32}.
We also evaluate the Load Store Unit (LSU) of the processor for load and store queue lengths

∈ {8, 16}. Note that the total length of the load store queue (LSQ) is the length of the load queue

plus the length of the store queue {16, 32}. In both cases, we observe the effect of changing
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the superscalar width for widths ∈ {1, 2, 4}. Superscalar width and IQ and LSQ lengths

have a significant impact on processor complexity [187] and, consequently, affect several design

characteristics that influence DVFS efficiency, as outlined in Section 6.1.

In order to isolate the effect of these microarchitectural optimizations on DVFS effi-

ciency, we compare the average power consumption of the context-aware multi-mode design for

each scenario against the average power of an ideal design. Ideal average power in each scenario

is computed using the power of the minimum power targeted design in each mode.

Table 6.11: Percent average power overhead with respect to ideal for the LSU stage for
different scenarios, LSQ lengths, and superscalar widths.

LSQ length = 16 LSQ length = 32

width X
R = R = R = R = R = R = R = R =

0.5% 1% 10% 50% 0.5% 1% 10% 50%

2 0.3 0.7 4.0 7.9 6.0 6.0 6.9 0.7

1 4 2.8 3.7 11.9 9.0 6.0 6.1 7.4 2.6

10 7.1 9.7 14.8 11.1 8.8 6.8 4.9 2.4

2 3.7 4.4 8.7 13.7 7.5 7.4 5.6 2.6

2 4 5.4 6.8 20.2 31.7 7.3 7.2 2.6 0.7

10 10.0 13.1 34.9 39.4 10.2 10.0 1.4 0.3

2 6.0 6.5 13.7 1.9 1.0 1.0 2.5 0.7

4 4 8.4 10.4 19.5 1.3 8.0 8.1 2.5 1.1

10 12.2 16.7 28.0 0.7 10.1 10.5 3.8 0.5

Table 6.12: Percent average power overhead with respect to ideal for the Issue stage for
different scenarios, IQ lengths, and superscalar widths.

IQ length = 16 IQ length = 32

width X
R = R = R = R = R = R = R = R =

0.5% 1% 10% 50% 0.5% 1% 10% 50%

2 1.0 1.2 4.0 9.5 1.4 1.7 4.8 3.7

1 4 8.4 8.8 7.4 2.2 4.7 5.2 10.2 2.3

10 6.1 7.3 11.7 3.9 13.2 13.6 13.5 2.1

2 1.3 1.5 3.7 3.8 0.2 0.4 3.2 0.3

2 4 6.3 6.8 10.6 2.4 11.0 11.2 4.9 1.3

10 6.7 7.6 6.7 1.1 16.1 18.3 7.0 1.2

2 0.1 0.2 2.4 0.1 0.1 0.2 1.6 0.2

4 4 11.3 10.4 8.5 1.9 5.8 5.9 7.3 1.7

10 14.5 14.0 6.2 1.5 11.4 10.9 6.0 1.0
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Table 6.11 shows the average power overhead with respect to ideal average power in dif-

ferent scenarios for the LSU stage with different LSQ lengths and superscalar widths. Averaged

over all scenarios and superscalar widths, the larger LSQ has 5% overhead with respect to ideal,

compared to 11% for the smaller LSQ. This is partially because the LSU has a large %seq (40%

– 50%), and increasing the size of the LSQ further increases %seq. Due to this and the increased

logic complexity incurred by the larger LSQ, the difference between high and low-performance

designs is less for the larger LSQ. Thus, DVFS energy efficiency does not suffer considerably

when the LSQ size increases. With the smaller LSQ, there is more variation between targeted

designs for each performance mode, resulting in more DVFS inefficiency, especially for larger

X , where the difference is stressed. Figure 6.15 demonstrates that the inefficiency of the designs

with the smaller LSQ increases significantly with X , while the inefficiency of the designs with

the larger LSQ stays fairly constant, around 5%.

Table 6.12 shows the average power overhead with respect to ideal in different scenarios

for the Issue stage with different IQ lengths and superscalar widths. The Issue stage has a

significantly larger fraction of combinational logic (lower %seq) than the LSU. Thus, increasing

the size of the IQ can result in a significant difference between the optimal designs for high and

low performance, especially when superscalar width is low (since this exaggerates the impact of

IQ length on design complexity). This also means that the effect of increasing X is amplified

when the IQ is larger, as shown in Figure 6.16. Based on the above, we observe that reducing

the sizes of microarchitectural structures that have low %seq (e.g., IQ) improves DVFS energy

efficiency when range of scalability is large.
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Figure 6.15: DVFS inefficiency increases more significantly with X for the LSU with a smaller
LSQ.

The results above demonstrate that adapting the microarchitecture of a DVFS design

can potentially improve DVFS efficiency. Note that we explore only a few microarchitectural

features and primarily consider the design-level efficiency implications of microarchitectural
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Figure 6.16: DVFS inefficiency increases more significantly with X for the Issue stage with a
larger IQ, especially when superscalar width is low.

decisions; other considerations are beyond the scope of this work. For example, our results do

not reflect the potentially increased cost of hazard recovery due to increased pipeline depth. A

more thorough investigation of the effects of microarchitecture on DVFS efficiency at the system

level is the subject of ongoing work.

6.5 Conclusions and Future Directions

DVFS is a popular technique for reducing power and energy consumption under dy-

namic operating conditions by targeting multiple power and performance modes in a single de-

sign. In this chapter, we demonstrate that DVFS-based designs obtained with conventional CAD

methodologies can be energy-inefficient. This may be especially true for energy-constrained de-

signs that spend a large fraction of time in a low-power mode. We identify the different factors

that impact DVFS efficiency. Based on our insights, we propose a new approach to optimize for

DVFS – context-aware multi-mode design – that considers the operating scenario to constrain

and optimize a multi-mode design for improved energy efficiency. We also identify operating

scenarios in which even an efficient multi-mode design exhibits substantial energy overhead with

respect to the ideal energy consumption. For such operating scenarios, we propose a selective

replication-based approach that maximizes energy efficiency while minimizing area overhead.

We demonstrate that context-aware and selective replication-based design can provide up to 25%

average power reduction with respect to conventional multi-mode design. Average power for the

optimized design is within 1% of ideal, on average. Finally, we show that microarchitectural

optimizations influence DVFS efficiency and demonstrate up to 18% average power reduction

by optimizing processor microarchitecture for DVFS efficiency. Ongoing work includes contin-

uing to investigate the connection between microarchitecture and DVFS efficiency. Future work
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includes exploring the implications of our techniques in design for yield – e.g., by improving

the energy efficiency of processor designs that are binned according to their post-manufacturing

characteristics and operate at a voltage or frequency that is determined only after manufacturing.
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Chapter 7

Approximate Arithmetic Designs

Guardbands for dynamic variations severely limit performance and energy efficiency of

conventional IC designs. To overcome consequences of overdesign, several recent mechanisms

for variation-resilient design [92] allow timing errors and manage design reliability dynamically.

Relaxing the requirement of correctness for designs may dramatically reduce costs of manufac-

turing, verification and test [15]. In resilient designs, errors can be corrected with redundancy

techniques (error-tolerance), or accepted in some applications relating to human senses such

as hearing and sight (error-acceptance). In the error-acceptance regime, approximation via a

simplified or inaccurate circuit can increase performance and/or reduce power consumption.

In the first part of this chapter, we propose an accuracy-configurable approximate (ACA)

adder, which can configure the accuracy of results during runtime. Because of its configurability,

the ACA adder can adaptively operate in both approximate (inaccurate) mode and accurate mode.

The proposed adder can achieve significant throughput improvement and total power reduction

relative to conventional adder designs. It can be used in accuracy-configurable applications, and

improves the achievable tradeoff between performance/power and quality.

In the second part of this chapter, we propose an improved approach to estimate the

output quality of approximate designs, based on lookup tables that characterize the statistical

properties of approximate hardware modules and a regression-based technique for composing

statistics to obtain expressions for output quality. Lookup tables that characterize approximate

hardware modules improve the speed of our approach, while the regression-based composition

technique improves accuracy for several error metrics by accounting for hardware configurations

and data distributions.

163
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The main contributions of our work are the following.

• The proposed ACA adder has runtime-configurable accuracy to enable better tradeoff of

accuracy in computation versus performance and power.

• We provide quantitative metrics for an approximate arithmetic design. We compare the

ACA adder to previous approximate adders based on these metrics.

• We demonstrate the power benefits of the ACA adder over previous approximate and con-

ventional adder designs for accuracy-configurable applications.

• We propose composition rules for estimating the error metric (EM) observed at any net

within an approximate circuit.

• We develop an approach to build pre-characterized libraries for individual approximate

hardware modules and demonstrate how to accelerate the computation of composed EMs

using the libraries. Our approach reduces runtime for characterization and results in im-

proved accuracy compared to previous works [116][117].

7.1 Accuracy-Configurable Adder

In this section, we describe the new accuracy-configurable approximate (ACA) adder.

We first present the proposed ACA adder design, along with its support of error detection and

correction within a pipelined architecture. We then describe our setup for empirical validation,

relevant metrics for approximate computation, and comparison of ACA versus previous approx-

imate adders with respect to accuracy and power efficiency.

7.1.1 Approximate Adder Implementation

Previous approximate adders [166] [211] [247] have difficulty detecting and correcting

errors since they are designed for error-acceptable applications with a target accuracy. How-

ever, accurate computations are still required at certain times, according to the application. The

VLSA adder [233] can provide accurate results, but has large delay and area overhead for the

error detection and correction. The central contribution of our present work is to propose an ap-

proximate adder which supports both accurate and inaccurate computation with error-correction

and accuracy-configuration capability. Figure 7.1 shows our proposed approximate circuit for

the case of a 16-bit adder. In the adder, the carry chain is cut to reduce critical-path delay, and
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Figure 7.1: Proposed approximate adder – 16-bit adder case.

three sub-adders generate results of partial summations. With the reduced critical-path delay,

high performance (by increasing the clock frequency) or low power consumption (by decreasing

the operating voltage) is obtained. A middle sub-adder (AM + BM ) is introduced to increase

accuracy. Without the middle sub-adder (as in the ETAII approximate adder [246]), error occurs

when the eighth carry bit is high, and for random input patterns the error rate is 50.1%. On

the other hand, with the introduction of the middle sub-adder, error rate for random input pat-

terns is reduced to 5.5%. (In an actual implementation, all redundant parts (four-LSB output of

AH +BH and AM +BM sub-adders) would be optimized only for carry-generation.)
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A [N-k-1:N-2k]

B [N-k-1:N-2k]
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B [N-2k-1:N-3k]

SUM [N-2k-1:N-3k]carry

k N: bit width, k: ½ carry-chain depth

Figure 7.2: General implementation for the proposed adder.

We can generalize the implementation of the proposed approximate adder. Figure 7.2

shows the general implementation of an N -bit adder with a parameter k, which is the bit-width

of the sub-adder result. In the adder, each divided submodule produces a k-bit result except for

the last submodule, which produces a 2k-bit result. The approximate adder thus consists of the

(N/k − 1) submodules as described in Equation (7.1).
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SUM [N − ik − 1 : N − (i+ 1)k]

= A[N − ik − 1 : N − (i+ 2)k]

+B[N − ik − 1 : N − (i+ 2)k],

where i = 0, ..., N/k − 2 (7.1)

In modern adder designs, such as carry-lookahead (CLA), carry-select and Kogge-Stone

adders, the path depth and area are asymptotically proportional to log2N and Nlog2N respec-

tively, whereN is the bit-width of the adder [248]. Based on this, we can express delay, area and

power consumption of the proposed adder in terms of the parameters N and k. The proposed

ACA adder has (N/k − 1) sub-adders, each of which is a 2k-bit adder. Therefore, delay of the

critical path can be expressed with Equation (7.2) and area can be estimated with Equation (7.3),

where Cdelay and Carea are constants for delay and area, respectively.

delay = Cdelay(log2k + 1) (7.2)

area = Carea(N − 2k)(log2k + 1) (7.3)

powerdyn = Cpower(N − 2k)(log2k + 1)2 (7.4)

Power consumption of the ACA adder can be roughly estimated as follows. Dynamic

power consumption with voltage scaling at a fixed frequency is proportional to capacitance ×
Vdd

2, where the capacitance is proportional to the area. Cell delay is proportional to 1/(Vdd −
Vt)β , and V 2

dd is roughly proportional to 1/cell delay if we assume that β is 2. Since cell delay×
path depth is constant at a fixed frequency, V 2

dd is proportional to the path depth, which is

log2k + 1. Consequently, dynamic power with voltage scaling can be expressed using Equa-

tion (7.4), where Cpower is a constant fixed for given Vdd for dynamic power consumption.

Static power consumption of the adder can be roughly estimated as proportional to the area in

Equation (7.3).

In our proposed adder design, the output of each sub-adder (except the last sub-adder) is

incorrect when a carry input should be propagated to the results. In Figure 7.1, when the carry[4]

(carry bit from AL + BL) is ‘1’ and SUMM [3 : 0] is 1111(2), the output result has an error in

SUM [11 : 8]. In the general implementation, the output result will be correct when there are no
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errors in all (N/k−1) sub-adders. In the ith sub-adder, errors occur when (i) the LSB part of the

result (SUMi[k−1 : 0]) has all ‘1’ values (probability P = 1
2k ) and (ii) the LSB part ([k−1 : 0])

of the (i+ 1)st sub-adder produces a carry bit (probability P = 1
4 + 1

2 ×
1
4 + 1

2 ×
1
2 ×

1
4 + ...).

Therefore, with a random input vector, the probability of having a correct result in the proposed

adder is

P (N, k) = (1− 1
2k
× 2k − 1

2k+1
)

N
k
−2 (7.5)

Table 7.1 shows the estimated results of 16-bit ACA adders with different parameter

values k. With smaller k value, the minimum clock period and dynamic power can be reduced,

but the pass rate (probability of having a correct result) will decrease. The estimations come from

Equations (7.2), (7.3), (7.4) and (7.5). In Section 7.1.6 below, we validate the above estimation

with real implementations.

Table 7.1: Estimated minimum clock cycle, area, dynamic power and pass rate for each k value
when N = 16 (normalized to the conventional CLA 16-bit adder).

k = 2 k = 3 k = 4 k = 5 k = 6

mininum clock period 0.5 0.65 0.75 0.83 0.89

area 0.87 1.05 1.12 1.15 1.12

dynamic power 0.44 0.68 0.84 0.95 1.00

pass rate 0.554 0.829 0.942 0.982 0.995

7.1.2 Error Detection and Correction for Accurate Computation

As described in Section 7.1.1, our proposed adder is incorrect when a carry bit is prop-

agated between sub-adders. However, this error can be detected and corrected with a small

overhead. We detect error for each sub-adder by checking the output of the sub-adder and the

carry-in signal that comes from the previous sub-adder. Error detection can be implemented with

several AND gates. To correct the error, ‘1’ should be added to the approximate (inaccurate) out-

put, and the error correction can be implemented with an incrementor circuit.

With these simple error detection and correction circuits, our proposed adder can be im-

plemented to have variable latency as in the previous VLSA adder [233], but with small overhead

for its error detection and correction (EDC) capability. Figure 7.3 shows an EDC system with

our proposed adder. The error detection circuit (AND gates) checks the carry propagation and

generates an error signal. The error correction (incrementor) circuit produces an error-free output
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Figure 7.3: Error detection and correction with the approximate adder.

by adding compensation data, and requires an additional clock cycle. When errors are detected

from input patterns, the error signal is activated. The error signal holds the input pattern during

the error correction and chooses the error-corrected value (SUMcorrect) as an output. With this

approach, our approximate adder can provide accurate results at a higher clock frequency than

that of conventional adders (e.g., CLA). According to the estimated results in Table 7.1, clock

period can be reduced by 25% with 6% (= error rate) recovery-cycle overhead (16-bit ACA,

k = 4).

7.1.3 Accuracy Configuration with Pipelined Architecture

When our proposed adder is combined with a pipelined architecture, we can obtain ac-

curate results with the same throughput as a conventional adder. In the pipelined architecture,

approximate additions are computed at the first pipeline stage, and error correction can be com-

pleted at the second stage. Figure 7.4 shows the conventional pipelined adder (above) and the

approximate adder (below). The pipelined implementation of our approximate adder has a struc-

tural analogy with the pipelined adder of the 2006 U.S. patent of Mohammed and Hemmert

[176] in which partial summations are performed at the first stage and carry bits are added at

the later stages. However, the patent is clearly directed to accurate operations, not approximate

computations. In addition, we use our approximate adder (Figure 7.2) in the first stage. In the

pipelined approach, there is no improvement of the clock frequency since the achievable clock

period is the same as that of the conventional adder. However, power benefits are obtained

through configuration of accuracy: in the approximate mode, the error correction stage is power

gated with footer (or, header) switches in Figure 7.4, and power reduction versus the conven-

tional adder design can be achieved. We compare the conventional and approximate pipelined

adders in Section 7.1.8.
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In the proposed adder implementation, to achieve higher performance or lower power

consumption, we can reduce the carry chain depth (k) of sub-adders (see Table 7.1). However,

when k is less than N/4, it is impossible to correct all errors and achieve 100% correct results

within one clock cycle, since the error-correction paths become critical. To achieve correct

results in the pipelined implementation, the error-correction stage should be extended to multiple

stages. Figure 7.5 shows the pipelined adder implementation with k = N/8, case, in which four

pipeline stages are required to achieve a 100% accurate result. In the pipelined adder, each

stage generates a result with different accuracy; the output accuracy increases as the number

of pipeline stages increases. According to the given accuracy requirement, we can turn off the

later stages with power gating, and we can further reduce power consumption by exploiting the

accuracy tradeoff.

Since the proposed adder supports both approximate and accurate results, it can be used

in applications that require accurate results only under certain conditions. Conventional accurate

designs are energy-inefficient in the error-acceptable application context because they always

compute the exact function. Previous approximate designs cannot handle a varying accuracy

requirement, which limits the benefit of the accuracy tradeoff since, as noted above, the approx-

imate function must meet the maximum accuracy threshold across all applications. Moreover, if

the application requests an exact computation, previous approximate designs require augmenta-

tion with additional accurate circuits. By contrast, the ACA design efficiently exploits a tradeoff

between accuracy and power/performance with its runtime accuracy configurability.
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Figure 7.4: Pipelined adder implementation – conventional adder (above) and approximate
adder (below). During approximate-mode operation, the error correction stage is power gated.
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7.1.4 Experimental Setup

To test the impact of ACA in approximate designs, we have written each design (ACA,

CLA, Lu’s adder, ETAI and ETAIIM) in Verilog and synthesized it to a TSMC 65GP cell library

with Synopsys DesignCompiler [26]. We then perform gate-level simulations using Cadence NC-

Sim [4]. In the simulation, gate delay is taken from an SDF (standard delay format) file [13]. For

voltage scaling experiments, we prepare Synopsys Liberty (.lib) files for each voltage from 1.00V

to 0.60V in 0.01V increments, using Cadence Library Characterizer v9.1 [3]. The prepared

libraries are used for SDF file generation and power estimation at each voltage. Each simulation

is performed with input patterns for one million cycles. During the simulation, each output value

is compared with a reference (correct) value to enable evaluation of various accuracy metrics. For

the input patterns, we use random data as well as actual data from SPEC 2006 [23] benchmarks;

in the latter case we extract operand data from ADD instructions in the SPEC benchmarks.

7.1.5 Metrics for Approximate Design

To quantify errors in approximate designs, two metrics have been previously proposed

[51]. Error rate (ER) is the percentage of cycles in which output value is different from the

correct value. Error significance (ES) is the numerical difference between correct and output

results; this quantifies the amount of error. In image/video applications, [66] uses the product

of ES and ER as a metric of error tolerance. [211] introduces a criterion for acceptability: ES

× ER ≤ acceptance threshold, where the acceptance threshold is specified according to the

application. For the error significance (ES) metric, [247] considers only error amplitude. This

is useful for many digital signal processing (DSP) systems that process, e.g., sound and image

data. However, in communication systems that mainly handle information data, the number of

incorrect bits (Hamming distance) is a more meaningful metric for accuracy – e.g., a (32,28)
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Reed-Solomon code can correct up to 2-byte errors. This consideration for the ES metric is

required when approximate arithmetic is applied to error-tolerant systems with a redundancy

technique.

Table 7.2 defines two accuracy metrics for amplitude and information data. ACCamp

is used in [247] and quantifies the amplitude of errors, where Rc and Re are the correct and

obtained results, respectively. We propose another accuracy metric, ACCinf , which measures

error significance as Hamming distance. In the definition of ACCinf , Be is the number of

error bits and Bw is the bit-width of the data. For example, when the correct (reference) data is

1000 0000(2) and the result data is 1100 0000(2), accuracy according to ACCamp and ACCinf

will be 1
2 and 7

8 , respectively. To assess both ER and ES in approximate circuits, we obtain

average values of accuracy metrics ACCamp and ACCinf over entire simulation traces.

Table 7.2: Accuracy metrics for error significance (ES).

metric definition data type

ACCamp 1− |Rc −Re|/Rc amplitude data

ACCinf 1−Be/Bw information data

Table 7.3: ACA adder results with different k values.

k 2 3 4 5

min. clock period (ps) 180 190 220 230

area (um2) 550 990 920 840

pass rate (%) 55.3 82.8 94.0 98.1

throughput improvement (%) 11.3 24.6 22.3 21.4

Table 7.4: Design comparison for each adder design.

CLA LU ACA ETAI ETAIIM

area (um2) 910 1356 923 576 678

min. clock period (ps) 280 210 200 200 260

pass rate (%) 100 99.2 94.1 10.0 97.0

ACCamp (maximum) 1.000 0.998 0.997 0.999 0.999

ACCinf (maximum) 1.000 0.999 0.993 0.694 0.996

area overhead for EDC N/A 75% 28% N/A 15%
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7.1.6 Approximate Adder with Different Parameters

We explore the proposed ACA adder with different parameters (k: half of carry-chain

depth). Table 7.3 summarizes results – minimum clock period, area, error rate and throughput

improvements – for each implementation of the 16-bit adder with different k values. According

to the results, with smaller k, the maximum operating frequency increases, but the error rate

increases as well. With higher k, the error rate is reduced significantly, but the benefit of the

approximate circuit, i.e., clock period reduction, is small. In the table, throughput improvement

over conventional design is calculated including error recovery overhead. From the implemen-

tations, a maximum throughput improvement is achieved when k = 3. If we correct erroneous

results with EDC as in Figure 7.3, then 17.2% additional clock cycles are required for error

correction. With this overhead, the ACA adder can improve data throughput by 24.6% over the

conventional CLA adder.

7.1.7 Approximate Adder Comparison

We now evaluate ACA and previous approximate as well as exact adders with respect to

the pass rate and the accuracy metrics which we have proposed. We use gate-level simulation at

each possible clock period to compare five adders: CLA, Lu’s adder [166], ETAI, ETAIIM [247]

and the proposed ACA adder (without error correction). In the experiment, the same carry-

chain width (8-bit) is selected for the four approximate adders. In the implementation, a register

(flip-flop) is inserted at each output port to detect timing errors.

Table 7.4 shows area, pass rate, accuracy, minimum clock period and EDC overhead

for each adder design. According to the results, the ETAI adder has the smallest design area,

but has a low pass rate and limited accuracy with respect to the ACCinf metric. Therefore,

the ETAI adder is preferred for applications which allow low accuracy in results. The ETAIIM

adder shows fairly high accuracy, but does not have any speed (clock period) benefit. Lu’s adder

shows a smaller error rate and high accuracy with respect to bothACCamp andACCinf metrics.

However, it requires larger area than the other designs. The proposed adder shows similar results

for both metrics as Lu’s adder. However, the area of the ACA adder is smaller than that of Lu’s

adder, and EDC is possible with small area overhead (28%). With the ACA adder, the minimum

clock period can be reduced by 26% compared to the accurate CLA.

Figure 7.6 shows the tradeoff of power versus accuracy in a voltage scaling scenario:

the x-axis shows total power consumption, and the y-axis shows accuracy (ACCamp, ACCinf ).

The power consumption and accuracy are measured with different voltage libraries character-
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Figure 7.6: Accuracy (y-axis) versus power consumption (x-axis) under fixed clock period
(0.25ns) and scaled voltage (from 1.0V to 0.6V ).

ized using Cadence Library Characterizer [3]. The clock period is fixed at 0.30ns during the

simulations. In the results, Lu’s adder does not show power benefits due to its design size. ETAI

shows low power consumption and high ACCamp accuracy, but has low ACCinf accuracy and

cannot detect and correct errors. ETAIIM shows similar characteristics to ACA in the voltage

scaling case, but the adder cannot be used for a high-performance (high-frequency) design, as

shown in Table 7.4. The results in Figure 7.6 imply that our proposed adder can provide a sig-

nificant power reduction over existing adders, if a small accuracy penalty is accepted. When

the required accuracy is 0.970 (ACCamp), the ACA adder shows 37.0%, 36.4% and 15.9% total

power reduction versus CLA, Lu’s adder and ETAIIM, respectively.

We have tested our approximate adder on a real application, namely, the Gaussian

smoothing filter used in [154]. Gaussian smoothing is performed on the input image by con-

volving with a matrix in the spatial domain. In the convolution, the addition operation is done

with approximate 16-bit adders. Other operations, such as multiplication and division, are accu-

rate computations. Figure 7.7 shows results for various approximate adders when they consume



174

50% of the power of accurate CLA. From the results, the ACA adder has PSNR of 24.5dB, and

this suggests that image processing/filtering applications could employ our proposed adder with

significant power savings and only small loss in image quality.

Image smoothing 

source 
accurate 
aca 
Lu 
etai 
etaii 

(a) (b) (c) 

(d) (e) (f) 

Figure 7.7: Image smoothing: (a) original image with noise; (b) accurate adder; (c) ACA
(PSNR: 24.5dB); (d) ETAI (PSNR: 25.3dB); (e) ETAIIM (PSNR: 16.2dB); (f) Lu’s adder

(PSNR: 11.1dB).

Table 7.5: Comparison between conventional and approximate pipelined adders in accurate
mode.

conventional pipelined approximate pipelined

adder area clock total area clock total

width (um2) period power k (um2) period power

(N ) (ns) (mW ) (ns) (mW )

8 459 0.313 0.557 2 576 0.312 0.564

16 1082 0.357 1.558 4 1171 0.358 1.669

32 2252 0.404 2.860 8 2420 0.414 2.914

7.1.8 Accuracy Configuration and Power Savings

When the architecture allows pipelining for addition, our proposed adder can be imple-

mented as shown in Figure 7.4. We implement both the conventional pipelined adder and the

approximate pipelined adder in order to compare the designs with respect to area, timing and
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Table 7.6: Implementation results of 32-bit ACA adder with 4-stage pipeline (power
consumption of each mode and power reduction over conventional pipelined adder).

configuration
power- ACCamp ACCinf total power reduction

gating (max.) (max.) (mW) (%)

mode 1 none 1.000 1.000 5.962 -11.5%

mode 2 Stage 4 0.998 0.960 4.683 12.4%

mode 3 Stage 3, 4 0.991 0.925 3.691 31.0%

mode 4 Stage 2, 3, 4 0.983 0.900 2.588 51.6%

power. In the implementation, registers (flip-flops) are included at each pipeline stage (before

Stage 1, between Stage 1 and Stage 2, and after Stage 2).

Table 7.5 shows the implementation results for the conventional and approximate pipe-

lined adders. The parameter k has been selected as N/4 for a two-stage pipelined implementa-

tion. In the table, minimum clock period is measured at a fixed voltage (1.0V ), and total power

is measured at a fixed frequency (2.5GHz) with voltage scaling. In the ACA adder case, timing

and power overheads from power gating cells, output MUXes, and IR drop are included. We can

see that area, timing and power of both designs are similar when the ACA adder operates in the

accurate mode. Total power of the approximate adder is comparable to that of the conventional

adder, even though ACA has additional EDC circuits. This is because ACA has fewer registers

between Stage 1 and Stage 2 than the conventional pipelined adder. (In Figure 7.4, the con-

ventional adder requires registers for AH , BH , SUML and carry at the first stage. For a 16-bit

adder, 25 registers (8 + 8 + 8 + 1) are required. On the other hand, ACA requires 18 registers

(16 for SUMapprox and 2 for error indication).)

In the pipelined architecture, the ACA adder can provide various configurable modes

according to the pipeline depth. To improve the design performance, we increase the pipeline

depth; the deeper pipeline reduces the path depth of the design. In the conventional pipelined

adder, bit-width of the adder in each stage can be reduced to N/#stage, where N is the entire

bit-width and #stage is the depth (number) of the pipeline stages. In the ACA adder, we can

reduce the value of parameter k with deeper pipeline depth as shown in Figure 7.5. To show the

benefit of accuracy configuration, we have implemented a 32-bit ACA adder (N = 32, k = 4)

with 4-stage pipeline, and compared it with a conventional pipelined adder with an 8-bit CLA in

each stage. Table 7.6 shows the implemented results for the 32-bit ACA adder. For the accuracy

estimation, one million cycles of random patterns are used. The ACA adder can operate in four

different modes, based on the power gating of each stage. We can see that the modes show
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Figure 7.8: Accuracy metric ACCamp (above) and ACCinf (below) versus power
consumption for conventional pipelined adder, ACA adder in accurate mode, and ACA adder in

approximate mode (4-stage, 32-bit adder).

different power consumptions and different achievable accuracies. The ACA adder consumes

11.5% more power than the conventional adder in accurate mode (mode 1) due to the presence

of recovery circuits. At the same time, it shows significant power reductions in the approximate

modes: 12.4%, 31.0% and 51.6% in mode 2, mode 3 and mode 4, respectively. Figure 7.8 shows

detailed results for power consumption versus accuracy metrics in each configuration. From the

results, we can see that accuracy configuration with the mode change is much more effective

than with voltage scaling, in terms of the tradeoff between accuracy and power.

Last, we also obtain accuracy results in each accuracy mode with real input patterns

extracted from SPEC 2006 benchmarks. Table 7.7 shows accuracy results of a 32-bit ACA

adder with such real input patterns. The accuracy results are different for each benchmark, e.g.,

the measured accuracy for bzip2 is higher than for gcc. Furthermore, the accuracy with real

patterns is greater than with random input patterns (Table 7.6), most likely because addition

inputs for general-purpose processor traces have infrequently and/or systematically changing

patterns in the applications. Figure 7.9 shows power reduction achieved by the ACA adder versus

the conventional pipelined adder under the accuracy requirements. We assume that required

accuracy is between 0.99 (0.95) and 1.0 for ACCamp (ACCinf ), and that it varies uniformly



177

Table 7.7: Accuracy (ACCamp, ACCinf ) results of 32-bit ACA adder for real benchmarks
(SPEC 2006).

accuracy metric benchmark astar bzip2 calculix gcc h264ref mcf sjeng soplex

ACCamp

mode 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

mode 2 0.9999 1.0000 0.9999 0.9992 0.9999 0.9997 0.9998 0.9999

mode 3 0.9993 0.9998 0.9972 0.9990 0.9990 0.9997 0.9995 0.9998

mode 4 0.9979 0.9970 0.9958 0.9951 0.9978 0.9991 0.9981 0.9953

ACCinf

mode 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

mode 2 0.9979 1.0000 0.9978 0.9881 0.9953 0.9819 0.9897 0.9985

mode 3 0.9949 0.9984 0.9967 0.9849 0.9897 0.9809 0.9876 0.9965

mode 4 0.9940 0.9931 0.9910 0.9617 0.9851 0.9596 0.9787 0.9925
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Figure 7.9: Normalized power consumption, relative to that of conventional pipelined design,
when the accuracy requirement is varied uniformly.

over this range during the entire runtime. From the results, dynamic accuracy configuration

achieves up to 44.5% (30.0% on average) and 47.1% (35.8% on average) power reduction over

the conventional pipelined design for ACCamp and ACCinf metrics, respectively.
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Figure 7.10: Probability mass function (PMF) used in the interval- based approach [116] [117].

7.2 Statistical Analysis and Modeling for Error Composition

In this section, we describe initial work toward a compositional methodology for error

metric estimation in approximate arithmetic circuits. We first assess potential weaknesses of a

previous interval- based approach to error metric composition. We then motivate and describe our

statistical characterization of the error properties of approximate hardware modules, along with

the use of regression and lookup table- based techniques. Last, we demonstrate the application

of composition rules and pre- characterized error libraries to analyze arbitrary circuit topologies.

7.2.1 An Interval- based Approach to Error Rate Estimation

Huang et al. address the issue of error rate estimation for approximate circuits in [116]

[117]. Their flow first characterizes approximate hardware modules by simulating the error

probabilities for different input value intervals. They then use interval arithmetic to estimate the

probability mass function (PMF) of errors produced and propagated in an approximate arithmetic

circuit. After propagating and composing errors with interval arithmetic, the error metrics are

obtained from PMFs. The interval- based approach samples the probability distribution functions

(PDFs) or PMFs of errors to generate sampled PMFs. The height of each interval in the sampled

PMF represents the probability of error. Figure 7.10 shows an example PMF which is used in

the interval- based approach.

We observe two drawbacks in the interval- based approach. First, there is a quantization

error, since the approach represents multiple error values with a single interval. If the actual

error distribution varies greatly within one interval, the estimation will be inaccurate. Second,

the interval- based approach requires consecutive intervals to cover the range from maximum to

minimum error magnitude (max and min in Figure 7.10). If the errors exceed max or min,

the interval- based approach will clamp the estimated errors to the max or min values, and
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the estimation error will be saturated. If high portion of errors or data experience saturation

issue, the estimation inaccuracy will be high. To address these drawbacks, the interval-based

approach requires re-characterization of the libraries to increase the number of intervals, requir-

ing significant runtime overhead. For better understanding of the strengths and weaknesses of

the interval-based error metric (EM) composition, we evaluate the EM estimation with a test-

case shown in Figure 7.11(a). We vary the input distribution to evaluate accuracy for different

input distributions and hardware configurations. We collect results from 100 combinations (10

Gaussian distributions with different standard deviations and 10 sets of ETAIIM configurations).

Figure 7.11(b) shows the runtime of library characterization performed by the interval-based

approach for different numbers of samples per interval. The accuracy results of the interval-

based approach compared to Monte Carlo simulation are shown in the form of a correlation

plot in Figure 7.11(c). From Figure 7.11(b) we notice that increasing the sample size to 18.5M

requires 1.7 hours for library characterization, but estimation errors (offsets) are still observed

in Figure 7.11(c). Possible reasons for the inaccuracy are (i) the use of discrete PMF and (ii)

inaccurate propagation of EMs from the pre-characterized library.

7.2.2 Analysis for Computation of Error Metrics

We analyze an ETAIIM adder to understand the error generation of approximate mod-

ules. ER of ETAIIM adder is given in Equation (7.6). N is the total bit width of the adder.

Bits-per-block (BPB) of ETAIIM is the size of carry-look-ahead (CLA) blocks and k is the num-

ber of connected CLA blocks, an architectural parameter used to control error magnitudes. From

Figure (7.12), we observe that the errors are related to the input values of CLA blocks because

errors occur when all input bits of the CLA block are in carry-propagate state. For example,

if most of the input values are small, then the probability of generating larger errors will be

small. This observation regarding ETAIIM motivates us to study the sensitivity of EMs to input

distributions.

ERETAIIM = 1− (1− 1
2BPB

2BPB − 1
2BPB+1

)
N

BPB
−2−k

×(1− 1
2(BPB×k)

2(BPB×k) − 1
2(BPB×k)+1

)
(7.6)
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Figure 7.11: (a) Five-node testcase. (b) Runtime from interval-based approach for each sample

size. (c) ER estimation results from interval-based approach. The results are generated from

100 testcases (10 hardware configurations and 10 combinations of input distributions).
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Figure 7.12: The structure of an ETAIIM approximate adder. CLAs are carry-lookahead

sub-adders. RCAs are ripple-carry sub-adders.

7.2.3 Proposed Approach to Estimate EMs

The analytical expression in Equation (7.6) is based on the assumption that distributions

of the input values are uniform and the ranges cover from the MSB to LSB. However, this is not

always the case, and we need to consider input distributions for the accurately-estimated EMs.



181

To analyze the relationship between input distributions and EMs, we use 24-bit ETAIIM adders

and simulate the EMs for different BPB and k. Figure 7.13 shows each simulated EM value

(y-axis) with respect to the standard deviation of input data (x-axis). In the ETAIIM adder, 20

bits are used for the fractional part, and the MSB guard block size k takes on values from one to

four.

ER ES: log(abs()) AARES: log(abs())

MSE: log(abs()) SNR MAXE: log(abs())

2-18 2-10 2-226 2-18 2-10 2-226 2-18 2-10 2-226

2-18 2-10 2-226 2-18 2-10 2-226 2-18 2-10 2-226

Figure 7.13: The simulated EM results for input distributions.

Figure 7.13 shows that EM values change with respect to both the standard deviations

of input values and the hardware configuration (k). Based on the results, we construct lookup

tables to model the error metric of approximate modules instead of using analytical expressions.

Modeling with lookup tables is preferred since it is difficult to derive an analytical expression if

input values are not uniformly distributed.

Figure 7.15 illustrates our EM formulation. To estimate the output EM (EMZ), we

consider intrinsic EM values (EMin) which are generated by the approximate module itself,

and propagated EM values (EMA, EMB) which come from the previous stages.

In our EM estimation framework, we propose a lookup table (LUT)-based approach to

consider different input distributions. The lookup tables for different hardware configurations

are merged to become the pre-characterized library. We construct two types of lookup tables, as

illustrated in Figure 7.14(b). The tables, EMZ and STDZ , contain (intrinsic) EM values and

output standard deviations, respectively, with respect to the input standard deviations.
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Our LUT-based approach can be divided into three steps as described in Figure 7.14(a).

Step 1: Value distribution propagation in the circuit topology. We generate statistical proper-

ties with pre-characterized libraries. To obtain the statistical property of each node in the circuit,

we traverse all the nodes in the circuit in a topological order from primary inputs to a primary

output. During the traversal, we look up the statistical property (standard deviation) from a

pre-characterized table (STDZ), and annotate the standard deviation values at all nodes.

Step 2: EM estimation for approximate modules. With standard deviations of the internal

nodes, we estimate EM values using a pre-characterized table (EMZ) for each internal node.

The lookup table, EMZ , is characterized by simulating EM values as shown in Figure 7.13. We

generate the LUTs for different approximate modules to estimate intrinsic error metric (EMin),

which is generated by modules themselves without input errors. By combining Steps 1 and 2,

we can estimate the EMin of each node in any circuit topology.

Step 3: Error composition with EMs of each approximate module. With the generated EMs

(EMin) of each approximate module, we apply a regression approach to find the composed EM

values in the primary output. The error rate (ER) can be computed by multiplying pass rate

(1-ER), and the composed ER is generated with Equation (7.7), where ERZ is the composed

ER, ERA and ERB are the propagated ERs to the inputs in Figure 7.15, ERin is an intrinsic

ER, and α{in,P} are regression coefficients. Other EMs (ES, ARES, MSE, SNR and MAXE) are

amplitude-based error metrics, and we generate the composed EM from Equation (7.8), where

α{in,P,C} are regression coefficients.

ERZ = 1− 10αC × (1− ERin)αin × ((1− ERA)× (1− ERB))αP (7.7)

EMZ = αinEMin + αP (EMA + EMB) + αC . (7.8)

To verify the correctness of our table lookup method in Step 2, we estimate the standard

deviation (STD) and EMin as shown in Figure 7.16. We test with 10 combinations of hardware

configurations and 10 combinations of different input distributions (Gaussian distribution with

different standard deviations). Figure 7.16 shows the correlations between the estimated and

simulated STD/EM values from all internal nodes. The results show that we can obtain correct

STD values from the lookup table with the topology traversal. With the estimated STD, we

observe correct estimation for EMin (ER and ES). We find that ARES results are less accurate

compared to the results of ER and ES. This is because ARES measures error relative to input

data. If the magnitude of input data is small (near zero), the range of the ARES value will be
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Figure 7.14: (a) Our proposed approach for error estimation, and (b) the lookup tables in the

pre- characterized library for EMin and STDout.

large. In such a context, accurate estimations are difficult, given the limited number of grids in

the lookup table.

Table 7.8 shows our regression results for improved EM estimations. The upper part (a)

of the table shows regression parameters derived with different hardware configurations. The

lower part (b) of the table shows the estimated inaccuracy, as defined in Equation (7.9), where

Rc and Re are the correct and obtained results, respectively. The inaccuracy is shown for both

“without regression” and “with regression” cases.

Figure 7.15: EM estimation at a given node (approximate module) considering intrinsic and

propagated EMs.
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estimations and the blue dots show the estimated results from our proposed method.

Inaccuracy = |Rc −Re|/|Rc| (7.9)

Without regression, we report inaccuracy results with αIN = αP = 1 and αC = 0 for

the coefficients in Equations (7.7) and (7.8); this is a pessimistic assumption (i.e., that there are

no overlap effects from the composition). To explore the coefficients of our propagation model,

we simulate a single approximate adder with different operating conditions, which we model by

changing the input distribution (Gaussian distribution with different standard deviations), and

applying artificial errors. The artificial errors are also assumed to have Gaussian distribution

with different standard deviations. We obtain the regression coefficients from the simulation,

then apply the coefficients in EM estimations, and report the inaccuracy of EM results. With

the regression coefficients, the accuracy of estimation is significantly improved for ER, ARES

and SNR. However, ES, MSE and MAXE have degraded accuracy results due to our simple

regression models, and improving the models is one of our ongoing works.
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Table 7.8: (a) Regression coefficients derived with different hardware configurations, and (b)
estimation inaccuracy with or without the regression.

(a) regression parameters

ER ES ARES MSE SNR MAXE

αIN 1.03E+00 1.00E+00 2.42E-02 1.00E+00 3.46E-01 9.40E-01

αP 1.26E+00 9.98E-01 9.76E-01 1.00E+00 7.15E-02 7.98E-01

αC -5.85E-03 5.74E-08 -5.92E-03 -5.55E-09 -1.27E+00 8.65E-05

(b) inaccuracy with regression parameters

without regression 4.18e-02 8.3e-02 1.28+03 1.22e-01 1.35e+02 1.29e-01

with regression 7.47e-03 5.41e-01 2.65e+01 4.12+04 4.01-01 1.88+01

7.2.4 Experimental Results

To evaluate the accuracy and performance of our EM estimation approach, we perform

several experiments. First, we demonstrate that our approach can be applied to a four-tap finite

impulse response (FIR) filter. In the FIR experiment, the accuracies of six error metrics are eval-

uated. Second, we use multiply-accumulator (MAC) circuits with different sizes to compare the

accuracy and runtime between our approach and the interval-based approach. Finally, we evalu-

ate the accuracy of estimated results for randomly generated topologies. In the experiments, we

use 64-bit ETAIIMs with different k parameters. The adders are assumed to have 60 fractional

bits.

FIR filter. To demonstrate that our approach is applicable to realistic computation circuits, we

estimate EMs for the FIR filter design illustrated in Figure 7.17(a). Lookup table characterization

for each error metric and standard deviation is performed for 12×12 different combinations of

standard deviations (20, 2−2, ..., 2−22). For each entry in the tables, we use 90K samples to

obtain standard deviations and EMs. The runtime for building this set of lookup tables with

ETAIIM adders is 1.37 hours on a 2.8GHz Intel Xeon E5-2640 Linux workstation with 128GB

of memory. With our lookup tables, we implement the flow in Figure 7.14 with Matlab [21].

Table 7.9 shows inaccuracy results of the estimations for each EM. We assume that the

constant multipliers are accurate, and the adders in the FIR filter are approximate modules. In

the second column (error type), “IN” means an intrinsic EM value generated by the approximate

modules themselves, and “P” means a propagated EM value composed from the EMs in previous

stages. Based on the results in Table 7.9, our approach provides accurate EM estimations for

ER, ES, MSE and MAXE metrics. For the same testcase, the inaccuracy of the interval-based

approach is 17.6% and 60.2% for ER and ES, respectively.
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Figure 7.17: Configuration of (a) FIR filter and (b) multiply-accumulator (MAC) circuits used

in the experiments.

Table 7.9: Estimation inaccuracy of a four-tap FIR filter shown in Figure 7.17(a).

estimation inaccuracy

net type ER ES ARES MSE SNR MAXE

NET9 IN 0.3% 6.4% 17.0% 6.4% 19.1% 0.0%

NET10 IN 1.3% 2.6% 61.9% 3.3% 10.7% 0.0%

NET11 IN 1.0% 6.3% 419.6% 6.2% 6.1% 0.0%

NET11 P 13.4% 5.8% 692.3% 5.8% 436.4% 0.7%

MAC circuits. We test the accuracy and runtime of our approach against the interval-based ap-

proach for the MAC circuits shown in Figure 7.17(b), which are the general case of the FIR filter.

We use 280 MAC circuits, having 14 different levels and 20 different configurations (parame-

ters of each adder, constant values Ci, and input distributions). We estimate EMs for the MAC

circuits using our approach and the interval-based approach. Figures 7.18 and 7.19 show corre-

lation plots for ER and ES, respectively. For ER, we observe that our approach achieves 1.28×
better accuracy than the interval-based approach with 8.4× faster runtime. For ES, we observe

that the estimated results from the interval-based approach are clamped to -2−20 on the right

end. This is due to the saturation issue mentioned in Section 7.2.1. Max inaccuracy is defined

as max(|Rc−Re|), where Rc and Re are the simulated and estimated results, respectively. Fig-

ure 7.19 shows that for the same testcases our approach is not affected by the saturation problem;

this is because the estimates of ES are interpolated or extrapolated from the lookup tables.

We evaluate runtime and accuracy for increasing circuit complexity by increasing the

number of circuit levels in Figure 7.17(b). Figure 7.20(a) shows how runtime scales with circuit

complexity. We observe that the runtime of error composition increases linearly for both our

approach and the interval-based approach. Our approach is 8.4× faster than the interval-based
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Figure 7.18: Comparison of ER metrics between our approach and the interval-based approach.
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Figure 7.19: Comparison of ES metrics between our approach and the interval-based approach.

approach. Figure 7.20(b) shows inaccuracy results. Our approach demonstrates improved accu-

racy compared to the interval-based approach, especially for the ES metric. Note that when the

number of nodes is small (the left side of the figure), the magnitude of estimation errors tends to

be large relative to the magnitude of data, and the inaccuracy of the interval-based approach is

very high due to the saturation issue. Our approach reduces inaccuracy by 3.75× compared to

the interval-based approach.

Randomly generated topologies. To study the accuracy of EM estimation with respect to the

size and topology of testcases, we use randomly generated testcases as in [126]. We use the fol-

lowing three components to generate the random testcases; (i) primary inputs (PI) with different

standard deviations, (ii) adders with different hardware configurations, and (iii) arbitrary con-

nections among adders and constant multipliers. We generate 50 artificial testcases with different

numbers of nodes (adders or constant multipliers). The number of nodes ranges from 10 to 30
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Figure 7.20: Comparison of (a) runtime for error composition and (b) inaccuracy of EM

estimation for MAC circuits with different testcase sizes. Our average inaccuracy improvement

against the interval-based approach is 3.75× excluding saturation.

with a step size of five, The accuracy results for each EM are plotted in Figure 7.21. We evalu-

ate the estimated results from our approach with the regression coefficients generated from the

model in Section 7.2.2. In the plot, inaccuracy results from 10 different topologies are averaged

for each circuit size. For randomly generated circuits, we observe that ER, ES, MSE and MAXE

show relatively accurate results with 4.18%, 8.30%, 12.2% and 12.9% inaccuracy, respectively.

Moreover, the accuracy does not degrade as circuit complexity (number of nodes) increases. The

estimates of ARES and SNR are inaccurate (1.28×103 and 1.35×102). Inaccuracy in these met-

rics arises because they measure error relative to input data, and accurate estimation is difficult,

as we have discussed in Section 7.2.3. Methods that would accurately handle their composition

are obvious directions for our future work.
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EMs min. avg. max.

MSE 9.61E-02 1.22E-01 2.00E+00

ARES 2.00E+00 1.28E+03 8.97E+01

MAXE 4.92E-02 1.29E-01 2.00E+00

SNR 2.00E+00 1.35E+02 5.36E+01

ES 5.97E-02 8.30E-02 2.00E+00

ER 1.31E-01 4.18E-02 2.00E+00

Minimun/average/maximum 

inaccuracy for #nodes = 30

EMs min. avg. max.

ARES 2.00E+00 1.28E+03 8.97E+01

SNR 2.00E+00 1.35E+02 5.36E+01

MAXE 4.92E-02 1.29E-01 2.00E+00

MSE 9.61E-02 1.22E-01 2.00E+00

ES 5.97E-02 8.30E-02 2.00E+00

ER 1.31E-01 4.18E-02 2.00E+00

Figure 7.21: Comparison of inaccuracy with respect to the number of nodes in randomly

generated circuits.



189

7.3 Conclusions and Future Directions

In the first part of this chapter, we propose an accuracy-configurable approximate (ACA)

adder for which the accuracy of results is configurable during runtime. Due to its configurability,

the ACA adder can operate adaptively in both approximate (inaccurate) mode and accurate mode.

To quantify the accuracy in approximate computation, we provide two metrics for amplitude data

and information data. We compare the ACA adder against previous approximate adders based

on the proposed metrics. The ACA adder shows high accuracy with respect to the metrics,

and can provide up to 24.6% throughput improvement and 37.0% power reduction over the

conventional CLA adder. The ACA adder can also be used in accuracy-configurable applications

with pipelining. We demonstrate that the ACA adder can provide approximately 30% power

reduction under a relaxed accuracy requirement versus the conventional pipelined adder. Finally,

we show that our ACA adder can improve the achievable tradeoff between performance, power

and quality for given accuracy requirements.

In the second part of this chapter, we propose an improved approach to estimating the

output quality of approximate designs. Our LUT-based approach characterizes the statistical

properties of approximate hardware modules and a regression-based technique improves the ac-

curacy of EM estimation. With our composition approach, we achieve 1.36× and 8.4× runtime

improvements for library characterization and error composition, respectively. We also achieve

3.75× accuracy improvement for ES compared to previous works [116] [117] on a set of MAC

circuits. We also demonstrate that our approach is applicable to general designs using the ran-

domly generated testcases with up to 30 nodes in the configuration.

For the accuracy-configurable design, our ongoing work seeks to implement other arith-

metic components such as multipliers, multi-input adders, etc. More broadly, our research ad-

dresses additional aspects of (runtime) accuracy-configurable systems and applications. For the

EM estimation, we will improve the accuracy of estimation for relative error metrics (e.g., ARES

and SNR). To improve regression accuracy, we plan to include topological information of cir-

cuits in the model. We will also extend our approach to other approximate modules, including

multipliers. In addition, we are working to develop a synthesis flow for approximate circuits us-

ing our EM estimation approach. We further anticipate broadening our current studies to include

more approximate arithmetic units and different input distributions. Currently, assume that the

input distributions are given; however, the distributions of inputs change in different applica-

tions. Our follow-on work will seek approaches that track the change of input distributions and

adaptively reconfigure the hardware in order to maintain the error metric requirements.
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Chapter 8

Memory Access Power Gating in

Modern Systems

During every cycle that a core is on, even when stalled, leakage power is consumed via

gate leakage, gate-induced drain leakage, junction leakage, and subthreshold leakage. A core

may stall quite often if it is intensively accessing the memory subsystem, because every time

a thread makes a memory request that misses the L1 cache, the core is subjected to a variable

access latency. This variable access latency often translates into a core stall during which no

forward thread progress occurs, and energy is wasted. For a 32nm out-of-order EV6 core, stall

energy can be up to 39.1% of total energy consumption for the SPEC 2006 benchmarks [162].

Previous works have reduced core energy waste by lowering core frequency and voltage

(i.e., DVFS) for memory-intensive threads when directed by L2-cache misses [79] [80] [120].

Some schemes can even direct core DVFS behavior based on signals from the L2-cache and

estimates of instruction-level parallelism [159]. A slower core frequency results in fewer cycles

waiting for the memory subsystem. Scaling down both frequency and voltage results in an esti-

mated cubic dynamic power and quadratic leakage power savings [119]. However, the inability

to scale device threshold voltages, coupled with aggressive scaling of supply voltages (subject

to overdrive and performance requirements), means that cores have little room to reduce voltage

during DVFS [206]. The net outcome is decreased energy savings from DVFS, which motivates

the development of new techniques to reduce core energy consumption while waiting for the

memory subsystem.

Power gating is a technique that drastically reduces leakage power by cutting off the

current path from supply to ground through introduction of a transistor switch between them.

191
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At one end of the spectrum, functional unit power gating reduces power consumption of unused

core functional units [238] with wake-up latencies of several nanoseconds. At the other end,

entire cores may be power gated and woken up, with latencies of several tens of microseconds to

account for saving and restoring all core state from memory [200]. An intermediate mechanism,

Memory Access Power Gating [122], provides the ability to power gate an entire core, wake up

a power-gated core in about 10ns, and maintain the core’s architectural and cache state. This

mechanism uses a combination of a programmable power gating switch (PPGS), state retention

cells, and source biasing to enable the core to efficiently enter and exit a power-gated state.

In this chapter, we extend the analysis of the technique, Token-Based Adaptive Power

Gating (TAP) [131]. TAP deterministically applies power gating during core stalls which are

caused by the variable latency of requests to the memory subsystem. TAP achieves this by

providing the capability to track every ongoing memory request and the expected response time

for each memory access that misses in the L1 cache. An expected lower bound on latency is sent

to each core’s PPGS by modifying the cache controllers to send a token on any miss where the

token includes an estimate of the access latency of a next-level memory hit. The result is that

TAP can support power gating with no performance loss.

Our work makes the following contributions:

• We introduce a distributed Wake-up Controller to control core wake-up mode in many-

core designs.

• We analyze TAP’s energy savings for in-order cores to achieve predictions of energy sav-

ings for an arbitrary memory hierarchy and application, with 0.82% average error and

9.75% maximum errors.

• We compute break-even times of 8.53ns and 17.17ns for in-order and out-of-order cores,

respectively.

• We decompose TAP behavior to determine the function of time spent power gating, waking

up the core, restoring core state, and overhead to show that core wake-up and restore time

averages 1.9% of execution time.

• We demonstrate that TAP can adapt to an increase in memory contention by increasing

power-gated time by 3.69× as the number of threads increases from 1 to 32.

• We design and implement a staggered wake-up scheme capable of reducing wake-up la-

tency by up to 58.2%; this results in a 3.14% increase in energy savings for TAP.
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The remainder of this chapter is organized as follows: Section 8.1 presents our power-

gating and power distribution network analysis; Section 8.2 describes the distributed TAP power

gating system and analyzes energy savings for an in-order core; Section 8.3 lays out our method-

ology for experiments; Section 8.4 presents experimental results; and Section 8.5 concludes with

a summary of the results and possible future directions.

8.1 Power Gating and Power Distribution Network Analysis

This section provides a low-level analysis of our power gating methodology and its

impact on the power distribution network. Section 8.1.1 gives the details of the programmable

power gating switch. Section 8.1.2 describes our models for capacitance of a core and voltage

noise in the power distribution network (PDN). Section 8.1.3 explains how we model core wake-

up mode constraints and the benefit of a staggered wake-up.

8.1.1 Programmable Power Gating Switch (PPGS) Design

As noted above, power gating cuts off leakage current paths between supply (V dd core)

and ground (V ss) by using switch transistors (often, high-Vt or long-channel devices). A typical

power gating methodology with header switches is illustrated in Figure 8.1. When the pg enable

signal goes low, the header switches turn off and leakage current is reduced. While in the power-

gated state, all logic gates connected to the virtual supply (V dd int) lose their logical states.

Setting the pg enable signal to high resumes circuit operation after a delay that corresponds to

charging circuit capacitive loads, resetting memory elements, and restoring state from retention

flip-flops connected to V dd core.

idle 
active 

Logic 
block 

Vdd_int 

Vss 

Vdd_core 

active idle active 

pg_enable 

Voltage 

Current 

Vdd_int 
Vss 

Vdd_core 

wake 
up 

Without power gating 

sleep  

With power gating 

Figure 8.1: Operation of the power gating technique.
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Figure 8.2: Wake-up current profiles with different wake-up controls.

The delay to charge circuit capacitive elements is a function of total design charge (Q)

and peak charging current (Ilimit). If all header switches turn on simultaneously, a large “inrush”

current charges internal nodes in minimal time. To satisfy inrush current upper limits (too-large

IR drop can affect functionality of neighboring active blocks), header switches are partially

turned on in sequence, which increases charging time to at least Tcharge = Q/Ilimit. Minimal

charging time is achieved with a rectangular current profile, but such a profile requires very fine-

grained control of header switches. To avoid this design complexity, we use a two-stage wake-up

control [107] where the first stage (enable few signal) turns on header switches to allow Ilimit

charge current. The remaining header switches are turned on in the second stage (enable rest

signal) once the circuit nodes are nearly charged, resulting in a triangular charging current profile

(see Figure 8.2(b)). This increases the wake-up latency to at least twice the minimum square

wake-up profile, but simplifies signal connections.

To maximize opportunities for power gating subject to wake-up inrush current and sup-

ply noise constraints, we seek to enable multiple wake-up modes, with a range of wake-up la-

tencies, per core. Figure 8.3 shows our programmable power gating switch (PPGS) for a core,

along with the wake-up current profile for different wake-up modes. We configure the number

of first-stage wake-up switches to control the inrush current as shown in Figure 8.3(b). With the

dynamic configuration of the PPGS, we can minimize the wake-up time according to the core

configurations — e.g., the number or location of active cores relative to the waking-up cores. To

power gate a core, all mode selection signals m[0−9] are set to one, which turns off all switches

at the same time.23

23Due to the large resistance of off-state switches, inrush current from simultaneous turn off is negligibly small
compared to wake-up inrush current.
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Core wake-up time and inrush current are determined by the mode selection. For exam-

ple, Mode 1, which has the longest wake-up time and smallest inrush current, is set by m[0] = 0

and m[1− 9] = 1. Thus, m[0] is enabled by signal enable few and m[1− 9] is enabled by signal

enable rest. Mode 2 is set by m[0 − 1] = 0 and m[2 − 9] = 1; inrush current increases with the

number of first-stage switches, while wake-up time decreases, as shown in Figure 8.3(b). The

other modes can be set similarly.
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Figure 8.3: (a) PPGS design and (b) inrush current profiles for each wake-up mode.

8.1.2 PDN Model for Circuit Analysis

Table 8.1 shows estimated design parameters, power-gating results and PDN-model pa-

rameters for 32nm and 22nm cores with high performance (HP) and low-operating power (LOP)

devices. To study wake-up latency and inrush current, we estimate the total charge for core logic

and interconnect capacitance as Qcore = (Clogic + Cint)V dd core, where Qcore, Clogic, and

Cint represent total charge, device capacitance, and interconnect capacitance for a single core

without caches. We estimate a core’s total transistor count using McPAT [162] to determine the

core’s area and average transistor density. Based on this transistor count and parameters from

the 2009-2010 International Technology Roadmap for Semiconductors (ITRS) [16], we estimate

Clogic and Cint. The inrush current limit (Ilimit) and on-current (Iactive) are estimated from

McPAT data for peak power and average power, respectively.

From the calculated charge (Qcore), the minimum wake-up latency with a rectangular-

form current profile is Tmin−charge = Qcore/Ilimit and the minimum two-stage wake-up latency

(Figure 8.2(b)) is 2× Tmin−charge.
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We estimate leakage power consumption during power gating of the core logic and

SRAM, as follows. For the core logic, leakage from retention registers and header switches

must be taken into consideration. We assume that (live-slave type) retention flip-flops have 20%

more leakage power than normal flip-flops during power gating [136]. For SRAM, we assume

that the (separate) SRAM supply voltage is scaled using source biasing, and we estimate leakage

based on [195].

Table 8.1: Estimated data of 32nm HP, LOP and 22nm HP, LOP cores.

estimated data
32nm 32nm 22nm 22nm

HP LOP HP LOP

design data

V dd core (V ) 1.00 0.77 1.00 0.77

core area (mm2) 4.593 4.608 2.701 3.657

logic area (mm2) 2.891 2.863 1.635 1.636

Ccore (F ) 7.53E-9 7.48E-9 4.58E-9 4.58E-9

total charge (C) 7.53E-9 5.76E-9 4.26E-9 3.30E-9

core leakage (W ) 0.355 0.042 0.147 0.019

Iactive (A) 0.725 0.374 0.371 0.233

Ilimit (A) 1.298 0.674 0.701 0.632

power gating and wake-up

Tmin−charge (ns) 5.08 7.36 6.40 6.55

wake-up energy (pJ) 3.30E+3 1.91E+3 2.24E+3 1.60E+3

# of header switches 9,664 6,222 5,516 5,127

leakage in PG state (W ) 8.03E-3 7.14E-4 3.37E-3 3.59E-4

leakage reduction in PG 97.74% 98.29% 97.71% 98.12%

PDN model

# of bumps 45 45 95 95

Rshared (Ω) 0.01 0.01 0.01 0.01

Lpkg−core (nH) 7.69E-4 7.76E-4 6.44E-4 6.44E-4

Rpkg−core (Ω) 1.54E-5 1.55E-5 1.29E-5 1.29E-5

Cdecap (F ) 1.51E-9 1.50E-9 9.16E-10 9.16E-10

RPDN (Ω) 0.07 0.10 0.12 0.15

Following the methodology of previous works [107] [114] [141], we construct a de-

tailed PDN model that includes package parasitics to enable realistic noise analysis under var-

ious wake-up scenarios. Power is delivered from an external voltage regulator module (VRM)

through a printed circuit board (PCB), a package ball, package interconnect, microbumps, on-die

redistribution layers, the on-chip PDN, and power-gating switches. We model the entire power

delivery network including power-gating switches as a simplified RLC circuit as shown in Fig-

ure 8.4. Package inductance and series resistance from VRM to bumps for a core are lumped
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as in-series inductance and resistance.24 The PDN in package shared by multiple cores is repre-

sented as a resistance mesh with a branch resistance of Rshared. There are three variant models

depending on the state of the core — core in active mode, core being woken up, and core in sleep

mode (see Figure 8.4). On-chip decoupling capacitance Cdecap is assumed to be 20% of Ccore

as in Huang et al. [114].

PDN parameter values in Table 8.1 are from personal communication with industry

experts [81] and reflect production designs at the 28nm foundry half-node. Bump density is

assumed to be 45 bumps per mm2, and the number of bumps is then calculated from logic area

(I/O signals are peripherally located in the SoC die plan). The package inductance and resistance

to a bump are respectively assumed to be 0.05nH and 1mΩ based on empirical data. The

lumped package inductance Lpkg−core and resistanceRpkg−core for a single core are respectively

calculated as Lpkg/Nbump and Rpkg/Nbump, where Nbump is the number of bumps.
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Figure 8.4: 16-core system power delivery network with power gating.

We measure the V dd core and V dd int voltages of all cores using HSPICE [27]. We

vary the number of cores being woken up, and search over all configurations of woken-up and

active cores. For each configuration, we find the minimum wake-up latency that satisfies two IR

drop constraints: (a) V dd int of active cores should drop by no more than 5% and (b) V dd core

of standby cores should drop by no more than 40% so as to retain data in retention circuits [81].
24Note that we do not model inductance of the on-chip power mesh. High-frequency effects are not relevant to the

wake-up current analysis, and wire dimensions are such that resistive impedance dominates. To our knowledge, our
approach matches that used in advanced SoC signoff methodologies today.



198

8.1.3 Safe Wake-up Mode Analysis and Equation

Previous PPGS work [122] selected a wake-up mode based on the worst-case wake-

up time for each number of idle cores. The worst-case wake-up time assumption limits the

benefit of power gating. A core’s minimum wake-up time is constrained by the voltage noise

seen by neighboring active cores – in particular, some critical active neighbor core where the

voltage noise constraint is first violated. The voltage noise of an active core is mainly affected

by adjacent woken-up cores and the latencies (i.e., associated inrush currents) with which they

wake up. In other words, we may exploit knowledge of cores’ locations to reduce pessimism.

We have developed a model that determines the minimum wake-up time based on the number

and location of active and woken-up cores. To simplify the model, we assume that all woken-up

cores have the same (uniform) wake-up latency, but in principle our methodology easily extends

to non-uniform cores and wake-up latencies.

(a) 7.8ns (b) 11.1ns (c) 13.8ns (d) 16.1ns (e) 16.5ns

(f) 8.3ns (g) 8.3ns (h) 4.3ns (i) 3.9ns (j) 3.4ns

Figure 8.5: SPICE-calculated minimum wake-up latency for an EV6 16-core CMP with

various wake-up scenarios.

Figure 8.5 shows the minimum wake-up time according to the location and status of

cores for an example case of an EV6 16-core CMP. In the figures, A denotes the critical active

core,Wa are adjacent woken-up cores,Wd are diagonally adjacent woken-up cores,Wn are non-

adjacent woken-up cores, and blank squares are idle or non-critical active cores. The wake-up

latency increases approximately as the square root of the number of adjacent woken-up cores

(Figure 8.5 (a) – (e)). Woken-up cores in the diagonal adjacent (Wd) or non-adjacent positions

impact wake-up latency less than adjacent woken-up cores (Figure 8.5 (f) and (g)). Cores located

at an edge position (Figure 8.5 (h)) experience increased minimum wake-up latency.
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From such observations, we have modeled the minimum wake-up latency based on the

core status at each location as:

T = T0(w + β × x+ γ × y + δ × z)α (8.1)

where T0, α, β, γ and δ are fitting coefficients, w is the number of adjacent woken-up cores, x

is the number of diagonally adjacent woken-up cores, y is the number of other (non-adjacent)

woken-up cores, and z is the number of active or adjacent woken-up cores located at the edge.

We have verified our model with SPICE and modeled the wake-up times for 4-, 6-, 8-,

and 16-core CMPs for all location permutations. Table 8.2 shows the results. Our model has

an average error of 2.64%, 1.93%, 2.31% and 1.57% for 4-, 6-, 8-, and 16-core CMP cases,

respectively.

Table 8.2: Average and maximum error of the modeled wake-up time for 4-, 6-, 8-, and 16-core

cases (EV6, 32nm HP).

core
coefficient error

T0 α β γ δ average (%) maximum (ns)

4-core 7.9 0.50 0.35 0.15 0.15 2.64 0.37

6-core 7.9 0.50 0.35 0.15 0.13 1.93 1.10

8-core 7.9 0.50 0.30 0.15 0.13 2.31 1.65

16-core 7.9 0.50 0.20 0.10 0.10 1.57 1.40

Figure 8.6: T0 as a function of PDN parameters.

The results of the SPICE simulation have varying degrees of sensitivity to power distri-

bution network (PDN) parameters - the number of bumps, package inductance (Lpkg), package
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resistance (Rpkg), PDN mesh resistance (Rshared), supply voltage and core capacitance. We

have assessed the minimum wake-up time sensitivity to variations in the PDN model. Figure 8.6

shows the change in the T0 coefficient when each PDN parameter is scaled by factors from 0.1×
to 2× (a 20× range!) with respect to our default values, which are obtained from personal com-

munication with industry experts. Since the actual wake-up latency depends on PDN variations,

the T0 coefficient will be determined by testing the actual packaged chip. It is important to

note that our conclusions regarding energy savings and overheads remain qualitatively the same

across the range of PDN parameter values – i.e., our conclusions are quite robust to the PDN

design choices.

8.1.4 Core Wake-up Stagger

In the above wake-up analysis, we assume that all cores wake up simultaneously which

is the worst case. However, wake-up latency is significantly reduced when we stagger the wake-

up sequence so that two cores wake up at slightly different times (e.g., offset by 1ns). We

design the wake-up controller to insert stagger between waking cores to reduce wake-up latency.

Figure 8.7 shows minimum wake-up latency for an EV6 16-core CMP when we add stagger

between woken-up cores. The minimum wake-up time (y-axis) is reported for the worst case

for each number of woken-up cores (x-axis). When stagger is zero, wake-up time increases

according to the number of woken-up cores. However, if we avoid simultaneous wake-up, min-

imum wake-up time reduces greatly. When two, three and four cores are waking up within an

interval of three cycles (0.9ns), we obtain 18.8%, 31.9% and 40.3% wake-up latency reductions,

respectively, over simultaneous wake-up. From SPICE results in Figure 8.7, we can see that the

minimum wake-up time does not increase with staggered wake-up when the number of woken-

up cores is larger than four. We have modeled the minimum wake-up time with Equation (8.1)

for up to three woken-up cores by changing the parameter α from Table 8.2. The dotted lines

in Figure 8.7 show the modeled wake-up latency from Equation (8.1) and its error with respect

to SPICE simulation. Our measurements of model accuracy show an average (maximum) error

of 2.66% (7.62%), 1.89% (6.61%), 0.93% (3.59%) and 2.51% (3.08%) for the 4-, 6-, 8-, and

16-core CMP cases, respectively.
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Figure 8.7: Minimum wake-up latency versus wake-up stagger.

8.2 System Design

We now present our architectural modifications used to control power gating for each

core. A memory access power-gating controller must provide three functions. First, the con-

troller ensures that each core’s PPGS uses a wake-up mode that does not violate supply voltage

noise constraints of the system when waking up a core. Second, the controller should be able

to predict the expected duration of core stalls. Last, the controller must retain essential core

architectural and performance related state. Together, these functions allow for energy savings

and minimal performance hit without violating voltage noise constraints. The rest of this section

describes how TAP provides these three functions.

8.2.1 Wake-up Controller (WUC)
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Figure 8.8: WUC and PPGS integration into a 4-core CMP.

The WUC is a centrally located wake-up controller (see Figure 8.8) that listens in on

the cache interconnect and orchestrates the assignment of wake-up modes to core PPGSs. The

WUC maintains a lookup table that maps the possible values of variables w, x, y and z from
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Figure 8.9: WUC, Corei PPGS, and memory subsystem timing diagram.

Equation (8.1) to safe wake- up modes. For the 16- core case, the WUC requires 12 × 1000 bits

of (SRAM) registers to hold all entries. In addition, the WUC maintains the status of each core

(idle, active, power gated, or waking- up) to determine the entry to lookup for a new request.

Figure 8.9 shows how a core wakes from an idle state, power gates during a stall, and

then wakes up again via communication with the WUC. At time 0ns, the core is idle and power-

gated off. The core wakes up by its PPGS requesting a worst- case wake- up mode that it may

assume is always safe to use (provided it notifies the WUC). At 5ns, the WUC receives a request,

looks up a safe wake- up mode in its table based on the system state, and returns that mode to

the core PPGS. The PPGS wakes up the core and the core executes code. At time 35.5ns, the

core attempts to access the memory subsystem which causes a stall at 40.5ns. At 57.5ns, the

core PPGS detects a core stall dependent on a memory miss and then power gates the core. At

the same time, the PPGS requests a lower- latency wake- up mode from the WUC in hopes of

power gating for longer. The WUC receives this wake- up mode request at 62.5ns causing the

WUC to update the state of the core. Should there be no conflicting wake- ups, the WUC may

issue a one- use lower- latency wake- up mode to the requesting core. The core PPGS receives this

response at 67.5ns and may reschedule the wake- up time of the core. The PPGS wakes up its

core at 110ns for the memory response at 120.5ns.

For a large multi- core system (e.g., 64 cores), a given core’s PPGS may not tolerate the

latency to communicate with a centralized WUC due to propagation and queuing delay across

the chip. However, we observe that non- adjacent cores do not significantly affect core wake- up

latency, and with proper guardband, only adjacent cores need be considered.
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This observation motivates a distributed design which assigns each core to a recurring

wake-up slot. In this scheme, each core is given a recurring slot at which it can start waking

up. To avoid any performance hit, a core should select a slot before the deadline to start waking

up. The average wake-up delay for a core is defined by two degrees of freedom: the number

of unique wake-up slots, η, and the stagger between two adjacent wake-up slots, ψ. The worst-

case reduction in power-gated time occurs when a core predicts that it would need to wake up ε

seconds before its assigned slot such that ε < ψ, causing the core to wake up η × ψ − ε seconds

earlier. Given a core that wakes up at any time, uniformly at random, the average expected

reduction in power-gated time is η×ψ
2 .

η and ψ should be chosen to maximize a core’s power-gated time and the minimal safe

wake-up latency of the core. In particular, given η, wake-up slots should be assigned to cores to

minimize the number of adjacent woken-up cores. Figure 8.10 shows three ways of assigning

wake-up modes to cores such that the number of adjacent woken-up cores is minimized with

preference given to cores waking up simultaneously in the diagonal position. An increase in η

and ψ acts to reduce the maximum number of simultaneous core wake-ups and reduce minimal

safe wake-up latency. At the same time, increasing those two parameters increases average

expected reduction in power-gated time. According to our simulations, system energy savings

are maximized when η and ψ equal 5 (no simultaneous wake-ups) and 0.9ns, respectively. This

setting results in a 10.3ns minimal wake-up latency and 2.25ns ± 1.30ns average reduction

in power-gated time per core power-gating opportunity, compared to 9.6ns with 0.9ns stagger

for an ideal centralized WUC. Further, our simulations show that the distributed WUC has a

maximum decrease in power-gated time of 1.61% (0.40% on average) for the benchmark mcf.

0 1 2 3 4 …

3 4 5 6 7 …

0 1 2 3 4 …

2 3 4 0 1 …

0 1 2 0 1 …

2 1 0 2 1 …

6 7 8 0 1 …

0 1 2 3 4 …

… … … … … …

4 0 1 2 3 …

1 2 3 4 0 …

… … … … … …

1 2 0 1 2 …

0 2 1 0 2 …

… … … … … …

(a) α = 9 (b) α = 5 (c) α = 3
  

(a) η = 9 (b) η = 5 (c) η = 3

Figure 8.10: Wake-up slot assignments with different number of slots (η).
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8.2.2 TAP: Token-Based Adaptive Power Gating

TAP informs each PPGS about expected memory latency by modifying the cache con-

trollers to send tokens on cache misses that include an estimate of the lower-bound access latency

of a next-level memory hit derived from Table 8.3 and a time stamp of creation.25 The controllers

send the tokens to the PPGS of the core that requested the memory access. Once the PPGS re-

ceives the token, it looks at the lower-bound latency to satisfy the request and power gates the

core if the core is both stalled and idle long enough to save energy. Should the core receive

more than one token for simultaneous memory requests, it will track each expected response

separately and schedule the resumption of core execution to satisfy the earliest response. If a

token is delayed in the memory subsystem by a controller or queue, the PPGS can compare its

arrival time with its generation time stamp and previous tokens to determine whether the token

should be ignored.

Whenever a memory request misses all the way to the memory controller, the response

latency experiences a significant amount of variability. This variability is caused by the com-

plexity of DRAM memory [245], which includes bank queues, availability of the data in the

row-buffer, writing wrong address row-buffers, accessing the column in the row-buffer, and

channel contention between banks. TAP adapts to memory variability by adding a special token.

As soon as the last-level cache experiences a miss, a token is sent to the requesting core’s PPGS

with an estimated completion time of UNKNOWN. This is a directive to the PPGS to start power

gating its core immediately and to expect one additional token with the estimated time of arrival

(ETA) of the memory response. Once the memory controller submits the memory access to one

of the banks and determines whether the access is a row-buffer hit or miss, it sends the second

ETA token to the core’s PPGS with the ETA of the response assuming that there is no memory

channel contention. The PPGS receives the second token before the response and schedules core

wake-up for the appropriate time.

Figure 8.11 shows a timing-accurate diagram of a PPGS power gating the core in re-

sponse to messages from the TAP technique. At time 0ns, a memory request occurs that will

miss in the cache hierarchy and cause a memory access. The PPGS then receives tokens for the

L1, L2 and L3 misses. Just after receiving the L2 token, the core stalls due to a dependency.

After the L3 token is received, the PPGS decides to power gate the core and saves all core state.

The core is then power gated and the memory controller (MC) sends a updated ETA for the
25A cache controller sitting on the core side of a shared NUCA cache would require a per-bank lower-bound access

latency.
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Figure 8.11: Power states (power gated, stalled, active, woken up) as the PPGS power gates

the core on a memory access.

memory response. At 70ns, the PPGS begins waking up the core. At 78ns, the core state is

restored and the pipeline is restarted. The memory response comes back at 81ns and the core

resumes execution as if nothing happened.

The benefit of TAP is that core- level power gating can be directed by system- level in-

formation about the memory subsystem. This information represents lower- bound estimates of

when a memory response can arrive. Because TAP operates on lower- bound estimates, it avoids

over- prediction of core idle latency and achieves zero performance impact. The disadvantage

of lower- bound estimates is that TAP misses out on potential power gating time and additional

energy savings.

To implement TAP in hardware, additional structures are added to both the memory

controller and the core. For each bank of each rank of memory, we add a 15- bit delay counter,

which indicates the soonest time at which the bank would go idle, and is capable of tracking

up to 3.28µsec at a granularity of 100sec of picoseconds. With each cycle, every memory

controller decrements its counter by the number of picoseconds in a memory clock cycle until

the counter reaches a minimum of zero. When the memory controller schedules a memory

operation to a particular bank, it increments the bank’s counter with the lower- bound estimate for

the completion of the memory operation. If the memory operation is a row- buffer hit, the bank

counter is incremented by the time to issue the command, performs the column address select,

and transfers the data across the memory bus. If the memory operation is a row- buffer miss, then

the counter is incremented by the time to issue the command, pre- charges the row- buffer, issues
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the row lookup, performs the column address select on that row, and finally transfers the bytes

across the memory bus. The value of the counter is the ETA returned to the core’s PPGS by the

token sent from the memory controller. To quickly determine a row-buffer hit, a register at each

bank maintains the row-buffer address of the last memory access.

Each core also requires additional state to track currently valid tokens. For each unique

address memory request that causes a token-generation event, we require 80 bits of storage.

The first bit indicates validity of the entry. The next 64 bits contain the physical address of

the request. The last 15 bits track the ETA for the given request. In the worst case, we require

sufficient entries to track the maximum number of parallel memory requests with unique physical

cache line addresses that can issue from a core. For our technique, this number is limited by the

number of MSHR (Miss Status Handler Registers) queue entries in the instruction and data

caches, which is 20 for our EV6 architecture and 4 for our in-order architecture. However,

our simulations show that fewer entries are actually required because long core stalls do not

usually occur with a large number of parallel memory requests. For example, the benchmark

astar, which has little benefit from our techniques, does experience 20 parallel requests while

the benchmarks mcf and gobmk, which benefit the most from our techniques, experience at most

13 parallel memory requests. In any case, we estimate that the support to track tokens at the

core adds 1456µm of area overhead per core (0.05% of EV6 area), while the modifications to

estimate memory latencies add 677µ2m area overhead per memory rank (0.02% of EV6 area).

8.2.3 Formal Analysis of In-order Core Energy Savings

We now derive the expected energy savings from TAP for an in-order core, to gain

intuition regarding how energy savings change with system conditions, and to independently

verify our reported energy savings. In the following terms and equations, latencies are in units

of seconds, power is in units of watts, and energy is in units of joules. When a core experiences

a leveli cache miss, it receives either a token or response from the leveli+1 cache. The idle

period between when the core receives the leveli token and the leveli+1 token or response can

be estimated by Equation (8.2), where txlatLi,Li+1 is a bus (transmit) latency from leveli to

leveli+1 cache miss, and hitlatLi is a memory hit latency at leveli. Packets from both the leveli

and leveli+1 caches need to travel through the same memory hierarchy from leveli upwards to

the core. The only difference is that the packet from the leveli+1 cache travels twice across

the interconnect between leveli and leveli+1, waits for the leveli+1 cache controller, and waits

twice for the leveli cache controller.
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lat∆Li miss = txlatLi,Li+1 + hitlatLi+1 + txlatLi+1,Li + hitlatLi (8.2)

Because of core wake-up latency, waking the core when it receives the token or response

from the leveli cache would incur a significant performance penalty, as this effectively increases

the leveli cache miss latency by the core wake-up latency. We avoid this performance overhead

by preemptively waking up the core even if there is a miss in the leveli+1 cache. This reduces

the period of energy savings in some cases, but avoids the performance overhead. Further, core

wake-up costs energy, which places a constraint on how long the idle period must last to amortize

the energy loss from core wake-up.

The core’s wake-up event is not the only overhead. When a cache sends a token, it

must contend for the CPU-side ports of each cache on the way to the core, traverse the shared

interconnect, and wait in any queues to shared resources. These delays can reduce the period

over which our technique power gates the core. In summary, we can estimate the energy savings

of power gating a leveli cache miss using Equation (8.3). ELi miss is the energy savings on a

leveli cache miss; latLi miss is the latency to propagate a request from the core to the leveli+1

cache and back; lattoken i is the latency to propagate a request from the core to the leveli cache

and send a token back to the core; latcore wakeup is the core wake-up latency; PLi miss is the

core idle power during a leveli cache miss; LR is the factor of reduction of leakage from power

gating; and Ecore wakeup is the energy to wake up a core from the power-gated state.

ELi miss = (latLi miss − lattoken i − latcore wakeup)

× PLi miss × LR + Ecore wakeup

+ latcore wakeup × PLi miss (8.3)

We extend this analysis to estimate the energy savings from token-based power gating for all

levels in the cache hierarchy in Equation (8.5). Esave LN
denotes the energy savings for an

N -level cache hierarchy; %Tidle Li miss is the percent of time the core spent idle waiting for a

leveli cache miss (estimated as MPSLi × lat∆Li miss); ELi miss is defined in Equation (8.3);

MPSLi is the number of leveli cache misses per second; and %L is the percentage of total active

power accounted for by leakage. The denominator is simply the sum of idle and active energy

for when no power gating is being used. The numerator is equal to core energy during a leveli

cache miss without power gating, minus the energy with power gating summed across all cache

levels: i.e., the sum of energy savings for each cache level. The total system time is factored
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from the numerator and denominator, leaving the percentage of time spent in active execution

and waiting for leveli cache misses. We compare energy savings measured from McPAT [162]

and M5 [47] with the analytical model shown in Equation (8.5) and see a good match. The

average error between M5 and the equation is 0.82% with a maximum error of 9.75% for lbm.

This model demonstrates that TAP’s energy savings is a strong function of core wake-up latency

and memory behavior. Further, TAP achieves a maximum energy savings of 25.5% (4.00% on

average) for an in-order core.

κ = %Tidle Li miss × PLi miss (8.4)

Esave LN
=

N∑
i=1

(κ− ELi miss ×MPSLi)

N∑
i=1

(κ) +

(1−
N∑
i=1

(%Tidle Li miss))× PLi miss

%L

(8.5)

8.2.4 Core State Retention and Restoration

To avoid losing core state that is required for correct and efficient execution, essential

sequential and SRAM cells must be retained. We use the technique from [122] which replaces

a subset of sequential cells with live-slave retention flip-flops [136] which can be triggered to

retain their logical values before a power gating action at a cost of 20% increase in area and

power versus a normal flip-flop. Only those sequential cells comprising the architectural reg-

isters necessary to refill the pipeline are selected, which results in 3.4% area overhead for the

processor. SRAM cells are retained through source biasing [195] in which the supply voltage is

reduced to 50% of nominal supply voltage so that SRAM leakage is reduced, but logical state is

maintained. This technique allows for saving the contents of L1 caches, TLBs, branch predictor

state, physical registers, etc. To provide supply power during power gating, a separate non-

collapsible voltage domain provides power to the retention flip-flops and SRAM cells. Thus,

as the power is gated from combinational logic and non-essential sequential cells, the separate

voltage rail provides power to maintain core state. The overhead from multi-power domains and

separate voltage rails already exist for power-gating cores today. Figure 8.12 shows an in-order

core implementation for the power gating and restoration with retention flip-flops.
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Additional cycles are required for the power gating and wake-up sequence, and to ac-

count for the time to disable/enable the clock, trigger data retention, refill the pipeline, and

de-assert/assert the clamps. We model the entire power down and wake-up sequence as in [122].

For example, to wake-up an EV6 core after signals enable few and enable rest have charged core

logic, it takes one cycle to enable the clock signal, one cycle to asynchronously reset logic, one

cycle to restore registers from retention flip-flops, and seven cycles to restore the pipeline which

takes 3.03ns at 3.3GHz.
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Figure 8.12: Interface for power gating and data retention.

8.3 Simulation Methodology

Table 8.3 summarizes all system parameters in our experiments. The system has 4 cores,

each with its own private L1 and L2 caches, and a large shared L3 cache. The L3 cache forwards

requests to the memory controller through a shared memory bus. The L1 and L2 cache config-

urations are 32KB 8-way and 256KB 8-way. The L3 cache is a relatively large 8MB 16-way,

which we expect to minimize pressure on the memory subsystem and hence minimize gains we

see from our power gating technique. We model an out-of-order core, the DEC Alpha EV6,

clocked at 3.3GHz and able to issue six instructions on a cycle.

We simulate the system with the GEM5 simulator [47]. GEM5 is a full-system simulator

that can boot an unmodified OS. It features cycle-level models of an out-of-order core, the cache
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hierarchy, and the interconnect. We integrate GEM5 with DRAMSim2 [8] to provide cycle-

level modeling of the memory subsystem including the memory controller, DRAM modules,

and shared channels used for communication. We modify GEM5 to support our power gating

methodology described in Section 8.2. We simulate our system with 21 of the SPEC 2006

benchmarks using the Simpoint methodology [191] in which 100M-instruction representative

regions of execution are determined for each benchmark. To simulate each region, we fast-

forward to 100M instructions before the region, warm-up the memory and caches, and perform

detailed simulation.

Once simulation is complete, we feed the system configuration and performance coun-

ters to McPAT [162] to model power consumption. McPAT is comprised of a power, area, and

timing framework that provides off-line power and area estimates for full systems designed in

technology nodes between 90nm and 16nm. McPAT generates values for dynamic power, leak-

age power, peak power, thermal design power, and area. We update McPAT’s technology.cc file

to accurately reflect the ITRS 2010 update report [16].

We compare both techniques to dynamic voltage and frequency scaling (DVFS) via

simulation. We calibrate our DVFS settings to match those of [65] for the 32nm technology

node, in which a 7.5% reduction in voltage follows each 20% reduction in frequency. To direct

the DVFS policy, we apply the technique from [80], which uses a cycle-per-instruction based

metric, µmean, to detect memory bounded phases of execution. During execution, we sample

the application’s µmean to determine the most aggressive DVFS setting that may be used to save

energy while sustaining at most a 5% performance hit. In addition, we also consider an oracle

DVFS technique that chooses the DVFS point that results in the lowest energy-delay product

(EDP). This technique takes an arbitrary performance hit as long as more energy is saved. For

both policies, we model the availability of five DVFS modes which include 100%, 95%, 90%,

80%, and 60% frequency.

Unless otherwise stated, our results assume a 32nm HP circuit technology, a 10.2ns

wake-up mode, and a four-core system that is 50% utilized (two cores idle) which results in

conservative energy savings during little memory contention, shorter core-stall durations, and

utilization of a slower wake-up mode than if only one core was utilized. The following over-

heads were considered when calculating the reported results (including the Oracle policy): core

wake-up energy, core wake-up delay, core pipeline-refill latency, retention overhead of live-slave

retention cells, SRAM leakage during source biasing mode of operation, and voltage noise safety.
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Table 8.3: System configuration values.

parameter value notes

IO core model DEC-Alpha EV4

IO core clock 2.0GHz–1.2GHz

IO execution 2-way in-order

EV6 core clock 3.3GHz–1.9GHz

EV6 execution 6-way out-of-order

EV6 functional units 6ALU, 2IMULT, 2FPALU

Icache/Dcache 32KB 8-way one cycle

L2 cache 256KB 8-way 4ns Private per core

L3 cache 8MB 16-way 13ns Shared

Core-to-L1 token latency 0.5ns controller delays

Core-to-L2 token latency 4.5ns controller delays

Core-to-L3 token latency 17.5ns controller delays

Core-to-WUC latency 5ns controller delays

PPGS wake-up modes 4.5ns–16.9ns SPICE

IO pipeline refill latency 2ns 4-pipeline stages

IO core wake-up energy (IWE) 4,020pJ Charge cells

IO leakage power (ILP) 0.486W McPAT [162]

IO PG leakage reduction (ILPR) 97.74% [136]

IO PG break-even point 8.53ns IEW/(ILPR× ILP )

IO DFLT core wake-up latency 8.06ns SPICE

IO FUPG wake-up energy 1780pJ McPAT, ITRS [16]

IO FUPG wake-up latency 6.0ns SPICE

EV6 pipeline refill latency 2.12ns 7 pipeline stages

EV6 core wake-up energy (EWE) 15,358pJ Charge cells

EV6 leakage power (ELP) 0.916W McPAT [162]

EV6 PG leakage reduction (ELPR) 97.65% [136]

EV6 PG break-even point 17.17ns EWE/(ELPR× ELP )

EV6 DFLT core wake-up latency 10.2ns SPICE

EV6 FUPG wake-up energy 9641pJ McPAT, ITRS [16]

EV6 FUPG wake-up latency 6.4ns SPICE

8.4 Experimental Results

We now analyze TAP to understand its energy savings and how those energy savings

depend on system configuration and system memory utilization. We also reveal that staggered

wake-ups are an easy way of reducing core wake-up latencies in CMPs. In the following, Sec-

tion 8.4.1 examines the energy savings of TAP. Section 8.4.2 dissects simulation time of TAP

into time spent power gating, waking up, restoring state, executing code, and adding execution
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overhead. Sections 8.4.3 and 8.4.4 examine energy savings as a function of wake-up latency and

memory congestion. Last, Section 8.4.5 examines the energy savings due to staggered wake-up

in a CMP with up to 16 cores.

8.4.1 EV6 Power Gating Energy Savings

Figure 8.13: Energy savings and performance overhead of power gating Oracle, TAP, FUPG,

DVFS-Oracle and DVFS-µmean.

Figure 8.13 compares the energy savings of TAP with the energy savings of an oracle

memory predictor (Oracle), Functional Unit Power Gating (FUPG) [113] [167] [170], DVFS-

Oracle, and DVFS-µmean.

Oracle-Based Power Gating To understand the limit of energy savings from power gating

cores during memory stalls, the oracle memory predictor assumes a priori knowledge of all

memory accesses and determines the optimal power gating behavior. The EV6 oracle policy
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achieves a maximum of 23.9% energy savings, and 3.6% energy savings on average. A few

benchmarks show negative energy savings as high as -0.2%. These negative energy savings are

caused by the lack of power gating opportunities and the retention cells’ power overhead on

CPU-bound benchmarks.

TAP In comparison with the Oracle, TAP must determine memory latencies in a running system

to ensure that sufficient time is available to power gate a core. TAP EV6 is able to achieve 22.4%

(23.9% is Oracle) maximum energy savings, and 3.10% on average. TAP does not achieve the

same energy savings as the Oracle because TAP is not able to power gate memory accesses until

they miss in the L3 cache, and because lower-bound latencies are used. The result is that TAP

avoids any performance hit but misses out on power gating at the beginning of the core stall.

TAP also sees a few benchmarks with -0.2% energy savings due to CPU-bound behavior.

FUPG FUPG EV6 has a maximum and average energy savings of 17.6% and 2.2% with a

maximum performance hit of 2% (1.5% average), at which point control logic prevents future

power gating actions. FUPG does achieve more energy savings than TAP on a few CPU-bound

integer codes in which not all the functional units are being used, but the core does not go idle.

However, TAP achieves 1.4× the average energy savings of the FUPG mechanism. Greater

energy savings could result from the cooperation of FUPG and TAP.

DVFS-Oracle We also examine DVFS-Oracle using the scaling properties described in Sec-

tion 8.4. The maximum and average EV6 core energy savings are 24.6% (lbm) and 3.3%, respec-

tively. DVFS-Oracle on an EV6 core sees less maximum and average energy savings compared

to the power gating oracle, but greater savings when compared to TAP. However, these energy

savings suffer from two shortcomings. First, DVFS-Oracle has a maximum and average per-

formance hit of 11.8% (GemsFDTD) and 2.4%. Second, these energy savings rely on oracle

knowledge.

DVFS-µmean To understand DVFS under a realistic state-of-the-art policy, we consider

DVFS-µmean [80], which predicts the performance hit of DVFS at each interval based on per-

formance counters. DVFS-µmean achieves a maximum and average energy savings of 5.9% and

0.6% respectively. Thus, DVFS-µmean achieves less energy savings than TAP while experienc-

ing a 1.0% performance hit on average (3.9% maximum). This result highlights the challenge of

applying DVFS at 32nm to match different application behaviors, and why TAP’s determinism

can result in higher energy savings.
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8.4.2 Breakdown of Execution Time and Overheads

Figure 8.14: Breakdown of simulation time for each benchmark and core combination

utilizing TAP to save energy.

Figure 8.14 examines simulation time of each benchmark on an EV6 core and separates

it into time spent executing (execute), time spent power gating the core (power gate), short stalls

that could not be power gated without energy loss (short stalls), core wake-up time to charge

core logic (core wake-up), core restore time to restore data from retention flip-flops and fill the

pipeline (core restore), and execution overhead from waking up the core too late (overhead).

We observe that TAP has no measurable performance overhead for EV6 cores. The

reason for this is that TAP wakes up the power-gated core for the lower-bound access latency

of a next-level hit in the memory hierarchy. The result is that the power-gated core is resumed

in advance and always ready for the memory response. TAP power gate cores up to 48.34%

of the time for the benchmark mcf. Averaged across all benchmarks, TAP power gate cores for

9.24% of time, respectively. In order to power gate, TAP spends an average of 0.97% and 0.93%

waking up and restoring its cores from a power gated state.

8.4.3 Energy Savings as a Function of Wake-up Latency

TAP should save more energy as wake-up latency decreases. In this subsection, we ex-

amine TAP’s sensitivity to wake-up latency, and further consider outcomes if wake-up latencies

are reduced below our calculated limits. Figure 8.15 shows that TAP’s energy savings increase

linearly with reduced wake-up delay. Across the 12 benchmarks, TAP’s average energy savings

increase from 4.23% to 6.18% as wake-up latency ranges from of 16ns and 2ns. TAP’s peak en-
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Figure 8.15: Energy savings for TAP as wake-up mode changes from 2ns to 16ns wake-up

latency for an EV6 core. Benchmarks astar, gromacs, h264ref, hmmer, libquantum, povray,

namd, and omnetpp are filtered out due to small changes (less than 0.2%) and space limits.

ergy savings for mcf increase from 20.08% to 25.91% as wake-up latency decreases from 16ns

to 2ns. In general, improved energy savings results from less wake-up time overhead, and the

ability to power gate the core for longer periods of time. Also, we note that changes in wake-up

latency have a subdued effect on energy savings. Indeed, as wake-up latency decreases from

16ns to 2ns, TAP’s average energy savings increases by 1.46× on average, indicating that a

majority of energy savings already occur at a wake-up latency of 16ns.

8.4.4 Adapting to Memory Contention

TAP can adapt to varying levels of memory contention and can power gate cores for

longer as memory subsystems become oversubscribed. We show how TAP adapts to a system

facing increased memory contention for the multi-threaded memory benchmark stream running

on a CMP with up to 32 cores. stream is a memory-intense benchmark used to measure sustained

memory bandwidth and computation rates for simple vector kernels [24]. We modify stream

to act as an embarrassingly parallel memory benchmark such that more threads cause more

simultaneous requests to the memory subsystem. Increasing stream’s thread count causes more

queuing of memory requests, longer delay per request and more frequent stalling of each core. A

good power gating technique should be able to power gate the core more often to reduce power

consumption.
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Figure 8.16: TAP adaptation to increasing memory contention. The left y - axis shows the

duration of the stall in nanoseconds, while the right y - axis shows the percentage of time that

TAP can power gate as a function of the number of stream threads.

Figure 8.16 depicts both average duration of core stalls and the percentage of total sim-

ulation time TAP power gates the core. The x- axis tracks the number of threads that are run

simultaneously. The left y - axis indicates the average stall duration for a core in nanoseconds as

the number of threads increases from 1 to 32. The right y - axis shows the percentage of time that

TAP can power gate the core as the memory subsystem experiences more contention.

First, we note that as the number of threads increases, the average duration of a core stall

increases. For 1, 2, 4, 8, 16, and 32 threads, the average stall durations are 36.77ns, 29.31ns,

38.29ns, 59.191ns, 109.22ns, and 287.63ns, respectively. From 1 to 32 threads, average core-

stall duration increases by 7.82×.26. The increase in the average core- stall duration is caused by

more threads making parallel requests to the memory subsystem at once. This increase causes

longer queues in the memory controller and contention to use the limited number of memory

channels to transfer the requested cache line. Further, an increase in memory demand decreases

the probability of a row- buffer hit and yields longer access latencies.

In addition, Figure 8.16 shows that as cores experience increased memory latency, TAP

power gates the core longer. TAP power gates the core for 9.08%, 6.61%, 6.21%, 15.81%,

19.55%, and 33.50% of the time for 1, 2, 3, 4, 8, 16, and 32 threads, respectively. From 1

to 32 threads, TAP power gates cores 3.69× longer. However, TAP power gates its core less
26From 1 to 2 threads, core- stall duration decreases. This happens because more threads increase the amount of

available cache (more cores) while increasing the number of simultaneous memory requests.
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Figure 8.17: Improvement in core wake-up latency with increased stagger for a CMP. The

average latency is shown with bars denoting the minimum and maximum safe wake-up modes.

for 4 threads than for 2 even though average core-stall time increases. This is because TAP

uses a conservative lower-bound estimate of memory-response time and does not account for all

memory scheduling possibilities.

8.4.5 The Staggered Wake-up Effect

For a 16-core system with multiple cores waking up simultaneously, voltage noise on

the power distribution network can cause unsafe voltage drop on neighboring active cores. By

introducing a sub-nanosecond stagger between two cores waking up with a shared adjacent core,

worst-case inrush current and resulting voltage noise are reduced. The result is a faster wake-up

mode and increased energy savings on the chip. Hence, cores should wake up when no other

core will be waking up for at least a fraction of a nanosecond.

Figure 8.17 shows SPICE simulation of the effect of stagger on core wake-up latency for

no-stagger, 0.3ns-stagger, 0.6ns-stagger, and 0.9ns-stagger for CMPs composed of 4, 8, and 16

EV6 cores as 0 to N-1 cores are idle. The first observation is that staggered wake-up can reduce

the variance between the minimum and maximum wake-up latency when most cores are actively
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executing or waking-up. For the 16-core CMP with no cores idle and no stagger, the max and

min wake-up latency is 18.4ns and 9.7ns, whereas a staggered wake-up of 0.9ns decreases the

max and min values to 10.7ns and 8.6ns respectively. The second observation is that as more

cores go idle, staggered wake-up has less impact on reducing the variance of wake-up latency

because cores are less likely to interfere with each other, and the core’s location becomes the

dominant factor in wake-up latency. For example, when 14 cores are idle in a 16-core CMP, the

no-stagger and 0.9ns-stagger cases max and min wake-up latencies are both 3.3ns and 9.1ns,

respectively.

The third observation is that stagger reduces the maximum wake-up latency as more

cores are active. An example of this is for the 16-core case when no core is idle; maximum

wake-up latency is 18.4ns without stagger and 10.7ns with 0.9ns stagger, a reduction of 58.2%.

Thus, stagger can relax the guardband on maximum wake-up latency.

Finally, we consider the energy impact of staggered wake-up in Figure 8.18 for a CMP

made of 16 EV6 cores. The largest improvement in energy savings is 3.14% for mcf as energy

savings increase from 18.92% to 22.06% for staggered wake-ups of 0.0ns and 0.9ns respec-

tively. On average, energy savings go from 2.42% to 3.00% as stagger increases from 0ns to

0.9ns. Staggered wake-up does not cause any decrease in energy savings. Although cores may

have to wake up at slightly different times, the savings in latency with which they wake up is

much greater than the stagger offset of 0.9ns.

Figure 8.18: Improvement in energy savings with staggered wake-ups in a 16 EV6 core CMP.

Benchmarks with less than 0.2% energy savings are omitted.
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8.5 Conclusions and Future Directions

With each generation of microprocessors produced, leakage power will become an in-

creasingly dominant issue. In this chapter, we have described TAP, which effectively reduces

wasted leakage power for cores waiting on the memory subsystem. TAP achieves 22.4% maxi-

mum energy savings for an out-of-order core. The energy savings for the out-of-order core are

noteworthy for being within 13.9% of an Oracle scheme. TAP is also shown to be adaptive to

different levels of memory contention. Lastly, we demonstrate that a wake-up stagger of 0.9ns

reduces core wake-up latency by up to 58.2% (7.7ns), and increases TAP’s energy savings by an

additional 3.14%.

Looking toward the future, Figure 8.17 indicates the importance of power-gating short

stalls. If core wakeup delay can be significantly reduced and delay periods predicted sooner, the

amount of time the core spends power gating can be greatly increased. However, TAP is still

conservative about its power-gating intervals, and better prediction on the safe wake-up time is

required. To reduce the pessimistic prediction on the wake-up time, we are working on more

accurate PDN models.
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