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Abstract

Overparameterization in neural networks: from application to theory

by

Kaiqi Zhang

Neural networks are rapidly increasing in size, leading to a common occurrence of

overparameterization in deep learning. This presents challenges in both the theory and

application of deep learning. From a theoretical standpoint, it remains an open question

as to why neural networks generalize well despite overparameterization. From an ap-

plication perspective, overparameterization leads to significant computation and storage

costs, which limits the practical application of deep neural networks.

This thesis presents our attempt to address both issues. In terms of application,

we propose training a low-rank tensorized neural network to compress the model and

reduce the computation cost during both training and inference. We also apply Bayesian

methods to evaluate the uncertainty of this model. In terms of theory, we apply a

new method — neural tangent kernel (NTK) — to study the training dynamics of an

infinitely wide neural network. We compare the eigenvalues of the NTK of a vanilla

neural network with that of a binary weight neural network, and show that the latter

decays faster. This explains why binary weight neural networks have lower generalization

gap empirically. We also examine the effect of weight decay on a neural network, and

demonstrate that it induces sparsity in both a parallel neural network and a ResNet,

thus prove that neural networks are locally adaptive, which is not present in any linear

method, including kernels.

For the problems discussed above, we present both theoretical analyses of our method

or statement, and numerical experiments to validate our conclusions.
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Chapter 1

Introduction

1.1 Background

Over the past few decades, neural networks have been rapidly increasing in its width

and depth. With this increase, the number of parameters within a neural network has

also grown rapidly, resulting in a phenomenon called overparameterization. In an over-

parameterized model, the number of parameters is not only larger than necessary but

also exceeds the size of the training set.

Overparameterization has become a significant problem in both empirical studies and

theoretical analysis. Empirically, overparameterization greatly increases the time and

cost to train, store, and deploy a model. This is because the large number of parameters

requires more computational resources to train the model, and the trained model also

occupies more memory space for storage and deployment.

On the theoretical front, it can be found that while a slightly overparameterized

neural network often overfit, a strongly overparameterized neural network can generalize

well. This phenomenon is called “double descent” and it remains largely unexplained.

1



Introduction Chapter 1

1.2 Contributions

The contributions of this article is two-folded. From the empirical prospective, we

propose several methods to reduce the number of parameters in a neural network with

only a small loss in accuracy. We design an algorithm to train a neural network with

reduced number of parameters directly, and this greatly reduces the computation and

storage cost to train a neural network. We demonstrate that this training algorithm can

be implemented on an embedded device.

From the theoretical prospective, we aim to provide an explanation why neural net-

works generalize well despite overparameterization, and why overparameterized neural

networks outperform other methods. On the limit that the width of a neural network is

infinity, we show that training a binary weight neural network is similar to kernel learning

with Gaussian kernel. As for a neural network with finite width, we show that training

a parallel neural network or a ResNeXt induces sparsity, which reduces the number of

parameters after training and avoids overfitting. We show that these neural networks

enjoy strong adaptivity, which does not exist in traditional models, and this explains

why neural networks outperform traditional machine learning methods including kernel

methods.

2



Chapter 2

Reducing Overparameterization:

Bayesian Tensorized Nerual

Networks

2.1 Introduction

Overparameterization increases the computation and storage cost of neural networks

and limits its application. In order to reduce the number of parameters in a neural net-

work, many methods have been proposed, including pruning [7, 8], quantization [9, 10],

knowledge distillation [11], and low-rank approximation [12, 13, 14, 15]. In this section,

we focus on another method to reduce the number of parameters in a neural network

called tensorized neural network [16, 17, 15, 18]. The key idea is to tensorize its convolu-

tion kernels and fully connected weights into higher order tensors, as shown in Fig. 2.1.

Consequently, different tensor decomposition method such as Tucker decomposition and

This work has been published as K. Zhang, C. Hawkins, and Z. Zhang, General-purpose bayesian
tensor learning with automatic rank determination and uncertainty quantification, Frontiers in Artificial
Intelligence 4 (2022) 668353.
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tensor-train (TT) decomposition can be employed to compress the weights. We design a

low-rank-inducing prior for the tensorized neural networks such that the models can be

further compressed during training.

On the other hand, a well known problem of deep neural networks is that deep neu-

ral networks are not uncertainty-aware. As a result, deep neural networks are often

over-confident about its prediction, even when the prediction is incorrect. A solution to

this problem is Bayesian neural networks, which can provide uncertainty estimations for

both the model parameters and the predictive results. Instead of using a single maxi-

mum of posterior (MAP) model for prediction, Bayesian neural networks can estimate

the posterior distribution of the prediction to a data point conditioned on the training

samples.

Following Neal [19], we propose training a Bayesian tensorized neural networks using

using Hamiltonian Monte Carlo (HMC) [20]. HMC approach is an attractive method to

solve tensor learning problems because it avoids the random walks of a standard Markov-

Chain Monte Carlo (MCMC) method and leads to significantly lower computational cost.

Due to the huge amount of training data in many tensor learning problems, estimating the

full gradient can be computationally expensive. Therefore, we replace the full gradient in

a tensor learning problem with the stochastic gradient [21] while achieving a similar level

of accuracy. In summary, we design an efficient and scalable method to train a Bayesian

tensorized neural network.

4



Bayesian Tensorized Nerual Networks Chapter 2

M
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hw
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(a) The convolutional kernel
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J
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j1 . . . jH

(b) The fully connected weights

Figure 2.1: Unfolding of the convolutional kernel and the fully connected weights

2.2 Problem formulation

2.2.1 Tensorized neural networks

The majority of the parameters in a typical neural network lay in the weight of

the fully-connected layers and convolution layers. Motivated by this, tensorized neural

networks was proposed to compress a neural network. In a tensorized neural network, the

weights in the fully-connected layers and/or convolution layers are reshaped into tensors,

which is defined below.

Definition 2.1 A tensor W ∈ RI1×I2×···×In is a high-dimensional array of order n. Here

the order n (also known as “way”) is the total number of dimensions. For a general n-th

order tensor W, its element indexed by (i1, i2 · · · , in) is denoted as W [i1i2 · · · in].

Then a tensor decomposition method is applied to decompose the weight tensor into

the product of a series of smaller tensors or matrices. There are three commonly used ten-

sor decomposition methods: Canonical polyadic (CP)decomposition [22], tensor Tucker

decomposition [23], and tensor train decomposition [24]. We focus on tensor train de-

composition, because this often yield the best cost-accuracy trade-off, while we note that

this method can be applied to all the decomposition methods.

For a weight matrix W of size M × J , one can decompose M =
∏K

k=1mk and

J =
∏K

k=1 jk, then reformulate W as a 2K-dimension tensor W with size m1 × j1 ×
5
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· · ·×mK× jK . Afterwards,W is approximated by a low-rank tensor-train decomposition

W = JG(1), . . . ,G(K)KTT , (2.1)

where G(k) ∈ RRk−1×mk×jk×Rk is called the TT core, Rk is the TT rank, R0 = RK =

1, and J·KTT denotes the tensor-train product [24]. The convolutional layers can be

decomposed in a similar way. The convolution kernel C is a 4-th dimension tensor in

M × J × H × W , where H and W denote the height and width of the convolution

window. This tensor can be further viewed as a (2K + 2)-dimensional tensor with size

m1 × j1 × · · · ×mK × jK ×H ×W . In our experiments H = W = 3 remain unchanged,

and we only compress along the remaining dimensions, i.e.,

C = JG(1),G(2), . . . ,G(2K)KTT . (2.2)

The shape of each factors G(1),G(2), . . .G(2K−1),G(2K) arem1×R1, R1×j1×R2, . . . , R2K−2×

mK ×R2K−1, R2K−1 × jK ×H ×W , respectively.

2.2.2 Bayesian model

Given the training data D = {xn,yn}Nn=1, we want to find a low-rank tensorW in the

TT format to describe the weight matrices or convolution filters such that y = g(x,W).

Our goal is to estimate the posterior density

P (Θ|D) ∝
N∏

n=1

P (Dn|Θ)P (Θ). (2.3)

Here P (D|Θ) =
N∏

n=1

P (Dn|Θ) is a likelihood function, P (Θ) is a prior probability density.

A key advantage of this Bayesian parameterized description is as follows: by properly

6
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choosing a prior density P (Θ), one can control the structure of Θ and thus automatically

enforce a low-rank representation for X (Θ) based on the observed data D. Doing so

overcome the difficulty of rank determination in an optimization-based tensor learning.

Our choice of the likelihood function will be discussed in Section 2.2.3 and the prior

distribution P (Θ) will be discussed in Section 2.2.4.

2.2.3 Likelihood function

The choice of the likelihood function is determined by the training task. We provide

two examples below, corresponding to the classification problems and the regression

problems respectively.

Classification problems

Suppose the training dataset is D = {xi,yi}. In most classification problems, the

neural network can give a likelihood ŷi = f(xi; Θ) directly, where f(xi; Θ) is the prop-

agation function of the network, ŷi is a vector and each element denotes the probability

that xi belongs to one class. It is usually the softmax of output of the last linear layer.

Suppose yi is a vector with size C, C is the total number of classes,

yic =

 1, if xi in class c

0, otherwise.
(2.4)

The negative log likelihood is

− logP (yi|Θ) = ⟨yi,− log f(xi; Θ)⟩ . (2.5)

7
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Regression Problem

In regression problems, it is usually assumed that

P (yi|Θ) = N (yi|f(xi; Θ)), (2.6)

− logP (yi|Θ) =
1

2
(yi − f(xi; Θ))2/σ2, (2.7)

where σ is a hyperparameter denoting the variance.

2.2.4 Rank Determination

Here a Gaussian prior is placed over each tensor factor and a Gamma prior is placed

over Λ(k),

P (G(k)|Λ(k−1),Λ(k)) =
∏
i,j

N
(
G(k)(i, :, j)

∣∣0, (ckλ(k−1)
i λ

(k)
j )−1

)
,

P (Λ(k)) =

Rk∏
r=1

Gamma(λ(k)
r |α, β),

P (Θ) =
d∏

k=1

P (G(k)|Λ(k−1),Λ(k))
d−1∏
k=1

P (Λ(k)).

(2.8)

where α and β are constants. Once the estimated parameter λ
(k)
r is larger than a thresh-

old, we delete one horizontal slice of G(k) and one frontal slice of G(k+1).

A threshold ϵ can be set to determine the rank. A tensor slice can be eliminated, and

correspondingly the rank can be reduced when

λ̂(k)
r ≥ log(

1

2
SkRk−1 +

1

2
Sk+1Rk+1 + α) + log β − ϵ,

where Sk = MkJk for the fully connected layers and S2k−1 = Mk, S2k = Jk for the

8
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convolutional layers.

2.3 Bayesian training

2.3.1 Stochastic Gradient HMC (SGHMC) Solver

Now we need to estimate the hidden tensor factors and hyper-parameters by com-

puting the posterior density in (2.3). Existing methods [25, 26, 25, 26] does not apply to

generalized tensor learning problems where resulting Bayesian models violate the required

strong assumptions. Therefore, we we employ Hamiltonian Monte Carlo (HMC) [20] to

make our framework applicable to a broad class of tensor learning problems.

The HMC method avoids the random walks in a standard MCMC framework by

simulating the following dynamic system:

dΘ

dt
= M−1p,

dp

dt
= −∇U(Θ). (2.9)

Here p is the auxiliary momentum variable with the same dimension as Θ, M is a mass

matrix. Here U(Θ) is the potential energy which is equal to the negative log posterior:

U(Θ) = − logP (Θ|D) = −
N∑

n=1

logP (Dn|Θ)− logP (Θ). (2.10)

The HMC method starts from an initial guess of Θ, and its steady-state distribution

converges to our desired posterior density P (Θ|D).

A standard HMC becomes inefficient when we solve a tensor learning problem with

massive training samples, because computing the gradient requires estimating∇ logP (Dn|Θ)

for every index n over the whole data set. This often happens in completing a huge-size

tensor data set or training a tensorized neural network. To reduce the cost, we use the

9
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stochastic unbiased estimator of U(Θ):

Ũ(Θ) = − N

|B|
∑
Di∈B

logP (Di|Θ)− logP (Θ) + const. (2.11)

Here B ⊂ D denotes a mini-batch with |B| ≪ N . Then one can update the parameters

via dΘ
dt

= M−1p and dp
dt

= −∇Ũ(Θ). To compensate the noise introduced by the stochas-

tic gradient, we adopt the thermostats method [27] for our tensor learning framework.

Specifically, a friction term c is introduced, i.e.,

dΘ

dt
= M−1p,

dp

dt
= −∇Ũ(Θ)− cp,

dc

dt
=

1

|Θ|tr(p
TM−1p)− 1.

(2.12)

The friction term changes accordingly to keep the average kinetic energy 1
2
pTM−1p con-

stant, thus keeping the distribution of samples invariant.

Our method employs a slightly modified leapfrog approach to solve the Hamiltonian

system because it has a smaller integration error compared with other methods [20]:

pt+ϵ/2 ← pt − 1
2
ϵ(∇Ũ(Θt) + ctpt),

Θt+ϵ ← Θt + ϵpt+ϵ/2,

pt+ϵ ← pt+ϵ/2 − 1
2
ϵ(∇Ũ(Θt+ϵ) + ctpt+ϵ/2),

ct+ϵ ← ct + ϵ( 1
|Θ|tr(p

TM−1p)− 1),

(2.13)

where ϵ is the stepsize, t is the iteration index.

2.3.2 The Potential Function

For all hyperparameters λ
(k)
r , we sample λ̂

(k)
r = log λ

(k)
r and use the log Gamma

distribution as a prior. Denote the training dataset as D = {xn,yn}Nn=1. The potential

10
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Algorithm 1: SGHMC with thermostats

Input : The dataset D, the potential U(Θ), the mass M, the maximal number
of samples T

Initialize Θ by minimizing U(Θ) using SGD, Adam, etc.
for t = 1, 2, . . . T do

Sample the momentum p ∼ N (0,M).
Draw a mini-batch B ⊂ D to formulate the unbiased potential function Ũ(Θ)
by equation (2.11).
for i = 1 to m do

Update Θ,p, c using (2.13)
end

Θ(t) ← Θ
end

Output: The sample set of {Θ(t)}Tt=1.

function can be computed as

U(Θ) = − logP (Θ|D) =
N∑

n=1

loss(yn, g(xn,Θ))− logP (Θ), (2.14)

where loss(·) is the negative log likelihood and g(·) denotes the neural network. The loss

function can be the cross entropy loss for classification problems and the mean square

error loss for regression problems. After getting the potential function, we can apply the

SGHMC framework to draw samples for the parameters Θ.

2.3.3 More General Models

The above descriptions of the prior, the likelihood, and the potential function are all

based on a low-rank tensor-train representation. Our Bayesian tensor learning frame-

work can also be applied to other decomposition of network parameters such as the CP

decomposition and Tucker decomposition.

11
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Bayesian Tucker Factorization

The Tucker decomposition projects the original tensor X into a smaller kernel tensor

G,

X = G
d⊗

k=1

U(k). (2.15)

Similar to Zhao et al. [28], the priors of U(k) and G are set as

P (U(k)|Λ(k)) =

Ik∏
ik=1

N (U(k)(ik, :)|0, (Λ(k))−1) (2.16)

and

P (G|Λ(1), . . . ,Λ(d))

=
∏

r1,...,rd

N
(
G(r1, . . . , rd)

∣∣∣∣∣0, β
d∏

k=1

(
λ(k)
rk

)−1

)
(2.17)

respectively. Here β is a constant scaling factor. For simplicity, we assume β is a constant

instead of a random variable, which is different from Zhao et al. [28]. Λ(k) follows from

the Gamma distribution

P (Λ(k)) =

Rk∏
r=1

Gamma(λ(k)
r |a, b).

Here, Λ(k) is shared between U(k) and G. In summary, the prior of the unknown param-

eters Θ = {G,U(k),Λ(k)} is

P (Θ) = P (G|Λ(1) . . .Λ(1))
d∏

k=1

P (U (k)|Λ(k))P (Λ(k))

12
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.

CP Decomposition

Tensor CP decomposition represents a tensor with the sum of a few rank-1 tensors,

namely,

X =
R∑

r=1

a(1)
r ◦ · · · ◦ a(d)

r = JA(1), . . . ,A(d)K.

With the parameters Θ = {A(k),Λ, τ}, the prior distribution satisfies P (Θ) =
∏d

k=1 P (A(k)|Λ)P (Λ)P (τ),

where

− logP (A(k)|Λ) = 1

2

R∑
r=1

(
|A(k)(:, r)|2λr −

d∑
k=1

Ik log λr

)
,

− logP (Λ) =
R∑

r=1

−(a− 1) log λr + bλr.

(2.18)

The negative log prior of τ is

− logP (τ) = −(c− 1) log τ + dτ. (2.19)

In this work, instead of using λr and τ directly, we use the log Gamma distribution

τ̂ = log τ and the inverse Gamma distribution λ̂ = λ−1. Their prior distributions are

P (τ̂) =
exp(cτ̂) exp(−eτ̂ )/d)

dcT (c) (2.20)

and

P (λ̂) =
ba

T (a)(1/λ̂)
a+1 exp(−b/λ̂) (2.21)

13
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respectively.

Combing equations (2.18), (2.20) and (2.21), we have the negative log prior

− logP (Θ) =
R∑

r=1

(
1

2

d∑
k=1

(
|A(k)(:, r)|2/λ̂r + Ik log λ̂r

)
+ (α + 1) log λ̂r +

β

λ̂r

)
− cτ̂ + exp τ̂ /d.

(2.22)

2.4 Numerical Experiments

In this section, we present numerical experiments of our Bayesian tensor learning

framework on both tensor completion and tensorized neural network tasks. We omit the

numerical results on tensor regression which is easier than tensorized neural networks.

2.4.1 2-layer NN for Fashion-MNIST

We first consider the Fashion-MNIST dataset [29] by a two layer neural network. The

first layer (FC1) is a 784 × 500 fully connected layer with a ReLU activation and the

second layer (FC2) is a 500 × 10 fully connected layer with the softmax activation. We

convert FC1 as a 8-th order tensor and FC2 as a 4-th order tensor for the tensor-train

decomposition. For the Tucker decomposition, we convert FC1 as a 4-th order tensor

and FC2 into a 3-th order tensor.

2.4.2 6-layer CNN for CIFAR-10

We build a 6-layer convolutional neural network (CNN) containing 4 convolution

layers and 2 fully connected layers. Each convolution layer has a kernel size of 3 × 3

and padding of 1. The number of channels in each convolution layer is 128, 256, 256,

14
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Table 2.1: Results of different networks on two datasets. LL: predictive log likelihood
(the larger the better). TT: tensor train decomposition. Tucker: Tucker decomposi-
tion. BF: Bayesian low rank prior.

#Parameters MAP Bayesian
Dataset Network (compression LL Accuracy LL Accuracy

ratio)

Fashion-
MNIST

NN
3.97× 105

(1×) -0.7118 88.91% -0.6730 89.41%

TT-NN
2.63× 104

(15.1×) -0.6687 87.07% -0.6337 87.78%

BF-TT-NN
4.02× 103

(98.8×) -0.3317 88.24% -0.3254 88.64%

Tucker-NN
2.57× 105

(1.54×) -1.1673 87.20% -1.0984 87.53%

BF-Tucker-NN
3.10× 104

(12.8×) -1.2948 87.18% -0.4405 88.18%

CIFAR-
10

CNN
9.91× 106

(1×) -0.5337 91.54% -0.5370 91.53%

TT-CNN
6.93× 105

(14.3×) -0.6077 89.00% -0.5329 90.13%

BF-TT-CNN
7.83× 104

(127×) -0.3936 86.68% -0.3623 88.01%

256, respectively. The size of the first fully connected layer (FC1) is 512. A batch

normalization layer and a ReLU activation layer is placed after each convolution and

fully-connected layer. A maxpooling layer with kernel size of 2 × 2 is placed after the

second and the fourth convolution layer.

2.4.3 Results

We use the ADAM method to minimize the negative posterior to get an initial point,

then shrink the rank according to Section 2.2.4. Afterwards, we generate T = 450

samples.The accuracy of this model is evaluated using two criterions: the predictive log

likelihood (LL) and the prediction accuracy. The results for different benchmarks using

different tensor formats are shown in Table 2.1. We compare the proposed Bayesian
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Figure 2.2: The inferred TT rank at different layers. (a): 2 TT-FC layers for Fash-
ion-MNIST. (b): 2 Tucker-FC layers for Fashion-MNIST. (c): 4 TT-Conv and 2
TT-FC layers for CIFAR-10

learning with the optimization method that maximize a posterior (MAP) directly. It

is shown that our tensor learning framework outperforms MAP in almost every case

in terms of both the accuracy and the log likelihood (LL). The improvement in log

likelihood indicates that our model can predict the uncertainty better than the MAP

method. Besides, our method achieves a compression ratio of up to 98.8× in Fashion-

MNIST and 127× in Cifar-10 in terms of the number of model parameters compared

with the baseline network.

We also show the estimated tensor-train ranks of the estimated weight matrices and

convolution filters in Figure 2.2. Clearly, our Bayesian tensor learning framework can

perform model compression in the training process with automatic rank determination.

2.5 Conclusion

We presented applying Hamiltonian Monte Carlo (HMC) to train a Bayesian ten-

sorized neural network representations. A low-rank inducing prior is proposed to reduce
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the rank during training stage, which enables rank determination during training. Our

method has demonstrated a significant compression ratio in the end-to-end training of

tensorized neural networks, as well as better accuracy than the maximum-a-posterior

training.
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Chapter 3

Reducing Overparameterization:

Quantized Tensorized Neural

Network Training on FPGA

3.1 Introduction

Despite great success in vast applications, modernized neural networks are often over-

parameterized, leading to prohibitive memory and computing costs in both training and

inference. To overcome this issue, many neural network accelerators targeting efficient

inference on FPGA and ASIC [30, 31, 32, 33, 34] have been proposed to improve the

inference throughput and energy efficiency.

On the other hand, training is much more challenging, as it involves not only forward

propagation but also backward propagation. As a result, most of the training tasks are

still done on high-performance computing platforms such as clusters and cloud servers.

This work has been released as K. Zhang, C. Hawkins, X. Zhang, C. Hao, and Z. Zhang, On-fpga
training with ultra memory reduction: A low-precision tensor method, in ICLR Workshop on Hardware
Aware Efficient Training, 2021.
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Besides the expensive hardware and economic cost, these training methods can cause a

huge environmental impact as well. The study [35] shows that training some common

natural language processing models on the cloud could emit 5× as much carbon dioxide

compared with the lifetime emissions of an average American car. This has motivated us

to train neural networks on resource-constrained platforms with much lower energy cost.

Meanwhile, the increasing concerns about data privacy have become another driving force

for training on edge devices [36]. Most of the above-mentioned post-training approaches

[7, 8, 9, 10, 11, 12, 13, 14, 15] do not help reducing the training cost except quantization.

By utilizing low-precision quntized arithmetic in optimization solvers [37, 38, 39, 40,

41, 42], one can reduce the cost per parameter during training, but the memory cost

reduction is limited to a single order of magnitude even if the most recent ultra low-

precision 4-bit training [40] can be employed. As a result, training neural networks on

FPGA still remains an extremely challenging task.

Can we achieve orders-of-magnitude memory and variable reduction in training? If

we can achieve this ambitious goal, then it becomes possible to train many large neural

networks on FPGA and on other resource-constraint platforms. In this paper, we will

show that it is possible to achieve this goal by exploiting tensor computation [43] and

low-precision arithmetic together. Tensors are a high-dimensional extension of matrices,

and tensor decomposition methods have outperformed many existing matrix compression

algorithms by exploiting hidden low-rank structures in high dimensions. Recently, tensor

decomposition has achieved orders-of-magnitude parameter reduction in post-training

compression of deep neural networks [14, 15, 17, 18]. The methods have boosted the

inference performance on various platforms [14, 44, 45, 46]. However, training a tensorized

neural network from scratch is challenging. The training cost and model performance

are controlled by tensor ranks, which are unknown a priori. Recent works [16, 47, 48]

train a tensorized neural network with a fixed rank parameter, which often requires an
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Table 3.1: Memory footprint of a d-dimension tensor of size N × N . . .N , its tensor
train (TT) decomposition with rank R, and their quantized representation (LP). F
is the word width of floating point (usually 32 or 64), and D is the word width of
quantized representation (usually ≤ 8).

Parameters Bits
Tensor Nd FNd

TT-Tensor dNR2 FdNR2

LP-Tensor Nd DNd

LP-TT-Tensor dNR2 DdNR2

expensive manual search and massive training runs.

Paper Contributions. This paper presents, for the first time, an end-to-end neural

network training framework on FPGA with orders-of-magnitude memory reduction. This

work is based on two ideas: (1) a rank-adaptive tensorized model that automatically

reduces training variables and model complexity in training; and (2) a low-precision

tensor optimization solver that further reduces the hardware cost of each training variable.

As shown Table 3.1, by combining these two methods, we can achieve higher memory

reduction ratios than using any single method alone. With a largely reduced memory

footprint in training, our method can be implemented on various edge devices with very

limited on-chip memory and computation capacity, which is beyond the capability of

existing full-size low-precision training. The specific contributions are summarized below:

• We propose a rank-adaptive tensorized model for end-to-end training. This model

employs a Bayesian method for automatic tensor rank determination and acheives

orders-of-magnitude model compression in the training process.

• We propose a low-precision framework to train the proposed tensorized neural net-

work. This can further reduce the memory footprint. Together with the above

rank-adaptive tensor compression, this method makes it possible to store all model

parameters with limited on-chip memory in a training process.
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• We design an embedded FPGA accelerator for the proposed low-precision tensorized

end-to-end training framework. Our FPGA design achieves up to 128 FLOPs per

clock cycle, and achieves 50× speedup compared with embedded CPU.

• We implement our algorithm with a two-layer neural network on a Xilinx MPSoC,

which stores all model parameters on chip and achieves 82.08% testing accuracy on

the Fashion MNIST dataset.

3.2 Tensor Train Neural Network

Training neural networks on edge devices is largely constrained by model size and

computational cost. The FLOPS required is often so high that only expensive GPUs

can finish training runs in reasonable time. Low-rank tensor compression is a promising

solution to reduce both computation and memory cost [15, 16, 17].

To compress the layers of pre-trained models, different decompositions have been

studied [49, 50, 51, 52]. Among these methods, tensor train decompostion often yields

the highest compression ratio with little accuracy loss. Therefore, in this work we focus

on the tensor-train decomposition [24].

A fully-connected layer takes the form of Wx + b where W is the weight matrix, b

is the bias, and x is the input vector. The majority of the parameters in a layer are in

the weight matrix W. To compress the weights of a fully-connected layer, we apply the

Tensor-Train Matrix format as shown in Definition 3.1.

In the fully-connected layer of a neural network, the weight matrix W contains many

parameters. To achieve high compression ratios we reshape it into a high dimensional

tensor W with the same elements as W, and use the tensor-train decomposition to it.

Definition 3.1 Let W ∈ RI×J be a matrix and let i =
∏d

n=1 in, j =
∏d

n=1 jn be a
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factorization of its dimensions. To apply the tensor-train matrix format we reshape W

into a tensor W with dimensions i1×· · ·× id× j1×· · ·× jd. The explicit reshape scheme

is given in [16]. The tensor-train matrix (TTM) factorization applies tensor train

decomposition to W and expresses it as a series of matrix products.

Wi1,...,id,j1,...,jd = G
(1)
:,i1,j1,:

G(2):,i2,j2,:
. . .G(d):,id,jd,:

Each TT-core G(d) ∈ RRn−1×In×Jn×Rn , or tensor factor, is an order 4 tensor. The tuple

(R0, R1, R2, . . . , Rd) is the TT-rank and as before with R0 = Rd = 1. The Tensor-Train

Matrix factorization requires
∑

nRn−1InJnRn parameters, which is usually much smaller

than the original matrix with
∏

n InJn number of parameters.

Low-rank optimization and Bayesian inference are the two main approaches used for

rank determination in tensor completion. The first approach relies on the generalization

of the matrix nuclear norm [53] to tensors. Popular approaches achieve rank reduction

by relying on tensor unfolding operators at the cost of high computational expense for

high-order tensors. The second approach, Bayesian inference, utilizes low-rank priors

to deduce the tensor rank in CP or Tucker tensor completion [25]. The tensor-train

decomposition differs from CP or Tucker in that the the ranks of different tensor factors

may couple with each other. The observed data is a linear mapping of a tensor in tensor

completion and it is a nonlinear mapping in neural networks. This nonlinearity prevents

us from directly applying previous work on tensor rank determination to tensorized neural

network.
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3.3 Rank-Adaptive Tensorized Neural Network

Most existing methods to produce tensorized neural networks require training an

uncompressed model first, which is computationally expensive. In this section, we propose

to train a low-rank tensorized neural network from scratch by directly updating the

unknown tensor cores via stochastic gradient-descent optimization. This approach does

not form the large uncompressed weight matrices, therefore it can greatly reduce the

memory footprint and training cost. To reduce tensor ranks, we start with a model with

higher tensor ranks, and apply a low-rank regularizer to shrink the tensor rank during

the training process. This approach leads to a better trade-off between accuracy and cost

(in terms of memory and computing) than existing fixed-rank training [16, 47, 48] that

require combinatoral rank search and multiple training runs.

3.3.1 Hierarchical Bayes Model

Determining a proper tensor rank is NP hard. Failure to get an appropriate rank

estimation may cause high training cost or low accuracy. In this work, instead of setting

the rank as a prior, we use a Hierarchical Bayes model to infer the optimal rank in the

training process. The hierarchical structure is shown in Figure 3.1.

We introduce a set of additional parameters {λ(n)} to determine the actual Tensor-

Train ranks. Our goal is to determine tensor factors with a low TT-rank so we select a

prior density that specifies a prior belief that the TT-rank is low. Specifically, λ
(k)
i will be

larger if the values in the tensor slice associated with it is larger. It will in turn influence

the regularizer, and penalties more if λ
(k)
i is smaller. At the end of training process, some

of λ
(n)
k will be small, and the whole slice of G(n) will be close to zero, leading to a rank

reduction in the n-th mode.

Additionally, we place a Log-Uniform prior on the hyperparameters λ(n), 1 ≤ n ≤
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log uniform
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Figure 3.1: Hierarchical Bayes model for low rank TT neural network.

d− 1:

p(λ(n)) =
R∏
i=1

p(λ
(n)
i ), p(λ

(n)
i ) ∼ λ(n)−1/2

. (3.1)

We make two observations about this choice of hyper-prior. Firstly, the prior density,

and therefore the entire Bayesian model, does not contain any manually tuned hyper-

parameters. This enables us to perform one-shot tensorized training on edge devices

without multiple hyperparamter tuning runs. Secondly, the prior density enforces spar-

sity in the vector λ and therefore induces structural rank-sparsity on the low-rank tensor

factors.

Fully Bayesian training to fit the model parameters is prohibitively expensive. Instead

we convert the low-rank prior into the form of a regularizer by taking the negative log,

which leads to (3.3).

3.3.2 Objective Function

To train a neural network for classification, the typical objective to minimize is the

cross entropy loss between the predicted label f(x) and the ground-truth label y:

1

m

m∑
i=1

CE(f(xi), yi) (3.2)
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Algorithm 2: Low-rank tensorized neural network training algorithm.

Input : dataset (xi, yi) ∈ D
ndomly uniformly initialize weights. while Not converge do

Randomly draw a minibatch B ⊂ D, calculate the target function (3.2) +

(3.3) and its gradient with respect to G. Update G(l)i along (stochastic)
gradient direction using ADAM. Update λ with (3.4)

end

Output: G(l)i

where m is the size of training set and CE stands for cross entropy loss. In some cases an

additional nonnegative, convex function, eg. L-2 norm function, is added to the objective

function as a regularizer to avoid overfitting or to make the optimization landscape

smoother. In our work, we add a regularizer to shrink the tensor rank:

∑
1≤n≤d−1

∑
k

∥g(n):,:,:,k∥2F
λ
(n)
k

+
∑
k

1 + rn−1injn
2

log(λ
(n)
k ) (3.3)

Note that the second term does not depend on G, so it is not included when computing

the gradient. The algorithm to minimize the target function is shown in Algorithm 2,

and it is explained in the following sections.

3.3.3 Update rule

In optimization process, we updates the tensor factors using Adam algorithm [54].

On the other hand, we update the rank parameters λ by minimizing equation (3.3)

analytically with respect to λ:

λ
(n)
k =

2

1 + rn−1injn

∑
r,i,j

g
(n)
r,i,j,k

2
(3.4)

We alternate between updates of tensor factors G and updates of the rank parameters

λ to minimize the objective function.
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3.4 Low-Precision Tensorized Training

3.4.1 Training Quantized Weights

The update rule of Stochastic gradient descent (SGD) is

G(t+1) = G(t) − ηt
1

|B|
∑
i∈B

∇Gℓ(f(xi;G), yi)

where B ⊂ D is the minibatch used in this step, η > 0 is the stepsize, ℓ is the loss

function, eg. mean square error (MSE) or cross entropy loss, and f(·;G) represents the

neural network given the trainable tensor factors {G}. In a quantized neural network each

value in G is chosen from a discrete set {k∆| − B ≤ k∆ < B, k ∈ N}, where B = 2b−1δ

is the bound on the quantized values, b is the number of bits to represent a value, and

∆ is the quantization precision.

When the stepsize η is small, which is often the case when getting close to the local

minima, the update in a single step can be smaller than the quantization precision ∆,

which prevents the empirical loss from further decreasing. In order to avoid this problem,

two methods have been proposed: stochastic rounding [39] and Binary connect (BC)

[41]. Their convergence has been analysed in [55] which demonstrates that BC has faster

convergence speed and better stability than stochastic rounding.

In our work, we use the BinaryConnect algorithm to train a tensorized neural net-

work. The BinaryConnect algorithm keeps a high precision copy of all the low precision

parameters in a buffer. In each iteration, the gradients are accumulated in the buffer and

the low precision parameters are updated by quantizing the buffer. The update process

is
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Ĝ(t+1) = G̃(t) − ηt
1

|B|
∑
i∈B

∇Gℓ(f(xi;G), yi) (3.5)

G(t+1) = Q(G̃(t+1)) (3.6)

Where Q is the quantization function.

Q(x) = argmin
y
|y − x|, y ∈ {k∆| −B ≤ k∆ ≤ B, k ∈ N}

The quantization precision is chosen to avoid clipping:

B = max |G(l)i |, ∆
(l)
i =

maxG(l)i

2b

Notice that in such neural networks, the biases are usually not quantized, as this often

greatly hurt the accuracy, while saving only a small amount of computing and storage

resources.

3.4.2 Straight Through Estimator

Quantization functions are not differentiable and backpropagation can’t be used di-

rectly to train a neural network with quantized activations. In order to solve this problem,

the straight through estimator (STE) [56] has been proposed as an approximation to the

gradient of the quantization function. The idea of STE is to use the gradient of a smooth

function is the backpropagation. In [56], the gradient of a 0-1 activation function is ap-

proximated with the gradient of sigmoid function. In [42], it is suggested to use 1|r|<1 as

the approximated gradient of quantization function. This method is often called satu-

rated STE. A detailed analysis of different types of STE is presented in [57]. It is proven
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that both ReLU and clipped ReLU as STE leads to guaranteed convergence, while simple

passthrough can result in divergence in some cases. In this paper, we use clipped ReLU

and leaky clipped ReLU function as STE. Considering a ReLU-like quantized activation

function

σ(x) = argmin
y∈Y
|y − x|,Y = {0 ≤ k∆ ≤ B} (3.7)

the backpropagation rule can be written as

∂

∂y
= 1(0 ≤ x ≤ B)

∂

∂y
(3.8)

where 1(·) is the indicator function.

Table 3.2: Fixed point expression used.
Values bits used
Weights 4

Activation 8
Gradients 16

We summatize our fixed point expression in Table 3.2. We use 4 bits to represent

the weights, 8 bits for activation, and 16 bits for gradients of both activation and model

parameters (tensor factors). The bias has the same representation as activation (8 bits).

In computing the gradients of factors, gradients in a single minibatch are shifted before

accumulated to 16 bits to avoid overflow. Since PE are shared between forward and

backward propagation, they are designed to handle 16 bits data and 4 bits weights. In

forward propagation, only the 8 LSB in data are used, and in backward propagation, all

16 bits are used. This allows the model trained with our method portable to devices with

only 8 bits by 4 bits for inference.
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3.4.3 Automatic scale selection

When using fixed point representation, the scaling factor of each value needs to be

carefully designed to avoid overflow or large quantization error. Besides, if the scaling

factors differ by a factor of a power of 2, then a simple bit shift is needed, which takes

almost no hardware resource or time.

In the training process of neural network, the scale of activation an gradients can vary

by several orders of magnitude during the training process, which makes it impossible

to use a fixed scaling factor throughout the training process. In order to deal with this

problem, we used a variable scaling factor, and introduced a mechanism to determine the

scaling factor on the fly. The scaling factors of all values are enforced to be a power of 2 so

that data conversion requires a simple bit shift. We allow a different scaling factor for each

activation, gradient or intermediate result, while it is shared between different samples

or channels. The scaling factors of the weights are fixed, and with 4 bits the available

range is [−1, 0.875]. To avoid overflow and make sure the values approximately zero

mean, weights are clipped to the range [−0.91, 0.91] after each iteration. To determine

the scaling factor of the activation and gradients, we keep track of the mean of absolute

value during training process, and enforce it to lay in the range between 0.1 and 0.3 by

dynamically adjusting the scaling factor. This allows a small margin to avoid overflow,

while making the most use of the bits to reduce quantization error.

3.5 FPGA implementation

3.5.1 Overall design

In this section we introduce the FPGA implementation for our proposed on-device

rank-adaptive tensorized training for neural networks. The overall FPGA design is shown
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Figure 3.2: Overall view of hardward design

in Figure 3.2. During training, the training samples, activations, and gradients are stored

in the off-chip DRAM. Thanks to our low-rank tensorization, all the model parameters

can be stored in the on-chip BRAM. The overall training involves three steps: forward

propagation, backward propagation, and model parameter update. The forward and

backward propagation are executed on FPGA programmable logic; updates to the tensor

factors G and rank parameters λ are executed on the embedded ARM core, which usually

take less than 1% of total computing cost. We design three processing elements (PEs)

to compute the forward and backward propagation: PE1 and PE2 are used in forward

propagation, while PE1, PE2, and PE3 are used in backward propagation. Thus, PE1

and PE2 are shared by forward and backward propagation to reduce resource usage.

PE2 will execute tensor contraction along the last dimension, while PE1 will handle

contraction along other dimensions. The data, activations and gradients involved in

the computation of PE1 and PE2 are cached by ping-pong buffers. Because PE3 only

performs outer product operation, which is memory bounded and cannot benefic from a

buffer, it reads and writes the activations and gradients from the DRAM directly.
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Figure 3.3: Hardware architecture of PE1 and PE2

3.5.2 PE design

We designed two PE to handle tensor contraction. The reason for that is there are two

kinds of tensor contraction operations, depending on whether the dimension to contract

is the last dimension in a tensor or not. Data locality in these two cases are significantly

different. In order to deal with that, we designed two kinds of PE to handle these two

different kinds of processes.

The first PE (PE1) does tensor contraction along the last dimension. The design

of PE1 is shown in Figure 3.3a. It consists a two-dimension multiplier array. Each

column of the multipliers share the same data/activation/gradient from the Ping-pong

buffer, and an accumulator is placed at each row of the multiplier array. Each multiplier

is equipped with a small block memory and the weights are loaded the block memory

before performing a tensor operation.

The computation can be written as

abc× bdc→ ad

The dataflow of this PE is shown in algorithm 3. In the partial tensor contraction (line
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Algorithm 3: Process of PE1.

Input : operand 1 A in off-chip memory, operand 2 G in on-chip memory.
foreach i from 1 to a step 8 do

Pipeline:
Load A[i : i+ 7, :, :] to ping-pong buffer
Partial tensor contraction to A[i : i+ 7, :, :] and G to get B[i : i+ 7, :], store
to another ping-pong buffer.
Store B[i : i+ 7, :] to off-chip memory.

end
Output: Tensor B in off-chip memory.

5), we parallelize the computing along the last dimension (c) by a factor of 16, and

parallelize along the first dimension (a) by a factor of 8. This requires 128 scalars from

the first operand (data) and 16 continuous (and aligned) data from the second operand

(weight) per clock cycle during computing. To simplify the design, we enforce C to be

a multiplier of 16, which is equivalent to enforcing the last dimension of both input and

output tensor, m3 and n3, to be a multiplier of 16, which brings an additional benefit

that d is always a multiplier of 16.

The second PE (PE2) performs tensor contraction along dimensions other than the

last dimension. The design of PE2 is shown in Figure 3.3b. It consists a two-dimension

multiplier-and-accumulator array. Each column of the multipliers share the same data/activation/gradient

from the Ping-pong buffer, and each row of the multipliers share the same tensor weight

stored in the on-chip memory. Each multiplier is equipped with a small block memory

to store the accumulated result.

The computation can be written as

abc× bd→ adc

and shape of operands in each step are shown in Table 3.6.

The dataflow of this PE is shown in algorithm 4. In the partial tensor contraction
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Algorithm 4: Process of PE2.

Input : operand 1 A in off-chip memory, operand 2 G in on-chip memory.
foreach j from 1 to c step 16 do

foreach i from 1 to a step 1 do
Pipeline:
Load A[i, :, j : j + 15] to ping-pong buffer
Partial tensor contraction to A[i, :, j : j +15] and G to get B[i, :, j : j +15]
store to another ping-pong buffer.
Store B[i, :, j : j + 15] to off-chip memory.

end

end
Output: Tensor B in off-chip memory.

(line 6), we parallelize the computing along the last dimension (c) of the first operand

by a factor of 16, and parallelize along the last dimension of the second operand (d) by

a factor of 8. Again, we enforce c to be a multiple of 16, which has been covered in the

condition above. This requires 128 scalars from the first operand (data) and 8 continuous

(and aligned) data from the second operand (weight) per clock cycle during computing.

The interface of both data and weight has a width of 16. This is enough for weight,

but not enough for data, which is used more heavily during computation. To deal with

this limitation we split the data into parts. In the first PE, data is split by dimension

a. In the second PE, data is split by dimensions a and c. We split the computation into

three steps: loading data from DRAM to the on-chip buffer, performing the multiply-

and-accumulate, and storing the result back to DRAM. Making use of the ping-pong

buffer, the second step, multiply-and-accumulate, can be executed in parallel with other

steps.

We introduce the third PE to perform outer product. The throughput of this step

is bounded by memory bandwidth of storing. Due to this limitation, this PE consists

only a one-dimensional multiplier array so that the throughput of computation matches

the throughput of memory. The computing is parallarized along the last dimension m3

33



Quantized Tensorized Neural Network Training on FPGA Chapter 3

only by a factor of 16. Elements of the second operand is cached, while the first operand

is read from DRAM directly and write through. The detailed operation of each PE is

deferred to Section 3.8.

3.5.3 Memory management

In many other neural network accelerators, both data and model parameters are

placed on off-chip DRAM due to limited on chip memory, and are loaded to on-chip

memory only when needed. This incurs overhead in latency and power. In our design,

thanks to the reduction in the number of parameters due to tensorization and quantiza-

tion, it is possible to store all the tensor factors (and bias) on-chip through the entire

training process. This reduces the overhead of data movement between on-chip memory

and off-chip DRAM memory. In summary, we should expect the throughput to be close

to 128 Flops/cycle.

3.6 Experiments and results

3.6.1 MLP

To test the performance of our accelerator, we implemented it for a 2-layer tensorized

neural network for MNIST-like dataset. We used C++ to implement fixed point tensor

contraction and used Pytorch to implement high level methods (ADAM, rank parameters

update). In order to fit the requirement on the shape of tensors, we zero pad the input

to 28 × 32 and decompose it to 7 × 4 × 2 × 16. There are 512 neurons in the hidden

layer decomposed into 4× 4× 2× 16 for the first layer, and 32× 16 for the second layer.

The output is decomposed into 1×16. We trained this model for FashionMNIST dataset

[58], which has the same shape and size as MNIST dataset but is more complicated
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Table 3.3: Fashion MNIST training result

Method
Training Testing Model Memory
accuracy accuracy parameters in bits

Vanella 95.75% 89.27% 4.67× 105 1.49× 107

Floating, w/o prior 92.54% 88.03% 1.48× 104 4.74× 105

Fixed, w/o prior 88.31% 86.67% 1.48× 104 6.13× 104

Floating, w/ prior 90.17% 87.88% 1.08× 104 3.46× 105

Fixed, w/ prior 85.45% 84.86% 1.22× 104 5.11× 104

and can better We train the model for 30 epochs and compare both standard floating

point computation in Pytorch (Floating) and our simulator (Fixed), and training with or

without the low rank prior. We report the epoch with highest testing accuracy, and show

our result in Table 3.3. We also listed the memory footprint of the model parameters

(tensor factors) achieved after training.

3.6.2 Implementation on FPGA

We implemented the forward and backward propagation process on a Avnet Ultra96-

V2 board. This board is equipped with a Xilinx Zynq UltraScale+ XCZU3EG MPSoC

and 2GB off-chip memory. The resource utilization is listed in Table 3.5. For larger

neural networks, utilization of LUTs and DSPs will not increase as PEs can be reused

for computing across layers, while only the utilization of BRAM will increase, as weights

are stored on chip during training. A maximum of 114MHz clock rate can be achieved.

We compared the time and memory usage to tensorized neural network training be-

tween our implementation on FPGA and that on a embedded computer. The embedded

computer we use is an Raspberry Pi 3B with Quad Core 1.2GHz ARM processor. We

used Pytorch and Tensorly module to implement training algorithm on it. For FPGA,

we set the clock rate to 100MHz. Only the time on forward and backward propagation

is included, as the rest part (optimizer) is the same on both devices. The memory usage
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Table 3.4: Time and memory use comparison between floating point training on em-
bedded computer (RPi) and fixed point training on FPGA (FPGA)

Time (s/batch) Memory (MB)
RPi 5.34 1.49

FPGA 0.09 20.06

Table 3.5: Resource utilization of 2-layer tensorized neural network
resource used available utilization
LUT 56131 70560 79.55%
FF 30155 141120 21.37%
DSP 278 360 77.22%

BRAM 77 432 17.82%

shown in this table excludes the model parameters and training data. For embedded com-

puter, we measured the memory usage by taking the maximum one, minus the memory

usage after loading data and initializing the model but before training.

3.7 Conclusion

In this work, we proposed a new algorithm to train quantized tensorized neural net-

works. By training end-to-end compressed neural networks, our approach produce a com-

pressed model from scratch while saving hardware resources during the training phase.

Our algorithm uses Bayes rule to determine the rank from the training data, and achieved

up to 335× reduction in memory cost compared to the base model with only a slight loss

in accuracy.
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3.8 Detailed operations

3.8.1 Forward propagation

The forward and backward propagation of neural network involves tensor contraction.

Here we use a tensor train with three factors as an example, denote the input dimen-

sions as m1,m2,m3, output dimensions as n1, n2, n3, and the rank as r1, r2. the forward

propagation involves the following computation in Einstein summation convention:

m1m2m3 ×m3r2n3 → m1m2r2n3 (3.9)

m1m2r2n3 ×m2r2r1n2 → m1r1n2n3 (3.10)

m1r1n2n3 ×m1r1n1 → n1n2n3 (3.11)

In these expressions, the first operand is the data (input or intermediate results), and

the second operand is the tensor factors of the weights.

3.8.2 Backward propagation

In back propagation, there are two tasks:

• To compute the gradients with respect to the inputs of the layer.

• To compute the gradients with respect to the model parameters (tensor factors) of

the layer.

To compute the gradients with respect to the inputs, the computation in Einstein

37



Quantized Tensorized Neural Network Training on FPGA Chapter 3

summation convention is shown below:

n1n2n3 × n1m1r1 → m1r1n2n3 (3.12)

m1r1n2n3 × r1n2m2r2 → m1m2r2n3 (3.13)

m1m2r2n3 × r2m3n3 → m1m2m3 (3.14)

The first equation is to compute the gradients directly. The second is to compute the

gradients with respect to full weights and then accumulate them and compute the gra-

dients with respect to the factors. The former method is more efficient if batch size is

small and the compressed model is small, while the latter is more efficient if it is the

opposite. In our work, we are starting with a model with large rank (larger model), the

latter method is more efficient. In this work, we are implementing the second method.

The first step, computing the gradient with respect to the full weight matrix, requires a

simple outer product:

m1m2m3 × n1n2n3 → n1m1n2m2n3m3

The first operand of this PE is the input to this layer during forward propagation, and the

second operand is the gradient of the output. After the gradient has been accumulated

in a batch, the gradient with respect to the factors can be computed by contracting the
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Eq. PE a b c d
(3.9) PE1 m1m2 1 m3 r2n3

(3.10) PE2 m1 m2r2 n3 r1n2

(3.11) PE2 1 m1r1 n2n3 n1

(3.12) PE2 1 n1 n2n3 m1r1
(3.13) PE2 m1 r1n2 n3 m2r2
(3.14) PE1 m1m2 r2 n3 m3

(3.15) PE1 n1m1n2m2 1 n3m3 r2
(3.16) PE1 n1m1 1 n2m2r2 r1
(3.17) PE2 1 n1m1 n2m2r2 r1
(3.18) PE2 1 n1m1 n2m2n3m3 r1
(3.19) PE2 1 r1n2m2 n3m3 r2

Table 3.6: PE and operand of each expression.

gradient of full weight with the tensor factors:

n1m1n2m2n3m3 × r2n3m3 → n1m1n2m2r2 (3.15)

n1m1n2m2r2 × r1n2m2r2 → n1m1r1 (3.16)

n1m1n2m2r2 × n1m1r1 → r1n2m2r2 (3.17)

n1m1n2m2n3m3 × n1m1r1 → r1n2m2n3m3 (3.18)

r1n2m2n3m3 × r1n2m2r2 → r2n2m3 (3.19)

Note that the result of the first expression is shared to get the gradient of the first and

second tensor factor.

To compute the gradient with respect to the tensor factors, as in Equation (3.15)-

(3.19), and the first and second PE can be reused here. This puts additional requirement

on the shape and rank of the tensor factors. A sufficient condition is that all the ranks

are a multiple of 16. Since we are using models with rank determination, the rank of the

final model will a rank smaller than this pre-specified maximum rank. The final rank is

not necessarily a multiplier of 16.
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Chapter 4

Infinite Overparameterization: NTK

of BinaryWeight Neural Networks

4.1 Introduction

Traditional statistical learning techniques (e.g., VC-dimension [59]) rely on the num-

ber of parameters to study the generalization ability of a machine learning method.

Because of overparameterization, the traditional statistical learning techniques based on

uniform convergence do not satisfactorily explain the generalization ability of neural net-

works. Furthermore, Zhang et al. [60] showed that neural networks can perfectly fit the

training data even if the labels are random, yet it generalized well when the data are not

random. This seems to suggest that the model capacity of a neural network depends on

not only the model, but also the dataset. Recent studies [61] managed to understand the

empirical performance in a number of different aspects, including modeling stochastic

gradient (SGD) with stochastic differential equation (SDE) [62], studying the geometric

This work has been released as K. Zhang, M. Yin, and Y.-X. Wang, Why quantization improves
generalization: Ntk of binary weight neural networks, arXiv preprint arXiv:2206.05916 (2022).
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structure of loss surface [63], and overparameterization – a particular asymptotic behav-

ior when the number of parameters of the neural network tends to infinity [64, 65, 66, 67].

Recently, it was proven that the training process of neural network in the overparameter-

ized regime corresponds to kernel regression with Neural Tangent Kernel (NTK) [68]. A

line of work [69, 70, 71, 72] further studied Mercer’s decomposition of NTK and proved

that it is similar to a Laplacian kernel in terms of the eigenvalues.

It has been found that by quantizing the parameters in a neural network, the memory

footprint and computing cost can be greatly decreased with little to no loss in accuracy

[39]. Furthermore, Hubara et al. [73], Courbariaux et al. [41] argued that quantization

serves as an implicit regularizer and thus should increase the generalizability of neural

network comparing to its full precision version. However, there is no formal theoretical

investigation of this statement to the best of our knowledge.

In this paper, we propose modeling a two-layer binary weight neural network using a

model with continuous parameters. Specifically, we assume the binary weights are drawn

from the Bernoulli distribution where the parameters of the distribution (or the mean of

the weights) are trainable parameters. We propose a quasi neural network, which has the

same structure as a vanilla neural network but has a different activation function, and

prove one can analytically approximate the expectation of output of this binary weight

neural network with this quasi neural network. Using this model, our main contributions

are as follows:

• Under the overparameterized regime, we prove that the gradient computed from

BinaryConnect algorithm is approximately an unbiased estimator of the gradient of

the quasi neural network, hence such a quasi neural network can model the training

dynamic of binary weight neural network.

• We study the NTK of two-layer binary weight neural networks by studying the
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“quasi neural network”, and show that the eigenvalue of this kernel decays at an

exponential rate, in contrast with the polynomial rate in a ReLU neural network

[72, 71]. We reveal the similarity between the Reproducing kernel Hilbert space

(RKHS) of this kernel with Gaussian kernel, and it is a strict subset of function

as the RKHS of NTK in a ReLU neural network. This indicates that the model

capacity of binary weight neural network is smaller than that with real weights, and

explains higher training error and lower generalization gap observed empirically.

4.2 Related work

Quantized neural networks. There is a large body of work that focuses on training

neural networks with quantized weights [74, 37, 39, 75, 76], including considering radi-

cally quantizing the weights to binary [42, 77] or ternary [78] values, which often comes

at a mild cost on the model’s predictive accuracy. Despite all these empirical works,

the theoretical analysis of quantized neural networks and their convergence is not well

studied. Many researchers believed that quantization adds noise to the model, which

serves as an implicit regularizer and makes neural networks generalize better [73, 41],

but this statement is instinctive and has never been formally proved to the best of our

knowledge. One may argue that binary weight neural networks have a smaller parameter

space than its real weight counterpart, yet Ding et al. [79] showed that a quantized ReLU

neural network with enough parameters can approximate any ReLU neural network with

arbitrary precision. These seemingly controversy results motivate us to find another way

to explain the stronger generalization ability that is observed empirically.

Theory of deep learning and NTK. A notable recent technique in developing the

theory of neural networks is the neural tangent kernel (NTK) [68]. It draws the connection
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between an over-parameterized neural network and the kernel learning. This makes it

possible to study the generalization of overparameterized neural network using more

mature theoretical tools from kernel learning [80, 81].

The expressive power of kernel learning is determined by the RKHS of the kernel.

Many researches have been done to identify the RKHS. Bach [69], Bietti et al. [70] studied

the spectral properties of NTK of a two-layer neural network without bias. Geifman et al.

[71] further studied the NTK with bias and showed that the RKHS of two layer neural

networks contains the same set of functions as RKHS of the Laplacian kernel. Chen

et al. [72] expanded this result to arbitrary layer neural networks and showed that RKHS

of arbitrary layer neural network is equivalent to Laplacian kernel. All these works are

based on neural networks with real weights, and to the best of our knowledge, we are the

first to study the NTK and generalization of binary weight neural networks.

4.3 Preliminary

4.3.1 Neural tangent kernel

It has been found that an overparameterized neural network has many local minima.

Furthermore, most of the local minima are almost as good as the global minima [82].

As a result, in the training process, the model parameters often do not need to move

far away from the initialization point before reaching a local minimum [83, 84, 85]. This

phenomenon is also known as lazy training [86]. This allows one to approximate a neural

network with a model that is nonlinear in its input and linear in its parameters. Using the

connection between feature map and kernel learning, the optimization problem reduces

to kernel optimization problem. More detailed explanation can be found below:

Denote Θ as the collection of all the parameters in a neural network fΘ before an
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iteration, and Θ+ as the parameters after this iteration. Let in denote fixed distribution

in the input space. In this paper, it is a discrete distribution induced by the training

dataset. Using Taylor expansion, for any testing data x̃, let the stepsize be η, the first-

order update rule of gradient descent can be written as (lloss(·) be the differentiable loss

function and the label is omitted)

Θ+ −Θ = ηEx∼in [∇Θloss(fΘ(x))]

= ηEx∼in [∇ΘfΘ(x) loss
′(fΘ(x))]

fΘ+(x′)− fΘ(x
′) = η∇ΘfΘ(x

′) · Ex∼in [∇ΘfΘ(x) loss
′(fΘ(x))]

= ηEx∼in [∇ΘfΘ(x
′) · ∇ΘfΘ(x) loss

′(fΘ(x))]

:= ηEx∼in [K(x, x′) loss′(fΘ(x))] .

This indicates that the learning dynamics of overparameterized neural network is ap-

proximating the kernel learning with the limiting kernel (in the almost surely sense) to

be defined as:

K(x, x′) := lim
width→∞

∇⊤
ΘfΘ(x) · ∇ΘfΘ(x

′).

Here as the width of the neural network tends to infinity, the number of parameters will

also go to infinity. The limiting kernel K is usually referred as the neural tangent kernel

(NTK). As the width of the hidden layers in this neural network tends to infinity, this

kernel convergences to its expectation over Θ [68].
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4.3.2 Exponential kernel

A common class of kernel functions used in machine learning is the exponential kernel,

which is a radial basis function kernel with the general form

K(x, x′) = exp(−(c∥x− x′∥)γ),

where c > 0 and γ ≥ 1 are constants. When γ = 1, this kernel is known as the Laplacian

kernel, and when γ = 2, it is known as the Gaussian kernel.

According to Moore-Aronszajn theorem, each symmetric positive definite kernel uniquely

induces a Reproducing kernel Hilbert space (RKHS). RKHS determines the functions

that can be learned using a kernel. It has been found that the RKHS of NTK in a ReLU

neural network is the same as Laplacian kernel [71, 72], and the empirical performance of

a neural network is close to that of kernelized linear classifiers with exponential kernels

in many datasets [71].

4.3.3 Training neural networks with quantized weights

Among various methods to train a neural network, BinaryConnect (BC) [41] is often

one of the most efficient and accurate method. The key idea is to introduce a real-valued

buffer θ and use it to accumulate the gradients. The weights will be quantized just

before forward and backward propagation, which can benefit from the reduced computing

complexity. The update rule was shown in (3.5)-(3.6).
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4.4 Approximation of binary weight neural network

4.4.1 Notations

In this paper, we use wℓ,ij to denote the binary weights in the ℓ-th layer, θℓ,ij to denote

its real-valued counterpart, and bℓ,i to denote the (real valued) bias. Θ is the collection of

all the real-valued model parameters which will be specified in Section 4.4.2. The number

of neurons in the ℓ-th hidden layer is dℓ, the input to the ℓ-th linear layer is xℓ and the

output is yℓ. d denote the number of input features. Besides, we use x to denote the

input to this neural network, y to denote the output and z to denote the label.

We focus on the mean and variance under the randomness of stochastic rounding.

Denote

µℓ,i := E[xℓ,i|x,Θ], σ2
ℓ,i := Var[xℓ,i|x,Θ],

νℓ,i := E[yℓ,i|x,Θ], ς2i,ℓ := Var[yℓ,i|x,Θ], ȳ := E[y|Θ].

We use σ(x) = max(x, 0) to denote ReLU activation function, and in to denote the

(discrete) distribution of training dataset. Ein[·] := E(x,z)∼in[·] denotes the expectation

over training dataset, or “sample average”. We use bold symbol to denote a collection

of parameters or variables w2 = [w2,j], b2 = [b2,j],ν1 = [ν1,j],θ1 = [θ1,ij], i ∈ [d1], j ∈ [d2].

4.4.2 Problem statement

In this work, we target on stochastic quantization [87], which often yields higher

accuracy empirically compared with deterministic rounding [41]. This also creates a

smooth connection between the binary weights in a neural network and its real-valued

parameters.

Let wℓ,ij = Quantize(θℓ,ij), θℓ,ij ∈ [−1, 1] be the binary weights from stochastic quan-
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tization function, which satisfy Bernoulli distribution:

wℓ,ij =

 +1, with probability pℓ,ij =
θℓ,ij+1

2
,

−1, with probability 1− pℓ,ij.
(4.1)

This relationship leads to E[wℓ,ij|θℓ,ij] = θℓ,ij.

We focus on a ReLU neural network with one hidden layer and two fully connect

layers, which was also studied in Bach [69], Bietti et al. [70] except quantization. Besides,

we add a linear layer (“additional layer”) in front of this neural network to project the

input to an infinite dimension space. We randomly initialize the weights in this layer and

leave it fixed (not trainable) throughout the training process. Furthermore, we quantize

the weights in the first fully connect layer w1,ij and add a real-valued buffer θ1,ij which

determines the distribution of w1,ij as in (4.1), and leave the second layers not quantized.

It is a common practice to leave the last layer not quantized, because this often leads to

better empirical performance. If the second layer is quantized as well, the main result of

this paper will not be changed. This can be easily checked by extending Lemma 4.2 into

the second layer.

Remark 4.1 In many real applications, e.g. computer vision, the dimension of data are

often very large (≈ 103) while they are laying in the lower dimension linear subspace, so
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we can take the raw input in these applications as the output of the additional layer, and

the NN in this case is a two-layer NN where the first layer is quantized.

The set of all the real-valued parameters is Θ = {θℓ1,ij, wℓ2,ij, bℓ,i}. The neural network

can be expressed as

x1,i =
1√
d

d∑
k=1

w0,kixk + b0,i,∀i ∈ [d1]; y1,j =

√
c

d1

d1∑
i=1

w1,ijx1,i + b1,j,∀j ∈ [d2];

x2,j = σ(y1,j),∀j ∈ [d2]; y =
1√
d2

d2∑
j=1

w2,jx2,j + b2.

We follow the typical setting of NTK papers [71] in initializing the parameters except

the quantized parameters. As for the quantized parameters, we only need to specify the

real-valued buffer of the weights in the first layer θ1,ij.

Assumption 4.1 We randomly initialize the weights in the “additional layer” and sec-

ond linear layer independently as w0,ki, w2,j ∼ N (0, 1), and initialize all the biases to

0. The real-valued buffer of the weights are initialized independently identical with zero

mean, variance Var[θ] and bounded in [−1, 1].

Remark 4.2 Our theory applies to any initial distribution of θ1,ij as long as it satisfies

the constraint above. One simple example is the uniform distribution in [−1, 1], which

has variance Var[θ] = 1/3.

4.4.3 Quasi neural network

Given a fixed input and real-value model parameters Θ, under the randomness of

stochastic rounding, the output of this binary weight neural network is a random vari-

able. Furthermore, as the width of the neural network d1 tends to infinity, we define a

parameter sequence {Θd1} and prove that with parameters from this sequence, the output
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of a linear layer tends to Gaussian distribution according to central limit theorem (CLT).

We propose a method to determine the distribution of output and using the model pa-

rameters. Specifically, we give a closed form equation to compute the mean and variance

of output of all the layers µℓ, σℓ, νℓ, ςℓ, and then marginalize over random initialization

of Θ to further simplify this equation. We prove that ςℓ converges to a constant almost

surely using the law of large number (LLN), and simplify the expression by replacing

them with the constant. This allows us to compute µℓ, νℓ using a neural-network-style

function for given Θ. We call this function quasi neural network, which is given below:

x1,i =
1√
d

d∑
k=1

w0,kixk + b0,i,∀i ∈ [d1]; ν1,j =

√
c

d1

d1∑
i=1

θ1,ijx1,j + βb1,i,∀j ∈ [d2];

µ2,j = σ̃(ν1,j),∀j ∈ [d2]; ȳ =
1√
d2

d2∑
j=1

w2,jµ2,j + βb2.

(4.2)

In Section 4.4.3, we study the distribution of the output of each layer in a binary

weight neural network (BWNN) conditioned on the set of real-valued parameter Θ. In

Section 4.4.3, we prove that the conditioned variance of the output of the first linear

layer studied above converges almost surely to a constant which does not depend on

the data (input). This simplifies the expression computed in Section 4.4.3 to the form

of quasi neural network (4.2), and also give a closed-form expression to σ̃(·) in (4.2).

In Section 4.4.3, we prove that conditioned on the set of real-valued parameter, the

expectation of the gradients of BWNN equals the gradient of quasi neural network on

the overparameterization limit. This indicates that the training dynamics of BWNN at

initialization is the same as training the quasi neural network directly. The training

dynamics beyond initialization are discussed in Section 4.4.3. Before jumping to the

proof, we make the following assumptions:

Assumption 4.2 After training the binary weight neural network as in (3.5)-(3.6), all
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the real-valued weights θℓ,ij stay in the range [−1, 1].

Based on this assumption, we can ignore constraints that θℓ,ij ∈ [−1, 1] and the projected

gradient descent reduces to gradient descent. Because of the lazy training property of the

overparameterized neural network, the model parameters θℓ,ij stay close to the initializa-

tion point during the training process, so this assumption can be satisfied by initializing

θℓ,ij with smaller absolute value and/or applying weight decay during training. On the

other hand, a common trick in a quantized neural network is to change the quantization

level gradually during the training process to avoid (or reduce) overflow. With this trick,

Assumption 4.2 are often naturally satisfied, but it introduces the quantization level as

a trainable parameter.

Assumption 4.3 The Euclidean norm of the input is 1:

∥x∥2 = 1,∀x ∈ D ⊆ Rd.

where D denotes the training dataset.

This is a common assumption in studying NTK [69, 70], and can be satisfied by normal-

izing the input data.

Conditioned distribution of the outputs of each layer

First we recognize that as the model parameters are initialized randomly, there are

“bad” initialization that will mess up our analysis. For example, all of θ1,ij are initialized

to 1 (or −1) while they are drawn from a uniform distribution. Fortunately, as the width

d1, d2 grows to infinite, the probability of getting into these “bad” initialization goes to

0. We make this statement formal in the following part.
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Definition 4.1 “Parameter sequence”. Define the parameter sequence, indexed by d1, d2,

as

Θ(d1,d2) =
{
W

(d1,d2)
0 ∈ Rd,d1 , b

(d1,d2)
0 ∈ Rd1 ,θ

(d1,d2)
1 ∈ Rd1,d2 , b

(d1,d2)
1 ∈ Rd2 ,

W
(d1,d2)
2 ∈ Rd2 , b

(d1,d2)
2 ∈ R

}
,

where W0 = {w0,ki}, b0 = {b0,i},θ1 = θ1,ij, b1 = {b1,j},W2 = {w1,j}, the superscripts

are omitted, such that for all d1 ≤ d′1, d2 ≤ d′2, Θ
(d1,d2),Θ(d′1,d

′
2) satisfy

W
(d1,d2)
0 = W

(d′1,d
′
2)

0 [:, 1 : d1], b
(d1,d2)
0 = b

(d′1,d
′
2)

0 [1 : d1], θ
(d1,d2)
1 = θ

(d′1,d
′
2)

1 [1 : d1, 1 : d2],

b
(d1,d2)
1 = b

(d′1,d
′
2)

1 [1 : d2], W
(d1,d2)
2,j = w

(d′1,d
′
2)

2 [1 : d2], b
(d1,d2)
2 = b

(d′1,d
′
2)

2 ,

∀k ∈ [d], i ≤ d1, j ≤ d2.

Remark 4.3 This definition states that for any two terms (sets of parameters) in the

“parameter sequence”, the overlapping parameters are always equal.

Definition 4.2 “Good Initialization sequence”. For any finite d2, we call the set of

parameters sequence defined in Definition 4.1 as a “Good Initialization” {Θ(d1)} ∈ G if it

satisfies:

• ∀k, k′ ∈ [d], lim
d1→∞

1

d1

d1∑
i=1

w0,kiw0,k′i = δk,k′ ,

• ∀k, k′, k′′ ∈ [d], lim
d1→∞

1

d1

d1∑
i=1

|w0,kiw0,k′iw0,k′′i| ≤
√

8

π
,

• ∀k, k′ ∈ [d],∀j ∈ [d2], lim
d1→∞

1

d1

d1∑
i=1

w0,kiw0,k′iθ
2
1,ij = Var[θ]δk,k′, where

δk,k′ =

1 k = k′

0 k ̸= k′.

Here, we omit the superscript (d1, d2) again in the statement for the parameters w’s. d

is the input dimension. d1, d2 are defined in (4.2).
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The following Proposition 4.1 guarantees the “Good initialization sequence” in Defi-

nition 4.2 holds true with probability 1. The proof can be found in Section 4.8.1.

Proposition 4.1 Under the assumption that all the parameters are initialized as in As-

sumption 4.1, for any finite d2, the probability that the sequence defined in Definition 4.1

is a “Good Initialization sequence” is 1:

Pr({Θ(d1,d2), d1 = 1, 2, . . .} ∈ G) = 1.

Lemma 4.2 Given any fixed x, and any fixed “Good Initialization sequence” {Θd1} ∈ G

denoted as Θ in short, for any fixed j, define the random sequence y
(d1)
1,j = fΘd1

(x). on

the limit d1 → ∞, the distribution of y
(d1)
1,j converge to Gaussian distribution with mean

ν1,j and variance ς21,j which can be computed by:

y1,j|Θ→ N (ν1,j, ς
2
1,j), ν1,j =

√
c

d1

d1∑
i=1

θ1,ijx1,i + b1,j, ς21,j =
c

d1

d1∑
i=1

(1− θ21,ij)x
2
1,i

(4.3)

This lemma can be proved by Lyapunov central limit theorem and sum of expectation.

See Section 4.8.1 for the details.

Lemma 4.3 Assume that the input to a ReLU layer y1,j satisfy Gaussian distribution

with mean ν1,j and variance ς21,j

y1,j ∼ N (ν1,j, ς
2
1,j).

Denote

gj = φ

(
νj
ςj

)
, sj = Φ

(
νj
ςj

)
, (4.4)
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where φ(x) denotes standard Gaussian function and Φ(x) denotes its integration:

φ(x) =

√
1

2π
exp

(
−1

2
x2

)
, Φ(x) =

∫ x

−∞
φ(y)dy.

Then the output x2,j has mean µ2,i and variance σ2
2,i, with

µ2,j := E[x2,j] = gjς1,j + sjν1,j,

σ2
2,j := Var[x2,j] = (ς21,j + ν2

1,j)sj + ν1,jσ1,jg1,j − ν2
1,j.

(4.5)

The proof can be found in Section 4.8.1. From Lemma 4.2 we know that on the limit

d1 → ∞, conditioned on Θ and x, for any j, y1,j converge to Gaussian distribution.

From continuous mapping theorem, the distribution of x2,j converge to that shown in

Lemma 4.3 so its mean µ2,j and variance σ2,j converge to that computed in Lemma 4.3.

Equations (4.3) and (4.5) provide a method to calculate the mean and variance of

output conditioned on the input and real-valued model parameters and allow us to pro-

vide a closed-form equation of quasi neural network. We will simplify this equation in

Section 4.4.3.

Convergence of conditioned variance

In this part, we assume that the model parameters are chosen from “Good Initializa-

tion sequence”, which is almost surely on the limit d1 →∞ as is proven in Proposition 4.1,

and study the distribution of ν1,j and ς1,j.

Theorem 4.4 For any fixed “Good Initialization sequence” {Θd1} ∈ G, on the limit

d1 →∞, for any finite d2, ν1,j converges to Gaussian distribution which are independent
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of each other, and ς21,j converges a.s. to

ς̃21 =
c

d
(1− Var[θ]).

With this approximation, we can replace the variance ς1,i in Equation (4.5) with ς̃1

and leave the mean of output in the linear layer as the only variable in the quasi neural

network. Formal proof can be found in Section 4.8.1. Note the propagation function in

the linear layer (the first equation in (4.3)) is also a linear function in x and θ. This

motivates us to compute ȳ using a neural network-like function as is given in (4.2), where

σ̃(·) is

σ̃(ν1,j) = E[σ(y1,j)|ν1,j] = ς̃1ϕ

(
ν1,i
ς̃1

)
+ ν1,jΦ

(
ν1,j
ς̃1

)
. (4.6)

This equation gives a closed-form connection between the mean of output of neural

network ȳ and the real-valued model parameter Θ, and allows up to apply existing tools

for analyzing neural networks with real-valued weight to analysis binary weight neural

network. Its derivative in the sense of Calculus is:

σ̃′(ν1,j) = Φ

(
ν1,j
ς̃1

)
. (4.7)

The proof of derivative can be found in Section 4.8.1.

Gradient of quasi neural network

In this part, we compute the gradients using binary weights as in BinaryConnect

Algorithm, and make sense of the gradient in (4.7) by proving that it is the expectation

of gradients under the randomness of stochastic rounding.

Theorem 4.5 The expectation of gradients to output with respect to weights computed

by sampling the quantized weights equals the gradients of “quasi neural network” defined
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above in (4.2) satisfy

lim
d2→∞

lim
d1→∞

√
d2

(
∂ȳ

∂θ1,ij
− E

[
∂y

∂w1,ij

∣∣∣∣Θ(d1,d2)

])
= 0,

lim
d2→∞

lim
d1→∞

√
d2

(
∂ȳ

∂b1,j
− E

[
∂y

∂b1,j

∣∣∣∣Θ(d1,d2)

])
= 0,

lim
d2→∞

lim
d1→∞

√
d1d2

(
∂ȳ

∂w2,j

− E
[

∂y

∂w2,j

∣∣∣∣Θ(d1,d2)

])
= 0.

Theorem 4.6 For MSE loss, loss(y) = 1
2
(y − z)2, where z is the ground-truth label, the

gradient of the loss converges to

lim
d2→∞

lim
d1→∞

√
d2

(
∂loss(ȳ)

∂θ1,ij
− E

[
∂loss(y)

∂w1,ij

∣∣∣∣Θ(d1,d2)

])
= 0,

lim
d2→∞

lim
d1→∞

√
d2

(
∂loss(ȳ)

∂b1,j
− E

[
∂loss(y)

∂b1,j

∣∣∣∣Θ(d1,d2)

])
= 0,

lim
d2→∞

lim
d1→∞

√
d1d2

(
∂loss(ȳ)

∂w2,j

− E
[
∂loss(y)

∂w2,j

∣∣∣∣Θ(d1,d2)

])
= 0.

In other words, the BinaryConnect algorithm provides an unbiased estimator to the

gradients for the quasi neural network on this limit of overparameterization. The proof

can be found in Section 4.8.1 and Section 4.8.1 respectively.

Theorem 4.4 and Theorem 4.6 conclude that for an infinite wide neural network, the

BinaryConnect algorithm is equivalent to training quasi neural network with stochastic

gradient descent (SGD) directly. Furthermore, this points out the gradient flow of Bi-

naryConnect algorithm and allows us to study this training process with neural tangent

kernel (NTK).

Asymptotics during training

So far we have studied the distribution of output during initialization. To study

the dynamic of binary weight neural network during training, one need to extend these
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results to any parameter during training Θ(t), t ∈ [0, T ]. Fortunately, motivated by [68],

we can prove that as d1, d2 →∞, the model parameters Θ(t) stays asymptotically close

to initialization for any finite T , so-called “lazy training”, so the above results apply to

the entire training process.

Lemma 4.7 For all T such that
∫ T

t=0
∥ȳ(t) − z∥indt stays stochastically bounded, where

∥ · ∥in is defined in Section 4.4.1, as d2 → ∞, d1 → ∞, ∥w2(T ) − w2(0)∥, ∥b1(T ) −

b1(0)∥, ∥θ1(T )−θ1(0)∥F are all stochastically bounded, ∥ν1(t)−ν1(0)∥ and
∫ T

t=0

∥∥∂ν1(t)
∂t

∥∥dt
is stochastically bounded for all x.

The proof can be found in Section 4.8.1. Note that ∥w2∥ = O(
√
d2), ∥θ1∥F = O(

√
d1d2),

this results indicates that as d2 →∞, the varying of the parameter is much smaller than

the initialization, or so-called “lazy training”. Making use of this result, we further get

the follow result:

Lemma 4.8 Under the condition of Lemma 4.7, Lyapunov’s condition holds for all T

so y1,j converges to Gaussian distribution conditioned on the model parameters Θ(T ).

Furthermore, ς1,j(T )→ ς1,t(0), which equals ς̃1 almost surely.

The proof can be found in Section 4.8.1. This result shows that the analysis in

Section 4.4.3 applies to the entire training process, and allows us to study the dynamics

of binary weight neural network using quasi neural network.

4.5 Capacity of Binary Weight Neural Network

As has been found in [68], the dynamics of an overparameterized neural network

trained with SGD is equivalent to kernel gradient descent where the kernel is NTK. As a

result, the effective capacity of a neural network is equivalent to the RKHS of its NTK.
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In the following part, we will study the NTK of binary weight neural network using the

approximation above, and compare it with Gaussian kernel.

4.5.1 NTK of three-layer binary weight neural networks

We consider the NTK binary weight neural network by studying this “quasi neural

network” defined as the limiting kernel

lim
d2→∞

lim
d1→∞

d1,d2∑
i=1,j=1

∂ȳ

∂θ1,ij

∂ȳ′

∂θ1,ij
+

d2∑
j=1

∂ȳ

∂b1,j

∂ȳ′

∂b1,j
+

d2∑
j=1

∂ȳ

∂w2,j

∂ȳ′

∂w2,j

a.s.
=== KBWNN(x, x

′)

(4.8)

where Θ := {w1,ij, b1,j, b2,j} denotes all the trainable parameters. We omitted the terms

related to b2 (which is a constant) in this equation.

First prove that the change of kernel asymptotically converges to 0 during training

process.

Theorem 4.9 Under the condition of Lemma 4.7, K(x, x′)(T ) → K(x, x′)(0) at rate

1/
√
d2 for any x, x′.

The proof can be found in Section 4.8.2. Using Assumption 4.3, we confine the input

on the hypersphere §d−1 = {x ∈ Rd : ∥x∥2 = 1}. One can easily tell that it is positive

definite, so we can apply Mercer’s decomposition [88] to it.

To find the basis and eigenvalues to this kernel, we apply spherical harmonics decom-

position to this kernel, which is common among studying of NTK [69, 70]:

KBWNN(x, x
′) =

∞∑
k=1

uk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′), (4.9)

where d denotes the dimension of x and x′, Yk,j denotes the spherical harmonics of order

k. This suggests that NTK of binary weight neural network and exponential kernel can
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be spanned by the same set of basis function. The key question is the decay rate of uk

with k.

Theorem 4.10 The limit of NTK of a binary weight neural network can be decomposed

using (4.9). If k ≫ d, then

Poly1(k)C
−k ≤ uk ≤ Poly2(k)C

−k. (4.10)

where Poly1(k) and Poly2(k) denote polynomials of k, and C is a constant.

In contrast, Geifman et al. [71] shows that for NTK in the continuous space, it holds

that

C1k
−d ≤ uk ≤ C2k

−d,

with constants C1 and C2. Because its decay rate is slower than that of the binary weight

neural network, its RKHS covers a strict superset of functions [71].

Proof Sketch: We first compute NTK of quasi neural network, which depends on the

distribution of µ1,j. As is shown in Theorem 4.4, µ1,j converge to Gaussian distribution

on the limit of infinite wide neural network. To find the joint distribution of µ1,j and

µ′
1,j given arbitrary two inputs x, x′, we combine the first linear layer in the quasi neural

network with the “additional layer” in front of it (the first two equations in (4.2)). This

allows up to reparameterize µ1,j as

µ1,j = ⟨wj, x⟩,

where wj ∼ N (0, cVar[θ]
d

I) denotes the fused weight. A key component in computing the

NTK has the form

E[σ(µ1)σ(µ
′
1)] = E[σ(⟨w, x⟩)σ′(⟨w, x⟩)] = E∥w∥E[σ(⟨w, x⟩)σ′(⟨w, x⟩)|∥w∥].
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The second equation comes from the law of total expectation. We use 2-norm in this

expression. The inner expectation is equivalent to integration on a sphere, and can be

computed by applying sphere harmonics decomposition to σ(·). The squared norm of the

fused weight ∥w∥2 satisfy Chi-distribution, and we use momentum generating function

to finish computing.

4.5.2 Comparison with Gaussian Kernel

Even if the input to a neural network x is constrained on a unit sphere, the first linear

layer (together with the additional linear layer in front of it) will project it to the entire

Rd space with Gaussian distribution. In order to simulate that, we define a kernel by

randoming the scale of x and x′ beforing taking them into a Gaussian kernel.

KRGauss(x, x
′) = Eκ[KGauss(κx, κx

′)],

where KGauss(x, x
′) = exp

(
−∥x−x′∥2

ξ2

)
is a Gaussian kernel, κ ∼ χd satisfy Chi distribu-

tion with d degrees of freedom. This scaling factor projects a random vector uniformly

distributed on a unit sphere to Gaussian distributed. The corresponding eigenvalue sat-

isfy

A1C
−k ≤ uk ≤ A2C

−k, (4.11)

where A1, A2, C are constants that depend on ξ. The dominated term in both (4.10)

and (4.11) have an exponential decay rate C−k, which suggests the similarity between

NTK of binary weight neural network and Gaussian kernel. In comparison, Bietti et al.

[70], Geifman et al. [71] showed that the eigenvalue of NTK decay at rate k−d, which is

slower that binary weight neural network or Gaussian kernel. Furthermore, Aronszajn’s
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Figure 4.1: Approximation of quasi neural network. (a)(b): before (a) and after (b)
training, histogram of output under fixed model parameter (blue), and fitted with
Gaussian distribution (red). (c)(d): E(y|Θ) computed from quasi neural network
(horizontal axis) and by Monte Carlo (Vertical axis). The red line shows y = x.

inclusion theorem suggests HKBWNN
⊂ HKNN

, where KNN denotes the NTK of real-

valued weight neural network. In other words, the expressive power of binary weight

neural network is weaker than its real valued counterpart on the limit that the width

goes to infinity. Binary weight neural networks are less venerable to noise thanks to

the smaller expressive power at the expense of failing to learn some “high frequency”

components in the target function. This explains that binary weight neural network

often achieve lower training accuracy and smaller generalization gap compared with real

weight neural network.

4.6 Numerical result

4.6.1 Quasi neural network

In this part, we empirically verify the approximation of quasi neural network by

comparing the inference result of quasi neural network with that achieved by Monte Carlo.

The architecture is the same as that mentioned in Section 4.4.2, with 1600 hidden neurons.

We train this neural network on MNIST dataset [89] by directly applyng gradient descent

to the quasi neural network. To reduce overflow, we add weight decay of 0.001 during
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training. Figure 4.1(a)(b) shows the histogram of output under stochastic rounding before

and after training. We arbitrarily choose one input sample from the testing set and get

1000 samples under different stochastic rounding. This result supports our statement

that the distribution of pre-activation (output of linear layer) conditioned on real-valued

model parameters converge to Gaussian distribution. Figure 4.1(c)(d) compares the mean

of output by quasi neural network approximation (horizontal axis) with that computed

using Monte Carlo (vertical axis). These alignments further supports our method of

approximating binary weight neural network with quasi neural network.

4.6.2 Generalization gap

Toy dataset

We compare the performance of the neural network with/without binary weight and

kernel learning using the same set of 90 small scale UCI datasets with less than 5000 data

points as in Geifman et al. [71], Arora et al. [90]. We report the training accuracy and

testing accuracy of both vanilla neural network (NN) and binary weight neural network

(BWNN) in Figure 4.2. To further illustrate the difference, we list the paired T-test result

of neural network (NN) against binary weight neural network (BWNN), and Gaussian

kernel (Gaussian) against Laplace kernel (Laplace) using in Table 4.1. In this table, t-

stats and p-val denotes the t-statistic and two-sided p-value of the paired t-test between

two classifiers, and < and > denotes the percentage of dataset that the first classifier

gets lower or higher testing accuracy or generalization bound (training accuracy - testing

accuracy), respectively.

As can be seen from the results, although the Laplacian kernel gets higher training

accuracy than the Gaussian kernel, its testing accuracy is almost the same as the latter

one. In other words, the former has smaller generalization gap than the latter which can
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Figure 4.2: Accuracy and generalization gap on selected 90 UCI datasets. The lines
show the accuracy metric of a classifier from the lowest to the highest against their
percentiles of datasets.

Table 4.1: Pairwise performance comparison on selected 90 UCI datasets.

Classifier
Testing Training-Testing

t-stats p-val < > t-stats p-val < >
NN-BWNN 0.7471 0.4569 53.33% 41.11% 4.034 0.000 26.67% 67.77%

Laplace-Gaussian 0.4274 0.6701 51.11% 33.33% 3.280 0.001 37.78% 53.33%

also be observed in Table 4.1. Similarly, a neural network gets higher training accuracy

than a binary weight neural network but gets similar testing accuracy.

MNIST-like dataset

We compare the performance of neural networks with binary weights (Binary) with

its counterpart with real value weights (Real). We take the number of training samples as

a parameter by random sampling the training set and use the original test set for testing.

The experiments are repeated 10 times and the mean and standard derivation is shown in

Figure 4.3. In the MNIST dataset, the performance of neural networks with or without

quantization is similar. This is because MNIST [89] is simpler and less vulnerable to

overfitting. On the other hand, the generalization gap with weight quantized is much
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Figure 4.3: Training/testing error rate and loss of neural networks with/without bi-
nary weight. (a) Training and testing error rate. (b) Training and testing loss. (c)
Testing error rate - Training error rate. (d) Testing loss - Training loss.

smaller than without it in FashionMNIST [29] dataset, which matches our prediction.

4.7 Discussion

In this paper, we propose a quasi neural network to approximate the binary weight

neural network. The parameter space of quasi neural network is continuous, and its gra-

dient can be approximated using the BinaryConnect algorithm. We study the expressive

power of the binary weight neural network by studying the RKHS of its NTK and showed

its similarity with the Gaussian kernel. We empirically verify that quantizing the weights

can reduce the generalization gap, similar to Gaussian Kernel versus the Laplacian kernel.

This result can be easily generalized to a neural network with other weight quantization

methods, i.e. using more bits. Yet there are several questions to be answered by future

work:

1. In this work, we only quantize the weights, while much empirical work to quantize

both the weights and the activations has been done. Can we use a similar technique

to study the expressive power of that neural network?
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2. We study the NTK of a two-layer neural network with one additional linear liner

in front of it, and only the weights in the first layer are quantized. It remains to be

answered whether a multi-layer neural network allow similar approximation, and

whether using more layers can increase its expressive power.

4.8 Proofs of technical results

4.8.1 Gaussian approximation in quantized neural network

Proof of Proposition 4.1

Proof: To prove the first statement in Definition 4.2 holds a.s., observe that fixing

k, k′ and taking i as the variable, w0,kiw0,k′i are independent from each other. Further-

more, E[w0,kiw0,k′i] = δk,k′ has identical mean for different i. In addition, since w is

bounded,
∑∞

i=1Var[w0,kiw0,k′i]/i
2 ≤ ∑∞

i=1C/i
2 < ∞. By the strong law of large num-

ber (SLLN) Lemma 4.13, the first statement is proved. The third statement can be

proved similarly, observing that E[w0,kiw0,k′iθ
2
1,ij] = δk,k′Var[θ] and that both w and θ are

bounded (which guarantees
∑∞

i=1 Var[w0,kiw0,k′iθ
2
1,ij]/i

2 <∞).

To prove the second statement in Definition 4.2 holds a.s., since geometric mean is

no larger than cubic mean,

|w0,ki||w0,k′i||w0,k′i| ≤
1

3
(|w0,ki|3 + |w0,k′i|3 + |w0,k′i|3),

Since w0,ki ∼ N (0, 1), the expectation of the right hand side equals
√

8
π
. We apply SLLN

(Lemma 4.13) again to finish the proof.
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Proof of Lemma 4.2

We first compute the conditioned mean and variance ν1,j and ς1,j. Notice that for any

d1, conditioned on any Θ, x1 is deterministic,

ν1,j = Ew1 [y1,j|Θ]

=

√
c

d1

d1∑
i=1

Ew1 [w1,ij]x1,i + βb1,j

=

√
c

d1

d1∑
i=1

θ1,ijx1,i + βb1,j

ς1,j = Varw1 [y1,j|Θ]

= Ew1

[
y21,j
∣∣Θ]− Ew1 [y1,j|Θ]2

=
c

d1

d1∑
i=1

d1∑
i′=1

Ew1 [w1,ijw1,i′j|Θ]x1,ix1,i′ + 2βb1,j

√
c

d1

d1∑
i=1

E [w1,ij|Θ]x1,i

− c

d1

d1∑
i=1

d1∑
i′=1

θ1,ijθ1,i′jx1,ix1,i′ − 2βb1,j

√
c

d1

d1∑
i=1

θ1,ijx1,i

=
c

d1

d1∑
i=1

d1∑
i′=1

(E[w1,ijw1,i′j|Θ]− θ1,ijθ1,i′j)x
2
1,i

=
c

d1

d1∑
i=1

(E[w2
1,ij|Θ]− θ21,ij)x

2
1,i

=
c

d1

d1∑
i=1

(1− θ21,ij)x
2
1,i.

The second line is because Ew1 [w1,ijw1,i′j|Θ] = Ew1 [w1,ij|Θ]E[w1,i′j|Θ] = θ1,ijθ1,i′j when

i ̸= i′.

Next, we need to prove that for any “good initialization sequence” {Θd1} ∈ G, {y(d1)1,i }

converge to Gaussian distribution conditioned on Θ ∈ G by verifying Lyapunov’s condi-
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tion. Note that for any j ∈ [d2],

y1,j =

√
c

d1

d1∑
i=1

w1,ijx1,i + b1,j

Define Xi = w1,ijx1,i. As mentioned above, its mean and variance (conditioned on Θ) is

Ew1 [Xi|Θ] = θ1,ijx1,i, Varw1 [Xi|Θ] = Ew1 [X
2
i |Θ]− Ew1 [Xi|Θ]2 = (1− θ21,ij)x

2
1,i

Since Θ ∈ G, ∀j ∈ [d2] for some finite d2,

lim
d1→∞

1

d1

d1∑
i=1

Varw1 [Xi|Θ] = lim
d1→∞

1

d1

d1∑
i=1

(1− θ21,ij)x
2
1,i

= lim
d1→∞

1

dd1

d1∑
i=1

(1− θ21,ij)
( d∑

k=1

w0,kixk

)2
= lim

d1→∞

1

dd1

d1∑
i=1

d∑
k,k′=1

(1− θ21,ij)w0,kiw0,k′ixkxk′

= lim
d1→∞

d∑
k,k′=1

(1− Var[θ])δk,k′xkxk′ = 1− Var[θ]

(4.12)

The fourth equality comes from the definition of G, and the fifth equality is because
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∥x∥2 = 1. The third order absolute momentum can be bounded by

lim
d1→∞

1

d1

d1∑
i=1

Ew1

[
|Xi − Ew1 [Xi|Θ]|3

∣∣Θ]
= lim

d1→∞

1

d1

d1∑
i=1

Ew1

[
|(w1,ij − θ1,ij)x1,i|3

∣∣Θ]
≤ lim

d1→∞

1

d1

d1∑
i=1

Ew1

[
8|x1,i|3

∣∣Θ]
= lim

d1→∞

8

d1

d1∑
i=1

∣∣∣ d∑
k=1

w0,kixk

∣∣∣3
≤ lim

d1→∞

8

d1

d1∑
i=1

(
d∑

k=1

|w0,kixk|
)3

= lim
d1→∞

8

d1

d1∑
i=1

d∑
k,k′,k′′=1

|w0,kiw0,k′iw0,k′′i||xkxk′xk′′ |

≤ 8

√
8

π
d3

(4.13)

The last inequality comes from the definition of “Good Initialization”: for all Θ ∈ G,

lim
d1→∞

1

d1

d1∑
i=1

w0,kiw0,k′iw0,k′i ≤
√

8

π
,

and because ∥x∥2 = 1, |xk| ≤ 1 for all k ∈ [d]. Note that using the strong law of large

number, one can prove that the third order absolute momentum converges almost surely

to a constant that doesn’t depend on d. On the other hand, we are proving a upper

bound for all Θ ∈ G which is stronger than almost surely converge.
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lim
d1→∞

∑d1
i=1 Ew1 [|Xi − Ew1 [Xi|Θ]|3|Θ]

(
∑d1

i=1Varw1 [Xi|Θ])3/2

= lim
d1→∞

1
d1

∑d1
i=1 Ew1 [|Xi − Ew1 [Xi|Θ]|3|Θ]

d
1/2
1 ( 1

d1

∑d1
i=1 Varw1 [Xi|Θ])3/2

=
limd1→∞

1
d1

∑d1
i=1 Ew1 [|Xi − Ew1 [Xi|Θ]|3|Θ]

limd1→∞ d
1/2
1 ( 1

d1

∑d1
i=1Varw1 [Xi|Θ])3/2

≤
8
√

8
π
d3

limd1→∞ d
1/2
1 (1− Var[θ])

= 0

This proves that Lyapunov’s condition for all “Good Initialization”, so conditioned on

Θ ∈ G, y1,j converges to Gaussian distribution.

Proof of Lemma 4.3

To compute Ew1 [x2,j|Θ] and Varw1 [x2,j|Θ], we first compute Ew1 [σ(y1,j)|Θ] and Ew1 [σ(y1,j)
2|Θ].

Recall σ(x) = x1(x ≥ 0),

Ew1 [σ(y1,j)|Θ] =

∫ ∞

0

x
1√

2πς1,j
exp

(
−1

2

(x− ν1,j)
2

ς21,j

)
dx

=

∫ ∞

−
ν1,j
ς1,j

(ς1,jy + ν1,j)
1√
2π

exp

(
−1

2
y2
)
dy

= ς1,j

∫ ∞

−
ν1,j
ς1,j

1√
2π

y exp

(
−1

2
y2
)
dy + µℓ,i

∫ ∞

−
ν1,j
ς1,j

1√
2π

exp

(
−1

2
y2
)
dy,
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Ew1 [σ(y1,j)
2|Θ] =

∫ ∞

0

x2 1√
2πς1,j

exp

(
−1

2

(x− ν1,j)
2

ς21,j

)
dx

=

∫ ∞

−
ν1,j
ς1,j

(ς1,jy + ν1,j)
2 1√

2π
exp

(
−1

2
y2
)
dy

= ς21,j

∫ ∞

−
ν1,j
ς1,j

y2
1√
2π

exp

(
−1

2
ŷ2
)
dy + 2ς1,jν1,j

∫ ∞

−
ν1,j
ς1,j

y
1√
2π

exp

(
−1

2
y2
)
dy

+ ν2
1,j

∫ ∞

−
ν1,j
ς1,j

1√
2π

exp

(
−1

2
y2
)
dy.

We only need to compute

∫ ∞

−
ν1,j
ς1,j

1√
2π

yα exp

(
−1

2
y2
)
dy.

For α = 0, 1, 2. When α = 0, this is integration to Gaussian function, and it is known

that there’s no analytically function to express that. For sack of simplicity, define it as

s1,j

s1,j =

∫ ∞

ν1,j
ς1,j

1√
2π

exp

(
−1

2
y2
)
dy := Φ(

ν1,j
ς1,j

).

When α = 1, this integration can be simply solved by change of the variable and we

denote it as g1,j:

g1,j =

∫ ∞

−
ν1,j
ς1,j

y
1√
2π

exp

(
−1

2
y2
)
dy =

√
1

2π
exp

(
−1

2

(
ν1,j
ς1,j

)2
)
.
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When α = 2, we can do integration by parts and express it using s1,j and g1,j:

∫ ∞

−
ν1,j
ς1,j

y2
1√
2π

exp

(
−1

2
y2
)
dy

= −
∫ ∞

−
ν1,j
ς1,j

y
1√
2π

exp

(
−1

2
y2
)
d
1

2
y2

=

∫ ∞

−
ν1,j
ς1,j

1√
2π

exp

(
−1

2
y2
)
dy − ν1,j

ς1,j

1√
2π

exp

(
−1

2

(
ν1,j
ς1,j

)2
)

= s1,j −
ν1,j
ς1,j

g1,j.

Using the definition of mean and variance,

µ2,j = Ew1 [σ(y1,j)|Θ], σ2
2,i = Ew1 [σ(y1,j)

2|Θ]− Ew1 [σ(y1,j)|Θ]2,

we can come to the result.

Proof of Theorem 4.4

In this part, we take Θ = {w0, θ1, w2, b0, b1, b2} as the random variables and condi-

tioned mean and variance derived above µ1, σ1, ν1, ς1 as functions to Θ. From Eq. (4.3),

as d1 → ∞, v1 tend to iid Gaussian processes, and there covariance converges almost

surely to its expectation. We then focus on computing the expectation of covariance.
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For any j ̸= j′, we take the expectation over random initialization of Θ:

EΘ[ν1,jν1,j′ ]

= EΘ

[
c

d1

d1∑
i=1

d1∑
i′=1

θ1,ijθ1,i′j′x1,ix1,i′ + β

√
c

d1

d1∑
i=1

(θ1,ijx1,ibj + θ1,ij′x1,ibj′) + β2bjbj′

]

=
c

d1

d1∑
i=1

d1∑
i′=1

EΘ[θ1,ij]EΘ[θ1,i′j′ ]EΘ[x1,ix1,i′ ] + β2EΘ[bjbj′ ]

+

√
c

d1
β

d1∑
i=1

(EΘ[θ1,ij]EΘ[x1,i]EΘ[bj] + EΘ[θ1,ij′ ]EΘ[x1,i]EΘ[bj′ ])

= 0

(4.14)

which indicates that they are independent.

Computation of ς1,j was already finished implicitly in Section 4.8.1. We write it

explicitly here. From (4.3), on the limit d1 →∞,

ς21,j =
c

d1

d1∑
i=1

(1− θ21,ij)x
2
1,i

=
c

dd1

d1∑
i=1

(1− θ21,ij)
d∑

k,k′=1

w0,kiw0,k′ixkxk′

=
c

d

d∑
k,k′=1

xkxk′
1

d1

d1∑
i=1

w0,kiw0,k′i(1− θ21,ij)

=
c

d

d∑
k,k′=1

xkxk′δk,k′(1− Var[θ])

=
c

d
(1− Var[θ])∥x∥22

=
c

d
(1− Var[θ])

The fourth line comes from the definition of G.
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Derivative of activation function in quasi neural network

Let

σ̃(x) = ς̃1ϕ

(
x

ς̃

)
+ xΦ

(
x

ς̃

)
,

Its derivative is

σ̃′(x) = φ′
(
x

ς̃

)
+ Φ

(
x

ς̃

)
+

x

ς̃
Φ′
(
x

ς̃

)
= −x

ς̃
φ

(
x

ς̃

)
+ Φ

(
x

ς̃

)
+

x

ς̃
φ

(
x

ς̃

)
= Φ

(
x

ς̃

)
The second line is because

Φ′(x) = φ(x),

φ′(x) =
d

dx

√
1

2π
exp

(
−1

2
x2

)
= −x

√
1

2π
exp

(
−1

2
x2

)
= −xφ(x).

Proof of Theorem 4.5

To make the proof more general, we make ς1,j a parameter of the activation function

in quasi neural network as σ̃(·; ς1,j). To get the derivative with respect to θ1,ij, we first

get the derivative with respect to ν1,j.

∂ȳ

∂ν1,j
=

∂ȳ

∂µ2,j

∂µ2,j

∂ν1,j
=

√
1

d2
w2,jσ̃

′(ν1,j; ς1,j)
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then apply chain rule:

∂ȳ

∂w2,j

=

√
c

d2
µ2,j, (4.15)

∂ȳ

∂b1,j
=

∂ȳ

∂ν1,j

∂ν1,j
∂b1,j

=

√
c

d2
βw2,jσ̃

′(ν1,j; ς1,j), (4.16)

∂ȳ

∂θ1,ij
=

∂ȳ

∂ν1,j

∂ν1,j
∂θ1,ij

=

√
c

d1d2
w2,jx1,iσ̃

′(ν1,j; ς1,j). (4.17)

On the other hand, let’s first write down the gradient with respect to weights wij in

quantized neural network and take their expectation conditioned on Θ:

Ew1

[
∂y

∂w2,j

∣∣∣∣Θ(d1,d2)

]
=

√
c

d2
Ew1

[
x2,j

∣∣Θ(d1,d2)
]
, (4.18)

Ew1

[
∂y

∂b2,j

∣∣∣∣Θ(d1,d2)

]
= Ew1

[
∂ȳ

∂y1,j

∂y1,j
∂b2,j

∣∣∣∣Θ] =√ c

d2
βw2,jEw1

[
σ′(y1,j)

∣∣Θ(d1,d2)
]
, (4.19)

Ew1

[
∂y

∂w1,ij

∣∣∣∣Θ(d1,d2)

]
= Ew1

[
∂y

∂y1,j

∂y1,j
∂w1,ij

∣∣∣∣Θ(d1,d2)

]
=

√
c

d1d2
w2,jx1,iEw1

[
σ′(y1,j)

∣∣Θ(d1,d2)
]
,

(4.20)

By definition, µ2,j = limd1→∞ Ew1 [x2,j|Θ(d1,d2)]. On the other hand, from (4.6), one

can tell using continuous mapping theorem that

σ̃′(ν1,j; ς1,j) = Φ

(
ν1,j
ς1,j

)
= lim

d1→∞
P [y1,j ≥ 0] = lim

d1→∞
Ew1

[
σ′(y1,j)

∣∣Θ(d1,d2)
]
,

Taking them into (4.15)-(4.20) finishes the proof.

Proof of Theorem 4.6

Observe that conditioned on Θ, y1,j depends only on {w1,ij, i ∈ [d1]}, and that

{w1,ij, i ∈ [d1]} ∩ {w1,ij′ , i ∈ [d1]} = ∅ for j ̸= j′. Because of that, y1,j are indepen-

dent of each other. Similarly, x2,j are independent of each other conditioned on Θ. For
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MSE loss,

loss(y) =
1

2
(y − z)2,

dl(y)

dy
= y − z,

According to the chain rule

∂loss(ȳ)

∂θ
=

∂loss(ȳ)

∂ȳ

∂ȳ

∂θ
= (ȳ − z)

∂ȳ

∂θ
, (4.21)

for any θ ∈ {θ1,ij, b1,j, w2,j}, which leads to

∂loss(ȳ)

∂w2,j

=

√
c

d2
(ȳ − z)µ2,j, (4.22)

∂loss(ȳ)

∂b1,j
=

∂ȳ

∂ν1,j

∂ν1,j
∂b1,j

=

√
c

d2
βw2,j(ȳ − z)σ̃′(ν1,j; ς1,j), (4.23)

∂loss(ȳ)

∂θ1,ij
=

∂ȳ

∂ν1,j

∂ν1,j
∂θ1,ij

=

√
c

d1d2
w2,jx1,i(ȳ − z)σ̃′(ν1,j; ς1,j). (4.24)

On the other hand, in the original binary weight neural network, according to the

chain rule,

Ew1

[
∂loss(y)

∂w2,j

∣∣∣∣Θ(d1,d2)

]
=

√
c

d2
Ew1

[
(y − z)x2,j

∣∣Θ(d1,d2)
]
, (4.25)

Ew1

[
∂loss(y)

∂b1,j

∣∣∣∣Θ(d1,d2)

]
=

√
c

d2
βw2,jEw1

[
(y − z)σ′(y1,j)

∣∣Θ(d1,d2)
]
, (4.26)

Ew1

[
∂loss(y)

∂w1,ij

∣∣∣∣Θ(d1,d2)

]
=

√
c

d1d2
w2,jx1,iEw1

[
(y − z)σ′(y1,j)

∣∣Θ(d1,d2)
]
, (4.27)

Note that y is not independent form x2,j or σ′(y1,j), which is the main challenge of the

proof. To deal with this problem, we bound the difference between (4.22)-(4.24) and
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(4.25)-(4.27), which requires bounding their covariance.

Ew1

[
x2,jy|Θ(d1,d2)

]
=

√
c

d2
Ew1

[
x2,j

d2∑
j=1

w2,jx2,j

∣∣∣∣∣Θ(d1,d2)

]

=

√
c

d2

(
Ew1

[
x2
2,jw2,j

∣∣Θ(d1,d2)
]
+
∑
j′ ̸=j

Ew1

[
x2,jx2,j′w2,j′

∣∣Θ(d1,d2)
])

lim
d1→∞

Ew1

[
x2,jy|Θ(d1,d2)

]
=

√
c

d2

(
(µ2

2,j + σ2
2,j)w2,j +

∑
j′ ̸=j

µ2,jµ2,j′w2,j′

)

=

√
c

d2

(
σ2
2,jw2,j +

d2∑
j′=1

µ2,jµ2,j′w2,j′

)
(4.28)

Notice that by definition

√
c

d2

d2∑
j′=1

µ2,jµ2,j′w2,j′ = Ew1

[
x2,j

∣∣∣Θ(d1,d2)
]
Ew1

[
y
∣∣∣Θ(d1,d2)

]

The second term equals Ew1 [x2,j|Θ]Ew1 [y|Θ] and the first term converges to 0 when

d2 →∞. Taking it into (4.22) and (4.25) finishes the proof of the first equation.
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Similarly,

Ew1

[
σ′(y1,j)y

∣∣∣Θ(d1,d2)
]

= Ew1

[√
c

d2
σ′(y1,j)

d2∑
j=1

w2,jσ(y1,j)

∣∣∣∣∣Θ(d1,d2)

]

=

√
c

d2

(
Ew1

[
σ(y1,j)σ

′(y1,j)w2,j

∣∣Θ(d1,d2)
]

+
∑
j′ ̸=j

Ew1

[
σ(y1,j′)σ

′(y1,j)w2,j′
∣∣Θ(d1,d2)

])

lim
d1→∞

Ew1

[
σ′(y1,j)y

∣∣∣Θ(d1,d2)
]

=

√
c

d2

(
Ew1

[
σ(y1,j)w2,j

∣∣Θ(d1,d2)
]
w2,j +

∑
j′ ̸=j

Ew1 [σ
′(y1,j)|Θ(d1,d2)]µ2,j′w2,j′

)
,

=

√
c

d2

(
(1− Ew1 [σ

′(y1,j)|Θ])µ2,jw2,j +

d2∑
j′=1

Ew1 [σ
′(y1,j)|Θ]µ2,j′w2,j′

)

(4.29)

Notice that by definition

√
c

d2

d2∑
j′=1

µ2,j′w2,j′ = lim
d1→∞

E
[
y
∣∣∣Θ(d1,d2)

]

and the first term converges to 0 when d2 → ∞. Taking it into (4.23)(4.24)(4.26)(4.27)

finishes the proof.

Proof of Lemma 4.7

In this part, we denote ȧ := ∂a
∂t

for a ∈ {wℓ, θℓ, bℓ}, and express each time-depent

variable as a function of time t. We define an inner product under the distribution of

training dataset

⟨a, b⟩in = Ein[a(x)b(x)],
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and the corresponding norm

∥a∥in =
√
⟨a,a⟩in =

√
Ein[a(x)2].

If a(x) is a vector, ∥a∥in :=
√
Ein[∥a(x)∥2]. Note this inner product and norm define a

Hilbert space (not to be confused with the RKHS induced by a kernel), so by Cauchy-

Schwarz inequality,

|⟨a, b⟩in| ≤ ∥a∥in∥b∥in,∀a, b.

As is shown in 4.4.3, on the limit d1,→ ∞, the dynamics of training this neural

network using gradient descent can be written as:

ẇ2,j(t) =

√
c

d2
Ein[(ȳ(t)− z)µ2,j(t)]

ḃ1,j(t) =

√
c

d2
Ein[βw2,j(t)(ȳ(t)− z)σ̃′(ν1,j(t), ς1,j(t))],

θ̇1,ij(t) =

√
c

d1d2
Ein[w2,j(t)x1,i(ȳ(t)− z)σ̃′(ν1,j(t); ς1,j(t))]

where dot denotes the derivative with respect to t. Note the activation function

σ̃(·; ς1,j(t)) depends on ς1,j, which makes it time dependent. One can further write down

the dynamics of ν1,j(t) as

ν̇1,j(t) =

√
1

d1

d1∑
i=1

θ̇1,ij(t)x1,i(t) + ḃ1,j(t)
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Rewrite these two differential equations in matrix form:

ẇ2(t) =

√
c

d2
Ein[(ȳ(t)− z)µ2(t)]

ḃ1(t) = β

√
c

d2
Ein[(ȳ(t)− z)(σ̃′(ν1(t)) ◦w2(t))],

θ̇1(t) =

√
c

d1d2
Ein

[
(ȳ(t)− z)x1 ⊗

(
σ̃′(ν1(t)) ◦w2(t)

)]
,

ν̇1(t) =

√
1

d1
θ̇1x1 + ḃ1

where ◦ denotes elementwise product and ⊗ denotes outer product. Here we slightly

abuse the notation σ̃(·), which represents elementwise operation when applied to a vector.

Their norm are bounded by

∂

∂t
∥w2(t)−w2(0)∥ ≤

√
c

d2
Ein[(ȳ(t)− z)∥µ2(t)∥] =

√
c

d2
⟨ȳ(t)− z,µ2(t)⟩in

≤
√

c

d2
∥ȳ(t)− z∥in∥µ2(t)∥in ≤

√
c

d2
∥ȳ(t)− z∥in∥ν1(t)∥in

(4.30)

∂

∂t
∥b1(t)− b1(0)∥ ≤ β

√
c

d2
Ein[(ȳ(t)− z)∥σ̃′(ν1(t)) ◦w2(t)∥]

≤ β

√
c

d2
Ein[(ȳ(t)− z)∥w2(t)∥] = β

√
c

d2
∥ȳ(t)− z∥in∥w2(t)∥,

(4.31)

∂

∂t
∥θ1(t)− θ1(0)∥F ≤

√
c

d1d2
Ein

[
(ȳ(t)− z)∥x1 ⊗

(
σ̃′(ν1(t)) ◦w2(t)

)
∥F
]

≤
√

c

d1d2
Ein

[
(ȳ(t)− z)∥x1∥∥w2(t)∥

]
≤
√

c

d1d2
∥ȳ(t)− z∥in∥x1∥in∥w2(t)∥

=

√
c

d2
∥ȳ(t)− z∥in∥w2(t)∥,

(4.32)
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∀x1,
∂

∂t
∥ν1(t)− ν1(0)∥ ≤

∫ T

t=0

∥∥∥∂ν1(t)

∂t

∥∥∥dt
≤
√

1

d1

∂

∂t
∥θ1(t)− θ1(0)∥op∥x1∥+

∂

∂t
∥b1(t)− b1(0)∥

≤
√

c

d21d2
∥ȳ(t)− z∥in∥w2(t)∥∥x1∥in∥x1∥

+ β

√
c

d2
∥ȳ(t)− z∥in∥w2(t)∥

= (1 + β)

√
c

d2
∥ȳ(t)− z∥in∥w2(t)∥,

∂

∂t
∥ν1(t)− ν1(0)∥in ≤ (1 + β)

√
c

d2
∥ȳ(t)− z∥in∥w2(t)∥.

(4.33)

Here we make use of the fact that ϕ̃′(x) ≤ 1, ϕ̃(x) ≤ x regardless of the value of

ς1,j(t), that limd1→∞ ∥x1∥in/
√
d1 = 1 as long as Θ ∈ G, and that w0 is not updated

during training. In the last equation, we make use of θ̇1 = ∂
∂t
(θ1(t) − θ1(0)), ḃ1 =

∂
∂t
(b1(t)− b1(0)).

Define A(t) =
√

c
d2

√
1 + β(∥w2(t) − w2(0)∥ + ∥w2(0)∥) +

√
c
d2
(∥ν1(t) − ν1(0)∥in +

∥ν1(0)∥in), then

Ȧ(t) ≤
√

1 + β

√
c

d2
∥ȳ(t)− z∥in∥ν1(t)∥in + (1 + β)

√
c

d2
∥ȳ(t)− z∥in∥w2(t)∥

≤
√

1 + βA(t)

Observe that A(0) is stochastically bounded. Using Grönwall’s Lemma, for any finite

T :

A(T ) ≤ A(0) exp
(∫ T

t=0

√
1 + βdt

)
= A(0) exp(

√
1 + βT )

so A(T ) is stochastically bounded for all finite T as d2 →∞. Furthermore,

√
c

d2
∥w2(T )∥ ≤

√
c

d2
(∥w2(T )−w2(0)∥+ ∥w2(0)∥)
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which is also stochastically bounded. Integrating (4.30)-(4.33) from 0 to T finishes the

proof.

Proof of Lemma 4.8

From (4.3), it’s easy to get the dynamics of ς1:

∂ς21,j(t)

∂t
= −2c

d1

d1∑
i=1

θ1,ij(t)θ̇1,ij(t)x
2
1,i

|ς21,j(T )− ς21,j(0)| ≤
2c

d1

d1∑
i=1

x2
1,i

∫ T

t=0

|θ1,ij(t)||θ̇1,ij(t)|dt

≤ 2c

d1

d1∑
i=1

x2
1,i

∫ T

t=0

|θ̇1,ij(t)|dt

≤ 2c

d1

√
c

d1d2

d1∑
i=1

x2
1,i

∫ T

t=0

Ein

∣∣w2,j(t)x1,i(ȳ(t)− z)σ̃′(ν1,j(t); ς1,j(t))
∣∣dt

≤ 2c

d1

√
c

d1d2

d1∑
i=1

x2
1,i

∫ T

t=0

|w2,j(t)|Ein

∣∣x1,i(ȳ(t)− z)
∣∣dt

≤ 2c

d1

√
c

d1d2

d1∑
i=1

x2
1,i

∫ T

t=0

|w2,j(t)|∥x1,i∥in∥ȳ(t)− z∥indt

≤ 2c

d
3/2
1

d1∑
i=1

x2
1,i∥x1,i∥in

∫ T

t=0

C(t)∥ȳ(t)− z∥indt

≤ 2c

d
3/2
1

d1∑
i=1

x2
1,i∥x1,i∥in max

t∈[0,T ]
C(t)

∫ T

t=0

∥ȳ(t)− z∥indt a.s.

Here we assume that
√

c
d2
∥w2(t)∥ is stochastically bounded by C(t). Since C(t) is finite

for all t ∈ [0, T ], it’s easy to check the term after max operator is stochastically bounded.

The remaining task is to bound term before max operator. From standard Gaussian

process analysis, x1,i satisfy Gaussian distribution. From the law of large number (LLN),
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as d1 →∞,

1

d1

d1∑
i=1

x2
1,i∥x1,i∥in = E[x2

1,i∥x1,i∥in]

almost surely, where the expectation is taken over w1, and this limit is also bounded.

Because of that, as d1, d2 → ∞, the difference |ς21,j(T ) − ς21,j(0)| converges to 0 at rate

1√
d2
.

Notice that the proof of Lyapunov’s condition (4.13) doesn’t depend on time T from

the third line. Since ς1,j(T ) stochastically converges to ς1,j(0) for all finite T , Lyapunov’s

condition holds for all T thus x2,j always converges to Gaussian distribution conditioned

on model parameter.

4.8.2 NTK of neural networks with quantized weights

Spherical harmonics

This subsection briefly reviews the relevant concepts and properties of spherical har-

monics. Most part of this subsection comes from Bach [69] Section D.1. and Bietti et al.

[70] Section C.1.

According to Mercer’s theorem, any positive definite kernel can be decomposed as

K(x, x′) =
∑
i

λiΦ(x)Φ(x
′),

where Φ(·) is called the feature map. Furthermore, any zonal kernel on the unit sphere,

i.e., K(x, x′) = K(xTx′) for any x, x′ ∈ Rd, ∥x∥2 = ∥x′∥2 = 1, including exponential

kernels and NTK, can be decomposed using spherical harmonics (4.9):

K(x, x′) =
∞∑
k=1

λk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′).
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Legendre polynomial. We have the additional formula

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′) = N(d, k)Pk(x

Tx′),

where

N(d, k) =
(2k + d− 2)(k + d− 3)!

k!(d− 2)!
.

The polynomial Pk is the k-th Legendre polynomial in d dimension, also known as Gegen-

bauer polynomials:

Pk(t) =

(
−1

2

)k Γ
(
d−1
2

)
Γ
(
k + d−1

2

)(1− t2)(3−d)/2

(
d

dt

)k

(1− t2)k+(d−3)/2.

It is even (resp. odd) when k is odd (reps. even). Furthermore, they have the orthogonal

property ∫ 1

−1

Pk(t)Pj(t)(1− t2)(d−3)/2dt = δij
wd−1

wd−2

1

N(d, k)
,

where

wd−1 =
2πd−2

Γ(d/2)

denotes the surface of sphere §d−1 in d dimension, and this leads to the integration

property ∫
Pj(⟨w, x⟩)Pk(⟨w, x⟩)dτ(w) =

δjk
N(p, k)

Pk(⟨x, y⟩)

for any x, y ∈ §d−1. τ(w) is the uniform measure on the sphere.

NTK of quasi neural network

We start the proof of the Theorem 4.10 by the following lemmas:
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Lemma 4.11 The NTK of a binary weight neural network can be simplified as

K(x, x′) =
( c
d
⟨x, x′⟩+ β2

)
Σ(0) + Σ(1),

Σ(0) = E [σ̃′ (µ) σ̃′ (µ′)] , Σ(1) = E [σ̃ (µ) σ̃ (µ′)] ,

(4.34)

where [µ, µ′] ∼ N (0,Σ),

Σ = E[x1,ix
′
1,i] =

c

d
Var[θ]

 1 xTx′

xTx′ 1


are the pre-activation of the second layer.

Proof:

K(x, x′) =

d1,d2∑
i=1,j=1

∂ȳ

∂θ1,ij

∂ȳ′

∂θ1,ij
+

d2∑
j=1

∂ȳ

∂b1,j

∂ȳ′

∂b1,j
+

d2∑
j=1

∂ȳ

∂w2,j

∂ȳ′

∂w2,j

=
c

d1d2

d1,d2∑
i=1,j=1

x1,ix
′
1,iw

2
2,jσ̃

′(ν1,j)σ̃
′
2(ν

′
1,j)

+
β2

d2

d2∑
j=1

σ̃′(ν1,j)σ̃
′(ν ′

1,j) +
1

d2

d2∑
j=1

σ̃(ν1,j)σ̃(ν
′
1,j)

=
c

d1d2

d1∑
i=1

x1,ix
′
1,i

d2∑
j=1

w2
2,jσ̃

′(ν1,j)σ̃
′(ν ′

1,j)

+
β2

d2

d2∑
j=1

w2
2,jσ̃

′(ν1,j)σ̃
′(ν ′

1,j) +
1

d2

d2∑
j=1

σ̃(ν1,j)σ̃(ν
′
1,j)

= (
c

d
⟨x, x′⟩+ β2)E[σ̃′(ν)σ̃′(ν ′)] + E[σ̃(ν)σ̃(ν ′)] a.s.

where (ν, ν ′) has the same distribution as (ν2,j, ν
′
2,j) for any j. We make use of the

fact E[w2
2,j] = 1, and from central limit theorem, x1,i, x

′
1,i and µ1,i, µ

′
1,i converge to joint
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Gaussian distribution for any fixed x, x′ as d1 →∞

E[x1,ix
′
1,i] =

1

d
E[

d∑
k=1

wkixk

d∑
k′=1

wk′ix
′
k′ ]

=
1

d
E[

d∑
k=1

w2
kixkx

′
k]

=
1

d
⟨x, x′⟩

Similarly,

E[µ2
1,i] =

c

d1

d1∑
i=1

E[θ21,ij]E[x2
1,j] =

c

d
Var[θ]

E[µ1,iµ
′
1,i] =

c

d1

d1∑
i=1

E[θ21,ij]E[x1,jx
′
1,j] =

c

d
Var[θ]⟨x, x′⟩

Proof of Theorem 4.9

Remind that as is proved in Theorem 4.8, ς1,j(T )→ ς1,t(0) for any T satisfying a mild

condition, and ς1,t(0) is nonzero almost surely. Making use the fact that σ̃(·; ς) is contin-

uous with respect to ς, and its first and second order derivative is stochastically bounded,

the change of kernel K induced by ς1,j converges to 0 as d1, d2 →∞. This reduces to this

quasi neural network to a standard neural network with activation function σ̃(·), which

is twice differentiable and has bounded second order derivative. From Theorem 2 in [68],

the kernel during training converges to the one during initialization. For the ease of the
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readers, we restate the proof below. On the limit d2 →∞, d1 →∞,

K(x, x′)(t)−K(x, x′)(0)

=
c⟨x, x′⟩+ β2

d2

d2∑
j=1

(
w2

2,j(t)σ̃
′(ν1,j(t))σ̃

′(ν ′
1,j(t))− w2

2,j(0)σ̃
′(ν1,j(0))σ̃

′(ν ′
1,j(0))

)
+

1

d2

d2∑
j=1

(
σ̃(ν1,j(t))σ̃(ν

′
1,j(t))− σ̃(ν1,j(0))σ̃(ν

′
1,j(0))

)
=

c⟨x, x′⟩+ β2

d2

(
d2∑
j=1

(
w2

2,j(t)− w2
2,j(0)

)
σ̃′(ν1,j(t))σ̃

′(ν ′
1,j(t))

+

d2∑
j=1

w2
2,j(0)

(
σ̃′(ν1,j(t))− σ̃′(ν1,j(0))

)
σ̃′(ν ′

1,j(t))

+

d2∑
j=1

w2
2,j(0)σ̃

′(ν1,j(0))
(
σ̃′(ν ′

1,j(t))− σ̃′(ν ′
1,j(0))

))

+
1

d2

d2∑
j=1

σ̃(ν1,j(t))
(
σ̃(ν ′

1,j(t))σ̃(ν
′
1,j(0))

)
+

1

d2

d2∑
j=1

σ̃(ν ′
1,j(0))

(
σ̃(ν1,j(t))− σ̃(ν1,j(0))

)

|K(x, x′)(t)−K(x, x′)(0)|

≤
∣∣∣∣∣c⟨x, x′⟩+ β2

d2

∣∣∣∣∣
(

d2∑
j=1

w2
2,j(0)σ̃

′(ν ′
1,j(t))

∣∣σ̃′(ν1,j(t))− σ̃′(ν1,j(0))
∣∣

+

d2∑
j=1

w2
2,j(0)σ̃

′(ν1,j(0))
∣∣σ̃′(ν ′

1,j(t))− σ̃′(ν ′
1,j(0))

∣∣
+

d2∑
j=1

|w2,j(t)− w2,j(0)||w2,j(t) + w2,j(0)||σ̃′(ν1,j(t))σ̃
′(ν ′

1,j(t))|
)

+
1

d2

d2∑
j=1

σ̃(ν1,j(t))
∣∣σ̃(ν ′

1,j(t))σ̃(ν
′
1,j(0))

∣∣
+

1

d2

d2∑
j=1

σ̃(ν ′
1,j(0))

∣∣σ̃(ν1,j(t))− σ̃(ν1,j(0))
∣∣
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From Theorem 4.8, and observing that σ̃′(x), σ̃′′(x) are bounded by constants, one can

verify that each summation term is stochastically bounded by
√
d2, so as d2 → ∞,

K(t)−K(0) converges to 0 at rate
√
d2.

Spherical harmonics decomposition to activation function

Following Bach [69], we start by studying the decomposition of action in quasi neural

network (4.6) and its gradients (4.7): for arbitrary fixed c > 0, −1 ≤ t ≤ 1, we can

decompose equation (4.6) and (4.7) as

σ̃(ct) =
∞∑
k=0

λkN(d, k)Pk(t), (4.35)

σ̃′(ct) =
∞∑
k=0

λ′
kN(d, k)Pk(t), (4.36)

where Pk is the k-th Legendre polynomial in dimension d.

Lemma 4.12 The decomposition of activation function in the quasi neural network

(4.35) satisfies

1. λk = 0 if k is odd,

2. λk > 0 if k is even,

3. λk ≍ Poly(k)(C/
√
k)−k as k → ∞ when k is even, where Poly(k) denotes a poly-

nomial of k, and C is a constant.

Its gradient (4.36) satisfies

1. λ′
k = 0 if k is even,

2. λ′
k > 0 if k is odd,
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3. λ′
k ≍ Poly(k)(C/

√
k)−k as k →∞ when k is odd, where Poly(k) denotes a polyno-

mial of k, and C is a constant.

Proof:

Let’s start with the derivative of activation function in quasi neural network:

σ̃′(t) = Φ(ĉt),−1 ≤ t ≤ 1,

where ĉ is a constant. We introduce the auxiliary parameters x,w ∈ Rd s.t. ∥x∥2 =

∥w∥2 = 1 and let t = wTx By Cauchy–Schwarz inequality, −1 ≤ wTx ≤ 1. Following

[69], we have the following decomposition to σ̃′(wTx):

σ̃′(wTx) =
∞∑
k=1

λ′
kN(d, k)Pk(w

Tx),

where N(d, k) and Pk(·) are defined in section 4.8.2, λ′
k can be computed by

λ′
k =

wd−1

wd

∫ 1

−1

σ̃′(t)Pk(t)(1− t2)(d−2)/2dt

=

(
−1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

∫ 1

−1

σ̃′(t)

(
d

dt

)k

(1− t2)k+(d−3)/2dt.

To solve this itegration, we can apply Taylor decomposition to σ̃′(·):

σ̃′(ct) =
1

2
+

1√
2π

∞∑
n=0

(−1)nĉ2n+1

2nn!(2n+ 1)
t2n+1. (4.37)

We will study the following polynomial integration first

∫ 1

−1

tα
(

d

dt

)k

(1− t2)k+(d−3)/2dt.

When α < k, this integration equals 0 as Pk is orthogonal to all polynomials of degree less
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than k. If (α− k) mod 2 ̸= 0, this integration is 0 because the function to be integrated

is an odd function. For α ≥ k and k ≡ α mod 2 (k is odd), using successive integration

by parts,

∫ 1

−1

tα
(

d

dt

)k

(1− t2)k+(d−3)/2dt = (−1)k α!

(α− k)!

∫ 1

−1

tα−k(1− t2)k+(d−3)/2dt

= (−1)k α!

(α− k)!

∫ π/2

−π/2

sinα−k(x) cos2k+(d−2)(x)dx

= (−1)kCd
α!(2k + d− 3)!!

(α− k)!!(α + k + d− 2)!!
,

(4.38)

where Cd is a constant that depends only on d mod 2.

Combining (4.37) and (4.38), we have λk = 0 when k is even and k ̸= 0. When k is

odd,

λ′
k =

(
−1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
α=k:2

ĉα(−1)(α−1)/2 (α− 2)!!(2k + d− 3)!!

(α− k)!!(α + k + d− 2)!!
.

Following [69, 71] we take d as a constant and take k to infinity. Let β = (α−k)/2 ≥ 0

we have

λ′
k = (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
β=0

(−1)β ĉ2β+k(2β + k − 2)!!(2k + d− 3)!!

(2β)!!(2β + 2k + d− 2)!!

≍ (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
β=0

(−1)β ĉ2β+kΓ(β + k/2)Γ(k + (d− 1)/2)

β!Γ(β + k + d/2)2β−k/2

:= (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
β=0

g(β, k).

where ≍ means the radio converge to a constant which doesn’t depend on k or β as
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k →∞. Here we introduced the function g(β, k) for simplification, and it satisfies

g(β, k)

g(β − 1, k)
= − ĉ2(2β + k − 3)

2β(2β + 2k + d− 2)
,

which indicates that g(β, k) decays at factorial rate when β > ĉ2/2. If k ≫ ĉ2/2, β ≪ k

regime dominates the summation.

Using Stirling’s approximation, one can easily prove

Γ(k + x) ≍ Γ(k)kx

When k ≫ d,

g(β, k) =
(−1)β ĉ2β+kΓ(β + k/2)Γ(k + (d− 1)/2)

β!Γ(β + k + d/2)2β−k/2

≍
(
−1

4

)β

ĉ2β+kΓ(k + (d− 1)/2)
2k/2Γ(k/2)

Γ(k)kd/2β!

= ĉkΓ(k + (d− 1)/2)
2k/2Γ(k/2)

Γ(k)kd/2

(
− ĉ2

4

)β
1

β!

This splits g(β, k) into two parts: the first part depends only on k and the rest part

only depends on β. The summation of the second part over β yields

∞∑
β=0

(
− ĉ2

4

)β
1

β!
= exp(− ĉ2

4
),

Using Stirling’s approximation

γ(x+ 1) ≍
√
2πx(x/e)x,
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this leads to the expression for λk:

λ′
k ≍ (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)
ĉkΓ(k + (d− 1)/2)

2k/2Γ(k/2)

Γ(k)kd/2
exp(− ĉ2

4
)

≍ (−1)(k+1)/2

(
ĉ

2

)k
2k/2Γ(k/2)

Γ(k)kd/2
exp(− ĉ2

4
)

≍ (−1)(k+1)/2

(
ĉ

2

√
e

k

)k

k−d/2 exp(− ĉ2

4
)

Similarly, the activation function of quasi neural network has the Tayler expansion

σ̃(x) = ςℓφ (ĉt) + xΦ (ĉt)

=
t

2
+

∞∑
n=0

(−1)nĉ2n+1

2n+1(n+ 1)!(2n+ 1)
t2n+2.

So λk = 0 when k is odd, and when k is even:

λk = (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
β=0

(−1)β ĉ2β+k(2β + k − 2)!!(2k + d− 3)!!

(2β)!!(2β + 2k + d− 2)!!

Furthermore, when k ≫ d,

λk ≍ (−1)k/2k− d
2

(
ĉ

2

√
e

k

)k

exp

(
− ĉ2

4

)
,

Computing covariance matrix

In this part, we prove Theorem 4.10 by computing Σ(0) and Σ(1).

Theorem 4.10 NTK of a binary weight neural network can be decomposed using
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equation (4.9). If k ≫ d, then

Poly1(k)(C)−k ≤ uk ≤ Poly2(k)(C)−k

where Poly1(k) and Poly2(k) denote polynomials of k, and C is a constant.

We make use of the results in Section 4.8.2, and remind that λk, λ
′
k depends on ĉ, we

make this explicit as λk(ĉ), λ
′
k(ĉ). We introduce an auxiliary parameter w ∼ N (0, I), and

denote c̃ =
√

cVar[Θ]
d ς̃2

=
√

Var[θ]
1−Var[θ]

, w̃ = w/∥w∥2, then the decomposition of kernel (4.9)

can be computed by

Σ(1) = Eθ [σ̃ (µ) σ̃ (µ)]

= Ew∼N (0,I) [σ̃(c̃⟨w, x⟩)σ̃(c̃⟨w, x′⟩)]

= E∥w∥

∫
σ̃(c̃⟨w̃, x⟩)σ̃(c̃⟨w̃, x′⟩)dτ(w̃)

= E∥w∥

∞∑
k=0

(λk(c̃∥w∥))2N(p, k)Pk(⟨x, x′⟩),

Σ(0) = Eθ [σ̃
′ (µ) σ̃′ (µ)]

= E∥w∥

∞∑
k=0

(λ′
k(c̃∥w∥))2N(p, k)Pk(⟨x, x′⟩).

First compute Σ(0). According to Lemma 16 in Bietti et al. [70],

u0,k = Ew∼N (0,I)[λ
′
k
2
] = E∥w∥[λ

′
k
2
].

Remind that

λ′
k(c̃∥w∥) ≍ (−1)k/2k−d/2

(
c̃∥w∥
2

√
e

k

)k

exp

(
− c̃2∥w∥2

4

)
.
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u0,k = E∥w∥(λ
′
k(c̃∥w∥))2

≍ E∥w∥k
−d

(
c̃2∥w∥2e

4k

)k

exp

(
− c̃2∥w∥2

2

)
= k−d (k/e)−k Ec̃∥w∥

(
c̃2∥w∥2

4

)k

exp

(
− c̃2∥w∥2

2

)
Because w ∼ N (0, 1), ∥w∥22 satisfy Chi-square distribution, and its momentum gen-

erating function is

MX(t) = E[exp(t∥w∥2)] = (1− 2t)−d/2

It’s k-th order derivative is

M
(k)
X = E[∥w∥2k exp(t∥w∥2)] = (d+ 2k − 2)!!

(d− 2)!!
(1− 2t)−

d
2
−k

Let t = −c̃2/2, we get

E
[
∥w∥2k exp

(
− c̃2∥w∥2

2

)]
=

(d+ 2k − 2)!!

(1 + c̃2)d/2+k(d− 2)!!

≍ 2k
Γ(k + d/2)

Γ(d/2)
(1 + c̃2)−k−d/2

≍
(

2k

(1 + c̃2)e

)d/2+k
√

1

k

so

u0,k ≍
(
c̃

2

)2k

k−d (k/e)−k

(
2k

(1 + c̃2)e

)d/2+k

≍ k−(d−1)/2

(
c̃2

2(1 + c̃2)

)k

when k is odd, and 0 when k is even.
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Similarly,

u1,k ≍
(
c̃

2

)2k

k−d (k/e)−k

(
2k

(1 + c̃2)e

)d/2+k

≍ k−(d−1)/2

(
c̃2

2(1 + c̃2)

)k

when k is even, and 0 when k is odd.

Finally, using the recurrence relation

tPk(t) =
k

2k + d− 3
Pk−1(t) +

k + d− 3

2k + d− 3
Pk+1(t)

taking them into (4.34) finishes the proof.

Gaussian kernel

KRGauss(x, x
′) = E[KGauss(κx, κx

′)]

= E
[
exp

(
−κ2∥x− x′∥

ξ2

)]
= E

[
exp

(
−∥x− x′∥

(ξ/κ)2

)]
This indicates that this kernel can be decomposed using spherical harmonics (4.9), and
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when k ≫ d, the coefficient

uk = E

[
exp

(
−2κ2

ξ2

)(
ξ

κ

)d−2

Ik+d/2−1

(
2κ2

ξ2

)
Γ

(
d

2

)]

≍ E

[
exp

(
−2κ2

ξ2

)
Γ

(
d

2

) ∞∑
j=0

1

j!Γ(k + d/2 + j)

(
κ2

ξ2

)k+2j
]

=
∞∑
j=0

Γ(d/2)

j!Γ(k + d/2 + j)
E

[(
κ2

ξ2

)k+2j

exp

(
−2κ2

ξ2

)]

=
∞∑
j=0

Γ(d/2)

j!Γ(k + d/2 + j)

Γ(k + 2j + d/2)

Γ(d/2)

(
2

ξ2

)k+2j (
1

1 + 4/ξ2

)(k+2j+d/2)

≍
(

2

ξ2

)k (
1 +

4

ξ2

)(−k−d/2) ∞∑
j=0

1

j!

(
k(2/ξ2)2

(1 + 4/ξ2)2

)j

≍
(

2

4 + ξ2

)k

exp

((
2

4 + ξ2

)2

k

)
.

Note that 2
4+ξ2

exp

((
2

4+ξ2

)2)
is always smaller than 1 so uk is always decreasing with

k.

4.8.3 Additional Lemmas

Lemma 4.13 (Kolmogorov’s Strong Law of Large Number (SLLN)) Suppose X1, X2, . . .

are independent variables such that E[Xn] = µ and
∑

nVar[Xn]/n
2 <∞. Then,

∑n
i=1 Xi

n
→

µ a.e..

Lemma 4.14 (Continuous mapping theorem) Let {Xn}, X be random elements de-

fined on a metric space S. Suppose a function g : S → S ′ (where S ′ is another metric
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Table 4.2: More results in UCI dataset experiment.

Classifier
Training Testing

Accuracy P90 P95 Accuracy P90 P95
NN 96.19±8.03% 96.67% 91.11% 77.62±16.10% 73.33% 56.67%

BWNN 93.55±10.39% 84.44% 76.67% 77.83±16.57% 77.78% 54.44%
Laplacian 93.52±9.65% 85.56% 76.67% 81.62±14.72% 97.78% 91.11%
Gaussian 91.08±10.63% 76.67% 58.89% 81.40±14.85% 95.56% 87.78%

space) has the set of discontinuity points Dg such that Pr[X ∈ Dg] = 0. Then

Xn
d→ X ⇒ g (Xn)

d→ g(X)

Xn
p→ X ⇒ g (Xn)

p→ g(X)

Xn
a.s.→ X ⇒ g (Xn)

a.s.→ g(X)

(4.39)

4.9 Additional information about numerical result

4.9.1 Toy dataset

In neural networks (NN) experiment, we used three layers with the first layer fixed.

The number of hidden neural is 512. In neural network with binary weights (BWNN)

experiment, the setup is the same as NN except the second layer is Binary. We used

BinaryConnect method with stochastic rounding. We used gradient descent with learn-

ing rate searched from 10−3, 10−2, 10−1. For Laplacian kernel and Gaussian kernel, we

searched kernel bandwidth from 2−2µ to 22µ by power of 2, and µ is the medium of

pairwise distance. The SVM cost value parameter is from 10−2 to 104 by power of 2.

More results are listed in Table 4.2. Accuracy are shown in the format of mean ±

std. P90 and P95 denotes the percentage of dataset that a model achieves at least 90%

and 95% of the highest accuracy, respectively.
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4.9.2 MNIST-like dataset

Similar to the toy dataset experiment, we used three layer neural networks with the

first layer fixed, and only quantize the second layer. The number of neurons in the hidden

layer is 2048. The batchsize if 100 and ADAM optimizer with learning rate 10−3 is used.
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Chapter 5

Finite Overparameterization: Local

adaptivity of Weight Decayed DNNs

5.1 Introduction

The theory based on NTK discussed in the last section can explain why neural net-

works generalize despite overparameterization, yet it fails to explain why neural networks

outperform traditional machine learning methods including kernel methods. To solve this

problem, in this paper, we study DNNs in nonparametric regression problems, aiming to

separate it from other methods from the prospective of adaptivity.

Nonparametric regression is a classical branch of statistical theory and methods with

more than half a century of associated literatures [91, 92, 93, 94, 95, 96, 97]. Nonpara-

metric regression addresses the fundamental problem:

• Let yi = f(xi) + Noise for i = 1, ..., n. How can we estimate a function f using

data points (x1, y1), ..., (xn, yn) in conjunction with the knowledge that f belongs to a

This work has been published as K. Zhang and Y.-X. Wang, Deep learning meets nonparametric
regression: Are weight-decayed dnns locally adaptive?, arXiv preprint arXiv:2204.09664 (2022).
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E[y|x] = f(x)
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E[y|x] = f(x)
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Can Weight Decayed ReLU DNN estimate such functions with
heterogeneous smoothness optimally (using noisy observations)?

Figure 5.1: Illustration of a function with heterogeneous smoothness and the problem
of locally adaptive nonparametric regression.

function class F?

Function class F typically imposes only weak regularity assumptions such as smoothness,

which makes nonparametric regression widely applicable to real-life applications under

weak assumptions.

Local adaptivity. We say a nonparametric regression technique is locally adaptive if

it can cater to local differences in smoothness, hence allowing more accurate estimation

of functions with varying smoothness and abrupt changes. A subset of nonparametric

regression techniques were shown to have the property of local adaptivity [98] in both

theory and practice. These include wavelet smoothing [94], locally adaptive regression

splines [LARS, 98], trend filtering [99, 100] and adaptive local polynomials [101, 102].

In light of such a distinction, it is natural to consider the following question: Are NNs

locally adaptive, i.e., optimal in learning functions with heterogeneous smoothness?

This is a timely question to ask, partly because the bulk of recent theory of NN

leverages its asymptotic Reproducing Kernel Hilbert Space (RKHS) in the overparame-

terized regime [68, 103, 104]. RKHS-based approaches, e.g., kernel ridge regression with

any fixed kernels are suboptimal in estimating functions with heterogeneous smoothness

[105]. Therefore, existing deep learning theory based on RKHS does not satisfactorily

explain the advantages of neural networks over kernel methods.

We build upon the recent work of Suzuki [106] and Parhi et al. [107] who provided

encouraging first answers to the question above. Specifically, Parhi et al. [107, Theorem
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8] showed that a two-layer truncated power function activated neural network with a

non-standard regularization is equivalent to the LARS. This connection implies that

such NNs achieve the minimax rate for the (high order) bounded variation (BV) classes.

A detailed discussion is provided in Section 5.8.1. Suzuki [106] showed that multilayer

ReLU DNNs can achieve minimax rate for the Besov class, but requires the artificially

imposed sparsity-level of the DNN weights to be calibrated according to parameters of

the Besov class, thus is quite difficult to implement in practice.

Oono et al. [108], Liu et al. [109] replaced the sparse neural network with Resnet-

style CNN and achieved the same rate, but they similarly require carefully choosing the

number of parameters for each nonparametric class. We show that ℓ2 regularization

suffices for mildly overparameterized DNNs to achieve the optimal “local adaptive” rates

for many nonparametric classes at the same time.

Parallel neural networks. We restrict our attention on a special network architec-

ture called parallel neural network [110, 111] which learns an ensemble of subnetworks

— each being a multilayer ReLU DNNs. Parallel NNs have been shown to be more

well-behaved both theoretically [110, 112, 113, 111, 114] and empirically [115, 116]. On

the other hand, many successful NN architectures such as SqueezeNet, ResNext and

Inception (see [111] and the references therein) use the idea similar to a parallel NN.

Weight decay, also known as square ℓ2 regularization, is one of the most popular

regularization techniques for preventing overfitting in DNNs. It is called “weight decay”

because each iteration of the gradient descent (or SGD) shrinks the parameter towards

0 multiplicatively. Many tricks in deep learning, including early stopping [117], quanti-

zation [73], and dropout [118] behaves like ℓ2 regularization. Thus even though we focus

on the exact minimizer of the regularized objective, it may explain the behavior of SGD

in practice.

Summary of results. Our main contributions are:
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Table 5.1: Comparison with the results in the literature
# layers Activation Function

space
Minimax
rate

Remark

Parhi et al.
[107, 119]

2 truncated
power

BVm Yes Non-standard activa-
tion and regularization
(when m > 1).

Schmidt-
Hieber [120]

≥ 3 ReLU Hölder Up to a log
factor

With sparsity con-
straint.

Suzuki [106] ≥ 3 ReLU Besov &
m-Besov

Up to a log
factor

With sparsity con-
straint.

Ours ≥ 3 ReLU Besov &
BV

Up to no(1)

factor
Requires only ℓ2 regu-
larization.

1. We prove that the (standard) ℓ2 regularization in training an L-layer parallel ReLU-

activated neural network is equivalent to a sparse ℓp penalty term (where p = 2/L)

on the linear coefficients of a learned representation (Proposition 5.5).

2. We show that the estimation error of ℓ2 regularized parallel NN can be close to

the minimax rate for estimating functions in Besov space. Notably, the method

can adapt to different smoothness parameter, which is not the case for many other

methods.

3. We find that deeper models achieve closer to the optimal error rate. This result

helps explain why deep neural networks can achieve better performance than shal-

low ones empirically.

Besides, we have the following technical contributions which could be of separate

interest:

• We provide a way to bound the complexity of an overparameterized neural net-

work. Specifically, we bound the metric entropy of a parallel neural network in

Theorem 5.6, and the bound does not depend on the number of subnetworks.

• We propose a method to handle unconstrained function subspace when bounding

the estimation error as in Equation (5.6).
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The above results separate parallel NNs with any linear methods such as kernel ridge

regression. To the best of our knowledge, we are the first to demonstrate that standard

techniques (ℓ2 regularization and ReLU activation) suffice for DNNs in achieving the op-

timal rates for estimating BV and Besov functions. The comparison with previous works

is shown in Table 5.1. More discussion about related works are shown in Section 5.2.

5.2 Related works

NN and kernel methods. Jacot et al. [68] draws the connection between neural

networks and kernel methods. However, it has been found that neural networks often

outperform any kernel method, especially when the learning rate is relatively large [121].

A series of work tried to distinguish NN from kernel methods by providing examples of

function spaces that NN provably outperform kernel methods [122, 123]. However, these

papers did not consider the local adaptivity of nerual networks, which provides a more

systematic explanation.

NN and splines. Besides Parhi et al. [107] which we discussed earlier, Parhi

et al. [124, 119] also leveraged the connections between NNs and splines. Parhi et al.

[124] focused on characterizing the variational form of multi-layer NN. Parhi et al. [119]

showed that two-layer ReLU activated NN achieves minimax rate for a BV class of order

1 but did not cover multilayer NNs nor BV class with order > 1, which is our focus.

Weight-decay regularization with sparsity-inducing penalties. The connec-

tion between weight-decay regularization with sparsity-inducing penalties in two-layer

NNs is folklore and used by Neyshabur et al. [125], Savarese et al. [126], Ongie et al.

[127], Ergen et al. [128, 114], Parhi et al. [107, 119], Pilanci et al. [129]. The key un-

derlying technique — an application of the AM-GM inequality (which we used in this

paper as well) — can be traced back to Srebro et al. [130] (see a recent exposition by
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Tibshirani [131]). Tibshirani [131] also generalized the result to multi-layered NNs, but

with a simple (element-wise) connections. Besides, Ergen et al. [132] proved that training

a two-layer convolution neural network (CNN) with weight decay induces sparsity, and

points to a potential extension to these works including our work.

Finally, it was brought to our attention that while Savarese et al. [126] mainly consider

two-layer NNs, a set of results about L-layer parallel NNs was presented in Appendix

C of their paper, which essentially contains same arguments we used for proving the

equivalence to an ℓ2/L regularized optimization problem in Proposition 5.5. The difference

is they applied the insight to understand the interpolation regime while we focused on

analyzing MSE in the noisy case.

Proposition 5.5, is the Savarese et al. [126] showed that a parallel networks of depth

L have an inductive bias for the L2/L sparse model, and explicit weight decay causes the

solutions of these networks to have a sparse last layer with at most n nonzero weights.

Resnet-type convolution neural networks. A recent series of work [108, 109]

proves that an arbitrary parallel neural network can be approximated by a resnet-type

convolution neural networks. These works do not require the model to be sparse, thus

are easier to train, yet they still require the architecture (the width and depth of each

residual block, the number of residual blocks) to be tuned based on the dataset, and the

estimation error analysis is based on the number of parameters. Besides, the number of

residual block need to increase with n, making the entire too deep to train in practice.

Approximation and estimation. The approximation-theoretic and estimation-

theoretic research for neural network has a long history too [133, 134, 135, 120, 106].

Most existing work considered the Holder, Sobolev spaces and their extensions, which

contain only homogeneously smooth functions and cannot demonstrate the advantage of

NNs over kernels. The exceptions including Suzuki [106], Oono et al. [108], Liu et al.

[109] which, as we discussed earlier, requires modifications to NN architecture for each
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Table 5.2: Symbols used in this paper
symbol Meaning
a/a/A scalars / vectors / matrices. [a, b] {x ∈ R : a ≤ x ≤ b}
Bα

p,q Besov space. [n] {x ∈ N : 1 ≤ x ≤ n}.
| · |Bα

p,q
Besov quasi-norm . ∥ · ∥F Frobenius norm.

∥ · ∥Bα
p,q

Besov norm. ∥ · ∥p ℓp-norm.

Mm(·) mth order Cardinal B-spline
bases.

d Dimension of input.

Mm,k,s(·) mth order Cardinal B-spline
basis

M # subnetworks in a paral-
lel NN.

function of resolution k at L # layers in a (parallel)
NN.

position s. w Width of a subnetwork.
σ(·) ReLU activation function. n # samples.

W
(ℓ)
j , b

(ℓ)
j Weight and bias in the ℓ-th

layer in the j-th subnetwork.
R,Z,N Set of real numbers, inte-

gers, and nonnegative in-
tegers.

class. In contrast, we require tuning only the standard weight decay parameter. Most

importantly, in all previously works, the estimation error of the model (eg. the covering

number) depends on the number of nonzero parameters in the model, while our work

provides a bound that depends on the norm of the weights instead of the number of

subnetworks.

5.3 Preliminary

5.3.1 Notation and Problem Setup.

We denote regular font letters as scalars, bold lower case letters as vectors and bold

upper case letters as matrices. a ≲ b means a ≤ Cb for some constant C that does not

depend on a or b, and a ≂ b denotes a ≲ b and b ≲ a. See Table 5.2 for the full list of

symbols used.

Let f0 be the target function to be estimated. The training dataset is Dn :=

{(xi, yi), yi = f0(xi) + ϵi, i ∈ [n]}, where xi are fixed and ϵi are zero-mean, inde-
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pendent Gaussian noises with variance σ2. In the following discussion, we assume

xi ∈ [0, 1]d, f0(xi) ∈ [−1, 1],∀i.

We will be comparing estimators under the mean square error (MSE), defined as

MSE(f̂) := EDn

1
n

∑n
i=1(f̂(xi) − f0(xi))

2. The optimal worst-case MSE is described by

R(F) := minf̂ maxf0∈F MSE(f̂). We say that f̂ is optimal if MSE(f̂) ≲ R(F). The

empirical (square error) loss is defined as L̂(f̂) := 1
n

∑n
i=1(f̂(xi)−yi)2. The corresponding

population loss is L(f̂) := E[ 1
n

∑n
i=1(f̂(xi) − y′i)

2|f̂ ] where y′i are new data points. It is

clear that E[L(f̂)] = MSE[f̂ ] + σ2.

5.3.2 Besov Spaces and Bound Variation Space

Besov space

Definition 5.1 Modulus of smoothness: For a function f ∈ Lp(Ω) for some 1 ≤ p ≤ ∞,

the r-th modulus of smoothness is defined by

wr,p(f, t) = sup
h∈Rd:∥h∥2≤t

∥∆r
h(f)∥p,

∆r
h(f) :=


r∑

j=0

(rj)(−1)r−jf(x+ jh), if x ∈ Ω, x+ rh ∈ Ω,

0, otherwise.

Definition 5.2 Besov space: For 1 ≤ p, q ≤ ∞, α > 0, r := ⌈α⌉+ 1, define

|f |Bα
p,q

=


(∫ ∞

t=0

(t−αwr,p(f, t))
q dt

t

) 1
q
, q <∞

sup
t>0

t−αwr,p(f, t), q =∞,

104



Local adaptivity of Weight Decayed DNNs Chapter 5

and define the norm of Besov space as:

∥f∥Bα
p,q

= ∥f∥p + |f |Bα
p,q
.

A function f is in the Besov space Bα
p,q if ∥f∥Bα

p,q
is finite.

Here α ≥ 0 determines the smoothness of functions, 1 ≤ p ≤ ∞ determines the

averaging (quasi-)norm over locations, 1 ≤ q ≤ ∞ determines the averaging (quasi-

)norm over scale which plays a relatively minor role. Smaller p is more forgiving to

inhomogeneity and loosely speaking, when the function domain is bounded, smaller p

induces a larger function space. On the other hand, it is easy to see from definition

that Bα
p,q ⊂ Bα

p,q′ , if q < q′. Without loss of generalizability, in the following discussion

we will only focus on Bα
p,∞. When p = 1, the Besov space allows higher inhomogeneity,

and it is more general than the Sobolev or Hölder space. Note that the Besov space

for 0 < p, q < 1 is also defined, but in this case it is a quasi-Banach space instead of a

Banach space and will not be covered in this paper.

Functions in Besov space can be decomposed using B-spline basis functions. Any

function f in Besov space Bα
p,q, α > d/p can be decomposed using B-spline of order

m,m > α: let x ∈ Rd,

f(x) =
∞∑
k=0

∑
s∈J(k)

ck,s(f)Mm,k,s(x) (5.1)

where J(k) := {2−ks : s ∈ [−m, 2k + m]d ⊂ Zd}, Mm,k,s(x) := Mm(2
k(x − s)), and

Mk(x) =
∏d

i=1Mk(xi) is the cardinal B-spline basis function which can be expressed as
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a polynomial:

Mm(x) =
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)
(x− j)m+

= ((m+ 1)/2)m
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)( x− j

(m+ 1)/2

)m
+
,

(5.2)

Furthermore, the norm of Besov space is equivalent to the sequence norm:

∥{ck,s}∥bαp,q :=
( ∞∑

k=0

(2(α−d/p)k∥{ck,s(f)}s∥p)q
)1/q

≂ ∥f∥Bα
p,q
.

See e.g. Dũng [136, Theorem 2.2] for the proof.

The Besov space is closely connected to other function spaces including the Hölder

space (Cα) and the Sobolev space (Wα
p ). Specifically, if the domain of the functions is

d-dimensional [106, 137],

• ∀α ∈ N, Bα
p,1 ⊂ Wα

p ⊂ Bα
p,∞, and Bα

2,2 = Wα
2 .

• For 0 < α <∞ and α ∈ N , Cα = Bα
∞,∞.

• If α > d/p, Bα
p,q ⊂ C0.

Bounded variation (BV) space

is a more interpretable class of functions with spatially heterogeneous smoothness

[94]. It is defined through the total variation (TV) of a function.

Definition 5.3 Total Variation (TV): The total variation (TV) of a function f on an

interval [a, b] is defined as

TV (f) = sup
P

nP−1∑
i=1

|f(xi+1)− f(xi)|
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where the P is taken among all the partitions of the interval [a, b].

In many applications, functions with stronger smoothness conditions are needed,

which can be measured by high order total variation.

Definition 5.4 High order total variation: the m-th order total variation is the total

variation of the (m− 1)-th order derivative

TV (m)(f) = TV (f (m−1))

Definition 5.5 Bounded variation (BV): The m-th order bounded variation class is the

set of functions whose total variation (TV) is bounded.

BV (m) := {f : TV (f (m)) <∞}.

Bounded variation class is tightly connected to Besov classes. Specifically [138]:

Bm+1
1,1 ⊂ BV (m) ⊂ Bm+1

1,∞ (5.3)

This allows the results derived for the Besov space to be easily applied to BV space.

Other Function Spaces

Definition 5.6 Hölder space: let m ∈ N, the m-th order Holder class is defined as

Cm =

{
f : max

|a|=k

|Daf(x)−Daf(z)|
∥x− z∥2

<∞, ∀x, z ∈ Ω

}

where Da denotes the weak derivative.
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(a) Parallel NN with ℓ2 regularization
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(b) Sparse Regression with Learned Represen-
tation

Figure 5.2: Parallel neural network and the equivalent sparse regression model we
discovered.

Note that fraction order of Hölder space can also be defined. For simplicity, we will

not cover that case in this paper.

Definition 5.7 Sobolev space: let m ∈ N , 1 ≤ p ≤ ∞, the Sobolev norm is defined as

∥f∥Wm
p

:=

∑
|a|≤m

∥Daf∥pp

1/p

,

the Sobolev space is the set of functions with finite Sobolev norm:

Wm
p := {f : ∥f∥Wm

p
<∞}.

Minimax MSE

It is well known that minimax rate for Besov and 1D BV classes are O(n− 2α
2α+d ) and

O(n−(2m+2)/(2m+3)) respectively . The minimax rate for linear estimators in 1D BV classes

is known to be O(n−(2m+1)/(2m+2)) [98, 94].
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5.4 Main Results: Parallel ReLU DNNs

Consider a parallel neural network containing M multi layer perceptrons (MLP) with

ReLU activation functions called subnetworks. Each subnetwork has width w and depth

L. The input is fed to all the subnetworks, and the output of the parallel NN is the sum-

mation of the output of each subnetwork. The architecture of a parallel neural network

is shown in Figure 5.2a. This parallel neural network is equivalent to a vanilla neural

network with block diagonal weights in all but the first and the last layers (Figure 5.2(c)).

Let W
(ℓ)
j and b

(ℓ)
j denote the weight and bias in the ℓ-th layer in the j-th subnetwork

respectively. Training this model with ℓ2 regularization returns:

argmin
{W(ℓ)

j ,b
(ℓ)
j }

L̂(f) + λ
M∑
j=1

L∑
ℓ=1

∥∥W(ℓ)
j

∥∥2
F
, (5.4)

where f(x) =
∑M

j=1 fk(x) denotes the parallel neural network, fj(·) denotes the j-th

subnetwork, and λ > 0 is a fixed scaling factor. We choose not to regularize the bias

terms b
(ℓ)
j to provide a cleaner equivalent model (Proposition 5.5). If the bias terms

are regularized, the result will be similar. Besides, we ignore the computation issue and

focus on the global optimal solution to this problem. In practice, in deep neural network,

the solution obtained using gradient descent-style methods are often close to the global

optimal solution [65].

Theorem 5.1 For any fixed α − d/p > 1, q ≥ 1, L ≥ 3, define m = ⌈α − 1⌉. For any

f0 ∈ Bα
p,q, given an L-layer parallel neural network satisfying

• The width of each subnetwork is fixed satisfying w ≥ O(md). See Theorem 5.9

for the detail.

• The number of subnetworks is large enough: M ≳ n
1−2/L

2α/d+1−2/(pL) .
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Under the assumption as in Lemma 5.18, with proper choice of the parameter of regular-

izaton λ that depends on D, α, d, L, the solution f̂ parameterized by (5.4) satisfies

MSE(f̂) = C(w,L)Õ
(
n− 2α/d(1−2/L)

2α/d+1−2/(pL)
)
+ e−c6L. (5.5)

where Õ shows the scale up to a logarithmic factor, c6 > 0 is a numerical constant from

Theorem 5.9, C(w,L) ≂ (w4−4/LL2−4/L)
2α/d

2α/d+1−2/(pL) depends polynomially on L.

We explain the proof idea in the next section,but defer the extended form of the theorem

and the full proof to Section 5.8.5. Before that, we comment on a few interesting aspects

of the result.

Near optimal rates and the effect of depth. The first term in the MSE bound is

the estimation error and the second term is (part of) the approximation error of this

NN. Recall that the minimax rate of a Besov class is O(n− 2α
2α+d ). The gap between the

estimation error and the minimax rate is because the minimax rate can be achieved by

an ℓ0 sparse model, while the parallel NN is equivalent to an ℓp sparse model (will be

shown in Proposition 5.5), which is an approximation to ℓ0. As the depth parameter L

increases, p = 2/L gets closer to 0, the MSE can get arbitrarily close to the minimax

rate and the trailing constant term in (5.5) can be arbitrarily small. Close to the optimal

rate can be achieved if we choose L ≳ log n:

Corollary 5.2 Under the conditions of Theorem 5.1, for any f0 ∈ Bα
p,q, there is a nu-

merical constant C such that when we choose C log n ≤ L ≤ 100C log n,

MSE(f̂) = Õ(n− 2α
2α+d

(1−o(1))),

where Õ hides only logarithmic factors and the o(1) factor in the exponent is O(1/ log(n)).

Sparsity and comparison with standard NN. We also note that the result does not
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depend on M as long as M is large enough. This means that the neural network can

be arbitrarily overparameterized while not overfitting. The underlying reason is sparsity.

As it will become clearer in Section 5.5.1, ℓ2 regularized training of a parallel L-layer

ReLU NNs is equivalent to a sparse regression problem with an ℓp penalty assigned to

the coefficient vector of a learned dictionary. Here p = 2/L which promotes even sparser

solutions than an ℓ1 penalty. Such ℓp sparsity does not exist in standard deep neural

networks to the best of our knowledge, which indicates that parallel neural networks

may be superior over standard neural networks in local adaptivity.

Adaptivity to function spaces. For any fixed L, m̃, our result shows the parallel

neural network with width w = O(m̃d) can achieve close to the minimax rate for any

Besov class as long as α ≤ m̃. In other words, neural networks can adapt to smoothness

parameter by tuning only the regularizaton parameter. As will be shown in Theorem 5.6,

overestimating α with m̃ only changes the logarithmic terms in the MSE bound — a mild

price to pay for a more adaptive method.

Hyperparameter tuning. We provide an explicit choice of λ in Lemma 5.18 underlying

our theoretical result. Empirically, it can be determined empirically, e.g. using cross

validation.

Fixed design v.s. random design. We mainly focus on bounding the error at sample

covariates (the fixed design problem) to be comparable to classical nonparameteric regres-

sion results. One can easily apply the technique in this paper to achieve the estimation

error bound on the random design problem:

Theorem 5.3 Under the same condition as Theorem 5.1, the solution f̂ parameterized

by (5.4) satisfies

EDEfMSE(f̂) ≤ Õ

((w4−4/LL2−4/L

n1−2/L

) 2α/d
2α/d+1−2/(pL)

+ e−c6L

)
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where Õ shows the scale up to a logarithmic factor, and c6 is the constant defined in

Theorem 5.9, ED indicates that the expectation is taken with respect to the training set

D, Ef indicates that the expectation is taken with respect to the domain of f .

The proof is similar to that of Theorem 5.1. The main difference lays in the proof

of the estimation error. For f⊥ part, the estimation error can be bounded using VC-

dimension, which is 1. For f∥ part, the estimation error can be bounded using its covering

number, e.g. Lemma 8 in Schmidt-Hieber [120].

Representation learning and adaptivity. The results also shed a light on the role

of representation learning in DNN’s ability to adapt. Specifically, different from the two-

layer NN in [107], which achieves the minimax rate of BV (m) by choosing appropriate

activation functions using each m, each subnetwork of a parallel NN can learn to ap-

proximate the spline basis of an arbitrary order, which means that if we choose L to be

sufficiently large, such Parallel NN with optimally tuned λ is simultaneously near optimal

for m = 1, 2, 3, . . . . In fact, even if different regions of the space has different orders of

smoothness, the paralle NN will still be able to learn appropriate basis functions in each

local region. To the best of our knowledge, this is a property that none of the classical

nonparametric regression methods possess.

Synthesis v.s. analysis methods. Our result could also inspire new ideas in estimator

design. There are two families of methods in non-parametric estimation. One called

synthesis framework which focuses on constructing appropriate basis functions to encode

the contemplated structures and regress the data to such basis, e.g., wavelets [94]. The

other is called analysis framework which uses analysis regularization on the data directly

(see, e.g., RKHS methods [96] or trend filtering [99]). It appears to us that parallel

NN is doing both simultaneously. It has a parametric family capable to synthesizing

an O(n) subset of an exponentially large family of basis, then implicitly use sparsity-
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inducing analysis regularization to select the relevant basis functions. In this way the

estimator does not actually have to explicitly represent that exponentially large set of

basis functions, thus computationally more efficient.

Bounded variation classes. Thanks to the Besov space embedding of the BV class

(5.3), our theorem also implies the result for the BV class in 1D.

Corollary 5.4 If the target function is in bounded variation class f0 ∈ BV (m), For any

fixed L ≥ 3, for a neural network satisfying the requirements in Theorem 5.1 with d = 1

and with proper choice of the regularization factor λ, the NN f̂ parameterized by (5.8)

satisfies

MSE(f̂) = C(w,L)Õ(n− (2m+2)(1−2/L)
2m+3−2/L ) +O(e−c6L),

where C(w,L) is the same as in (5.5) except replacing α with m.

It is known that any linear estimators such as kernel smoothing and smoothing splines

cannot have an error lower than O(n−(2m+1)/(2m+2)) for BV (m) [94]. When L > O(m2),

the first term in the MSE of NN decreases with n faster than that of the linear methods.

When n is large enough, there exists L such that the MSE of NN is strictly smaller than

that of any linear method. This partly explains the advantage of DNNs over kernels.

5.5 Proof Overview

We start by first proving that a parallel neural network trained with ℓ2 regulariza-

tion is equivalent to an ℓp-sparse regression problem with representation learning (Sec-

tion 5.5.1); which helps decompose its MSE into an estimation error and approxmation

error. Then we bound the two terms under an ℓp-sparse constrained problem setting in

Section 5.5.2 and Section 5.5.3 respectively.
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Notably, we adapted the generic statistical learning machinery (a self-bounding ar-

gument) for studying this constrained ERM problem [106, Proposition 4] to bound the

estimation error. This adaption is non-trival because there is an unconstrained subspace

with no bounded metric entropy. Specifically, Proposition 5.16 shows that the MSE of

the regression problem can be bounded by

MSE(f̂) =O

(
inf
f∈F

MSE(f)︸ ︷︷ ︸
approximation error

+
logN (F∥, δ, ∥ · ∥∞) + d(F⊥)

n
+ δ︸ ︷︷ ︸

estimation error

)
(5.6)

in which F decomposes into F∥ × F⊥, where F⊥ is an unconstrained subspace with

finite dimension, and F∥ is a compact set in the orthogonal complement with a δ-covering

number of N (F∥, δ, ∥ · ∥∞) in ∥ · ∥∞-norm. This decomposes MSE into an approximation

error and an estimation error. The novel analysis of these two represents the major

technical contribution of this paper.

5.5.1 Equivalence to ℓp Sparse Regression

It is widely known that ReLU function is 1-homogeneous: σ(ax) = aσ(x),∀a ≥ 0, x ∈

R. In any consecutive two layers in a neural network (or a subnetwork), one can multiply

the weight and bias in one layer with a positive constant, and divide the weight in another

layer with the same constant. The neural network after such transformation is equivalent

to the original one:

W(2)σ(W(1)x+ b(1) =
1

c
W(2)σ(cW(1)x+ cb(1)), ∀c > 0,x. (5.7)

This property can be applied to each subnetwork (instead of the entire model in a

standard NN), and we can reformulate (5.4) to an ℓp sparsity-regularized problem:
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Proposition 5.5 There exists an one-to-one mapping between λ > 0 and λ′ > 0 such

that (5.4) is equivalent to the following problem:

argmin
{W̄(ℓ)

j ,b̄
(ℓ)
j ,aj}

L̂
( M∑

j=1

aj f̄j

)
+ λ′∥{aj}∥2/L2/L

s.t. ∥W̄(1)
j ∥F ≤ c1

√
d,∀j ∈ [M ]; ∥W̄(ℓ)

j ∥F ≤ c1
√
w,∀j ∈ [M ], 2 ≤ ℓ ≤ L,

(5.8)

where f̄j(·) is a subnetwork with parameters W̄
(ℓ)
j , b̄

(ℓ)
j .

This equivalent model is demonstrated in Figure 5.2b. The proof, which we defer to

Section 5.8.2, uses AM-GM inequality and the observation that the optimal solution

will have norm-equalized weights per layer. The constraint ∥W̄(1)
j ∥F ≲

√
d, ∥W̄(ℓ)

j ∥F ≲
√
w,∀ℓ > 1 is typical in deep learning for better numerical stability. The equivalent

model in Proposition 5.5 is also a parallel neural network, but it appends one layer with

parameters {ak} at the end of the neural network, and the constraint on the Frobenius

norm is converted to the 2/L norm on the factors {ak}. Since L ≫ 2 in a typical

application, 2/L ≪ 1 and this regularizer can enforce a sparser model than that in

Section 5.8.1. The same technique can also be used to prove that an ℓ2 constrained

neural network is equivalent to the ℓ2/L constrained model as in (5.9).

There are two useful implications of Proposition 5.5. First, it gives an intuitive

explanation on how a regularized Parallel NN works. Specifically, it can be viewed as a

sparse linear regression with representation learning. Secondly, the conversion into the

constrained form allows us to decompose the MSE into two terms as in (5.6) and bound

them separately.

We emphasize that Proposition 5.5 by itself is not new. The same result was previ-

ously obtained by Savarese et al. [126] Appendix C (see Section 5.2 for more details) and

the key proof techniques date back to at least Burer et al. [139]. Our novel contribution
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is to leverage this folklore equivalence for proving new learning bounds.

5.5.2 Estimation Error Analysis

Previous results that bound the covering number of neural networks [135, 106] depends

on the width of the neural networks explicitly, which cannot be applied when analysing

a potentially infinitely wide neural network. In this section, we leverage the ℓp-norm

bounded coefficients to avoid the dependence in M in the covering number bound, and

focus on a constrained optimization problem:

argmin
{W̄(ℓ)

j ,b̄
(ℓ)
j ,aj}

L̂
( M∑

j=1

aj f̄j

)
, s.t.∥{aj}∥2/L2/L ≤ P ′, (5.9)

and {W̄(ℓ)
j , b̄

(ℓ)
j } satisfy the same constraint as in (5.8). The connection between the

regularized problem and the constrained problem is defered to Lemma 5.18.

Theorem 5.6 The covering number of the model defined in (5.9) apart from the bias in

the last layer satisfies

logN (F , δ) ≲ w2+2/(1−2/L)L2
√
dP ′ 1

1−2/L δ−
2/L

1−2/L log(wP ′/δ). (5.10)

This theorem provides a bound of estimation error for an arbitrarily wide parallel

neural network as long as the total Frobenius norm is bounded. The proof can be found

in Section 5.8.3. It requires the following lemma, whose proof is deferred to Section 5.8.3:

Lemma 5.7 Let G ⊆ {Rd → [−c3, c3]} be a set with covering number satisfying logN (G, δ) ≲

k log(1/δ) for some finite c3, and for any g ∈ G, |a| ≤ 1, we have ag ∈ G. The covering
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number of F =
{∑M

i=1 aigi

∣∣∣gi ∈ G, ∥a∥pp ≤ P, 0 < p < 1
}

for any P > 0 satisfies

logN (F , ϵ) ≲ kP
1

1−p (δ/c3)
− p

1−p log(c3P/δ)

up to a double logarithmic factor.

5.5.3 Approximation Error Analysis

The approximation error analysis involves two steps. We first analyse how a subnet-

work can approximate a B-spline basis, which is defered to Section 5.8.4. Then we show

that a sparse linear combination of B-spline bases approximates Besov functions. Both

add up to the total error in approximating Besov functions with a parallel neural network

(Theorem 5.9).

Proposition 5.8 Let α−d/p > 1, r > 0. For any function in Besov space f0 ∈ Bα
p,q and

any positive integer M̄ , there is an M̄-sparse approximation using B-spline basis of order

m satisfying 0 < α < min(m,m − 1 + 1/p): f̌M̄ =
∑M̄

i=1 aki,siMm,ki,si for any positive

integer M̄ such that the approximation error is bounded as ∥f̌M̄ − f0∥r ≲ M̄−α/d∥f0∥Bα
p,q
,

and the coefficients satisfy

∥{2kiaki,si}ki,si∥p ≲ ∥f0∥Bα
p,q
.

The proof as well as the remark can be found in Section 5.8.4.

Theorem 5.9 Under the same condition as Proposition 5.8, for any positive integer M̄ ,

any function in Besov space f0 ∈ Bα
p,q can be approximated by a parallel neural network

with no more than O(M̄) number of subnetworks satisfying:
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1. Each subnetwork has width w = O(md) and depth L.

2. The weights in each layer satisfy ∥W̄(ℓ)
k ∥F ≤ O(

√
w) except the first layer ∥W̄(1)

k ∥F ≤

O(
√
d),

3. The scaling factors have bounded 2/L-norm: P ′ : = ∥{aj}∥2/L2/L ≲ M̄1−2/(pL).

4. The approximation error is bounded by

∥f̃ − f0∥r ≤ (c4M̄
−α/d + c5e

−c6L)∥f∥Bα
p,q

where c4, c5, c6 are constants that depend only on m, d and p.

Here M̄ is the number of “active” subnetworks, which is not to be confused with the

number of subnetworks at initialization. The proof can be found in Section 5.8.4.

Using the estimation error in Theorem 5.6 and approximation error in Theorem 5.9,

by choosing M̄ to minimax the total error, we can conclude the sample complexity of

parallel neural networks using ℓ2 regularization, which is the main result (Theorem 5.1)

of this paper. See Section 5.8.5 for the detail.

5.6 Experiment

We empirically compare a parallel neural network (PNN) and a vanilla ReLU neural

network (NN) with smoothing spline, trend filtering (TF) [99], and wavelet denoising.

Trend filtering can be viewed as a more efficient discrete spline version of locally adaptive

regression spline and enjoys the same optimal rates for the BV classes. Wavelet denois-

ing is also known to be minimax-optimal for the BV classes. The results are shown in

Figure 5.3. We use two target functions: a Doppler function whose frequency is decreas-

ing(Figure 5.3(a)-(c)(h)), and a combination of piecewise linear function and piecewise
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Figure 5.3: Numerical experiment results of the Doppler function (a-c,h), and “vary”
function (d-f,g). All the “active” subnetworks are plotted in (c)(f). The horizontal
axis in (b) is not linear.

cubic function, or “vary” function (Figure 5.3(d)-(f)(i)). We repeat each experiment 10

times and take the average. The shallow area in Figure 5.3(b)(e) shows 95% confidence

interval by inverting the Wald’s test. The degree of freedom (DoF) is computed based

119



Local adaptivity of Weight Decayed DNNs Chapter 5

on Tibshirani [140].

As can be shown in the figure, both TF and wavelet denoising can adapt to the

different levels of smoothness in the target function, while smoothing splines tend to be

oversmoothed where the target function is less smooth (the left side in (a)(d), enlarged

in (g)). The prediction of PNN is similar to TF and wavelet denoising and shows local

adaptivity. Besides, the MSE of PNN almost follows the same trend as TF and wavelet

denoising which is consistent with our theoretical understanding that the error rate of

neural network is closer to locally adaptive methods. Notably PNN, TF and wavelet

denoising achieve lower error at a much smaller degree-of-freedom than smoothing splines.

There are some mild drops in the best MSE one can achieve with Parallel NN vs TF

in both examples. We are surprised that the drop is small because Parallel NN needs to

learn the basis functions that TF essentially hard-coded. The additional price to pay for

using a more adaptive and more flexible representation learning method seems not high

at all.

In Figure 5.3(c)(f), we give the output all the “active” subnetwork, i.e. the subnet-

works whose output is not a constant. Notice that the number of active subnetworks is

much smaller than the initialization. This is because ℓ2 regularization in weights induces

ℓp sparsity and the weight in most of the subnetworks reduces towards 0 after training.

More details are shown in Section 5.9.

In Figure 5.3(h)(i), we plot the MSE versus the number of training samples for

“Doppler” and “Vary” respectively. It is clear that parallel NN works the best over-

all. In (i), we further compare the scaling of the MSE against the minimax rate (n−4/5)

and the minimax linear rate (n−3/4), i.e., the best rate kernel methods could achieve.

As is predicted by our theory, when n is large, the MSE of parallel neural networks and

trend filtering decreases at almost the same rate as the minimax rate, while smoothing

splines, as expected, is converging at the (suboptimal) minimax linear rate. Interestingly,
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vanilla NN seems to converge at the optimal rate too on this example. It remains an

open question whether vanila NN is merely “lucky” on this example, or it also achieves

the minimax rate for all functions in BV(m).

5.7 Conclusion and Discussion

In this paper, we show that a deep parallel neural network can be locally adaptive

with standard ℓ2 regularization. This confirms that neural networks can be nearly optimal

in learning functions with heterogeneous smoothness which separates them from kernel

methods.

Specifically, we prove that training an L layer parallel neural network with standard

ℓ2 regularization is equivalent to an ℓ2/L-penalized regression model with representation

learning. Since in typical application L ≫ 2, standard regularization promotes a sparse

linear combination of the learned bases. Using this method, we proved that a parallel

neural network can achieve close to the minimax rate in the Besov space and bounded

variation (BV) space by tuning the regularization factor.

Our result reveals that one do not need to specify the smoothness parameter α (or

m) when training a parallel neural network. With only an estimation of the upper bound

of α (or m), parallel neural networks can adapt to different degree of smoothness, or

choose different parameters for different regions of the domain of the target function.

This property shows the strong adaptivity of deep neural networks.

On the other hand, as the depth of neural network L increases, 2/L tends to 0 and the

error rate moves closer to the minimax rate of Besov and BV space. This indicates that

when the sample size is large enough, deeper models have smaller error than shallower

models, and helps explain why empirically deep neural networks has better performance

than shallow neural networks.
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5.8 Proofs of technical results

5.8.1 Two-layer Neural Network with Truncated Power Acti-

vation Functions

We start by recapping the result of Parhi et al. [107] and formalizing its implication

in estimating BV functions. Parhi et al. [107] considered a two layer neural network with

truncated power activation function. Let the neural network be

f(x) =
M∑
j=1

vjσ
m(wjx+ bj) + c(x), (5.11)

where wj, vj denote the weight in the first and second layer respectively, bj denote the

bias in the first layer, c(x) is a polynomial of order up to m, σm(x) := max(x, 0)m. Parhi

et al. [107, Theorem 8] showed that when M is large enough, The optimization problem

min
w,v

L̂(f) +
λ

2

M∑
j=1

(|vj|2 + |wj|2m) (5.12)

is equivalent to the locally adaptive regression spline:

min
f

L̂(f) + λTV (f (m)(x)), (5.13)

which optimizes over arbitrary functions that is m-times weakly differentiable. The

latter was studied in Mammen et al. [98], which leads to the following MSE:

Theorem 5.10 Let M ≥ n − m, and f̂ be the function (5.11) parameterized by the

minimizer of (5.12), then

MSE(f̂) = O(n−(2m+2)(2m+3)).
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We show a simpler proof in the univariate case due to Tibshirani [141]:

Proof: As is shown in Parhi et al. [107, Theorem 8], the minimizer of (5.12) satisfy

|vj| = |wj|m,∀k

so the TV of the neural network fNN is

TV (m)(fNN) = TV (m)c(x) +
M∑
j=1

|vj||wj|mTV (m)(σ(m)(x))

=
M∑
j=1

|vj||wj|m

=
1

2

M∑
j=1

(|vj|2 + |wj|2m)

which shown that (5.12) is equivalent to the locally adaptive regression spline (5.13) as

long as the number of knots in (5.13) is no more than M . Furthermore, it is easy to

check that any spline with knots no more than M can be expressed as a two layer neural

network (5.12). It suffices to prove that the solution in (5.13) has no more than n −m

number of knots.

Proposition 1 in Mammen et al. [98] showed that there is a solution to (5.13) f̂(x)

such that f̂(x) is a mth order spline with a finite number of knots but did not give a

bound. Let the number of knots be M , we can represent f̂ using the truncated power

basis

f̂(x) =
M∑
j=1

aj(x− tj)
m
+ + c(x) :=

M∑
j=1

ajσ
(m)
j (x) + c(x)

where tj are the knots, c(x) is a polynomial of order up to m, and define σ
(m)
j (x) =

(x− tj)
m
+ .

Mammen et al. [98] however did not give a bound onM . Parhi et al. [107]’s Theorem 1
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implies that M ≤ n − m. Its proof is quite technical and applies more generally to a

higher dimensional generalization of the BV class.

Tibshirani [141] communicated to us the following elegant argument to prove the

same using elementary convex analysis and linear algebra, which we present below.

Define Πm(f) as the L2(Pn) projection of f onto polynomials of degree up to m,

Π⊥
m(f) := f − Πm(f). It is easy to see that

Π⊥
mf(x) =

M∑
j=1

ajΠ
⊥
mσ

(m)
j (x)

Denote f(x1:n) := {f(x1), . . . , f(xn)} ∈ Rn as a vector of all the predictions at the

sample points.

Π⊥
mf̂(x1:n) =

M∑
j=1

ajΠ
⊥
mσ

(m)
j (x1:n) ∈ Π⊥

mConv{±σ(m)
j (x1:n)} ·

M∑
j=1

|aj|

∈ Conv{±Π⊥
mσ

(m)
j (x1:n)} ·

M∑
j=1

|aj|

where Conv denotes the convex hull of a set. The convex hull Conv{±σ(m)
j (x1:n)} ·∑M

j=1 |aj| is an n-dimensional space, and polynomials of order up to m is an m + 1

dimensional space, so the set defined above has dimension n−m−1. By Carathéodory’s

theorem, there is a subset of points in this space

{Π⊥
mσ

(m)
jk

(x1:n)} ⊆ {Π⊥
mσ

(m)
j (x1:n)}, 1 ≤ k ≤ n−m

such that

Π⊥
mf(x) =

n−m∑
k=1

ãkΠ
⊥
mσ

(m)
jk

(x),
n−m∑
k=1

|ak| ≤ 1

In other word, there exist a subset of knots {t̃j, j ∈ [n − m]} that perfectly recovers
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Π⊥
mf̂(x) at all the sample points, and the TV of this function is no larger than f̂ .

This shows that

f̃(x) =
n−m∑
j=1

ãj(x− tj)
m
+ , s.t.f̃(xi) = f(xi)

for all xi in n onbservation points.

The MSE of locally adaptivity regressive spline (5.13) was studied in Mammen et al.

[98, Section 3], which equals the error rate given in Theorem 5.10.

This indicates that the neural network (5.11) is minimax optimal for BV (m).

Let us explain a few the key observations behind this equivalence. (a) The truncated

power functions (together with an mth order polynomial) spans the space of an mth

order spline. (b) The neural network in (5.11) is equivalent to a free-knot spline with M

knots (up to reparameterization). (c) A solution to (5.13) is a spline with at most n−m

knots [107, Theorem 8]. (d) Finally, by the AM-GM inequality

|vj|2 + |wj|2m ≥ 2|vj||wj|m = 2|cj|

where cj = vj|wj|m is the coefficient of the corresponding jth truncated power basis. The

mth order total variation of a spline is equal to
∑

j |cj|. It is not hard to check that the

loss function depends only on cj, thus the optimal solution will always take “=” in the

AM-GM inequality.
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5.8.2 Equivalence Between Parallel Neural Networks and p-

norm Penalized Problems

Proof of Proposition 5.5

We make use of the property from (5.7) to minimize the constraint term in (5.9) while

keeping this neural network equivalent to the original one. Specifically, letW(1), b(1), . . .W(L), b(L)

be the parameters of an L-layer neural network.

f(x) = W(L)σ(W(L−1)σ(. . . σ(W(1)x+ b(1)) . . . ) + b(L−1)) + b(L),

which is equivalent to

f(x) = αLW̃
(L)σ(αL−1W̃

(L−1)σ(. . . σ(α1W̃
(1)x+ b̃

(1)
) . . . ) + b̃

(L−1)
) + b̃

(L)
,

as long as αℓ > 0,
∏L

ℓ=1 α
L =

∏L
ℓ=1 ∥W(ℓ)∥F , where W̃(ℓ) := W(ℓ)

∥W(ℓ)∥F
. By the AM-GM

inequality, the ℓ2 regularizer of the latter neural network is

L∑
ℓ=1

∥αℓW̃
(ℓ)∥2F =

L∑
ℓ=1

α2
ℓ ≥ L

(
L∏

ℓ=1

aℓ

)2/L

= L

(
L∏

ℓ=1

∥W(ℓ)∥F
)2/L

and equality is reached when α1 = α2 = · · · = αL. In other word, in the problem (5.4),

it suffices to consider the network that satisfies

∥W(1)
j ∥F = ∥W(2)

j ∥F = · · · = ∥W(L)
j ∥F ,∀j ∈ [M ], ℓ ∈ [L]. (5.14)

126



Local adaptivity of Weight Decayed DNNs Chapter 5

Using (5.7) again, one can find that the neural network is also equivalent to

f(x) =
M∑
j=1

ajW̄
(L)σ(W̄

(L−1)
j σ(. . . σ(W̄

(1)
j x+ b̄

(1)
j ) . . . ) + b̄

(L−1)
j ) + b̄

(L)
j ,

where

∥W̄(ℓ)
j ∥F ≤ β(ℓ), aj =

∏L
ℓ=1 ∥W

(ℓ)
j ∥F∏L

ℓ=1 β
(ℓ)

=
∥W(1)

j ∥LF∏L
ℓ=1 β

(ℓ)
=

(
∑L

ℓ=1 ∥W
(ℓ)
j ∥2F/L)L/2∏L

ℓ=1 β
(ℓ)

, (5.15)

where the last two equality comes from the assumption (5.14). Choosing β(ℓ) = c1
√
w

expect ℓ = 1 where β(1) = c1
√
d, and scaling b̄

(ℓ)
accordingly and taking the regularizer

in (5.4) into (5.15) finishes the proof.

5.8.3 Covering Number of Parallel Neural Networks

Proof of Theorem 5.6

The proof relies on the covering number of each subnetwork in a parallel neural

network (Lemma 5.11), observing that |f(x)| ≤ 2L−1wL−1
√
d under the condition in

Lemma 5.11, and then apply Lemma 5.7. We argue that our choice of condition on

∥b(ℓ)∥2 in Lemma 5.11 is sufficient to analyzing the model apart from the bias in the last

layer, because it guarantees that
√
w∥W(ℓ)Aℓ−1(x)∥2 ≤ ∥b(ℓ)∥2. This leads to

∥W(ℓ)Aℓ−1(x)∥∞ ≤ ∥W(ℓ)Aℓ−1(x)∥2 ≤
√
w∥b(ℓ)∥2 ≤ ∥b(ℓ)∥∞

If this condition is not met, W(ℓ)Aℓ−1(x)+b(ℓ) is either always positive or always negative

for all feasible x along at least one dimension. If (W(ℓ)Aℓ−1(x)+b(ℓ))i is always negative,

one can replace b(ℓ))i with −maxx ∥W(ℓ)Aℓ−1(x)∥∞ without changing the output of this

model for any feasible x. If (W(ℓ)Aℓ−1(x)+ b(ℓ))i is always positive, one can replace b(ℓ))i
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with maxx ∥W(ℓ)Aℓ−1(x)∥∞, and adjust the bias in the next layer such that the output

of this model is not changed for any feasible x. In either cases, one can replace the bias

b(ℓ) with another one with smaller norm while keeping the model equivalent except the

bias in the last layer.

Lemma 5.11 Let F ⊆ {f : Rd → R} denote the set of L-layer neural network (or a

subnetwork in a parallel neural network) with width w in each hidden layer. It has the

form

f(x) = W(L)σ(W(L−1)σ(. . . σ(W(1)x+ b(1)) . . . ) + b(L−1)) + b(L),

W(1) ∈ Rw×d, ∥W(1)∥F ≤
√
d, b(1) ∈ Rw, ∥b(1)∥2 ≤

√
dw,

W(ℓ) ∈ Rw×w∥W(ℓ)∥F ≤
√
w, b(ℓ) ∈ Rw, ∥b(ℓ)∥2 ≤ 2ℓ−1wℓ−1

√
dw, ∀ℓ = 2, . . . L− 1,

W(L) ∈ R1×w, ∥W(L)∥F ≤
√
w, b(L) = 0

(5.16)

and σ(·) is the ReLU activation function, the input satisfy ∥x∥2 ≤ 1, then the supremum

norm δ-covering number of F obeys

logN (F , δ) ≤ c7Lw
2 log(1/δ) + c8

where c7 is a constant depending only on d, and c8 is a constant that depend on d, w and

L.

Proof of Lemma 5.11

First study two neural networks which differ by only one layer. Let gℓ, g
′
ℓ be two neural

networks satisfying (5.16) with parameters W1, b1, . . . ,WL, bL and W′
1, b

′
1, . . . ,W

′
L, b

′
L

respectively. Furthermore, the parameters in these two models are the same except the
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ℓ-th layer, which satisfy

∥Wℓ −W′
ℓ∥F ≤ ϵ, ∥bℓ − b′ℓ∥2 ≤ ϵ̃.

Denote the model as

gℓ(x) = Bℓ(WℓAℓ(x) + bℓ), g
′
ℓ(x) = Bℓ(W′

ℓAℓ(x) + b′ℓ)

where Aℓ(x) = σ(Wℓ−1σ(. . . σ(W1x + b1) . . . ) + bℓ−1) denotes the first ℓ − 1 layers in

the neural network, and Aℓ(x) = WLσ(. . . σ(Wℓ+1σ(x) + bℓ+1) . . . ) + bL) denotes the

last L− ℓ− 1 layers, with definition A1(x) = x,BL(x) = x.

Now focus on bounding ∥A(x)∥. Let W ∈ Rm×m′
, ∥W∥F ≤

√
m′,x ∈ Rm′

, b ∈

Rm, ∥b∥2 ≤
√
m

∥σ(Wx+ b)∥2 ≤ ∥Wx+ b∥2

≤ ∥W∥2∥x∥2 + ∥b∥2

≤ ∥W∥F∥x∥2 + ∥b∥2

≤
√
m′∥x∥2 +

√
m

where we make use of ∥ · ∥2 ≤ ∥ · ∥F . Because of that,

∥A2(x)∥2 ≤
√
d+
√
dw ≤ 2

√
dw,

∥A3(x)∥2 ≤
√
w∥A2(x)∥2 + 2w

√
dw ≤ 4w

√
dw,

. . .

∥Aℓ(x)∥2 ≤
√
w∥Aℓ−1(x)∥2 ≤ 2

√
dw(2w)ℓ−2.

(5.17)

Then focus on B(x). Let W ∈ Rm×m′
, ∥W∥F ≤

√
m′,x,x′ ∈ Rm′

, b ∈ Rm, ∥b∥2 ≤
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√
m. Furthermore, ∥x− x′∥2 ≤ ϵ, then

∥σ(Wx+ b)− σ(Wx′ + b)∥2 ≤ ∥W(x− x′)∥2 ≤ ∥W∥F∥x− x′∥2

which indicates that ∥B(x)− B(x)′∥2 ≤ (
√
w)L−ℓ∥x− x′∥2

Finally, for any W,W′ ∈ Rm×m′
,x ∈ Rm′

, b, b′ ∈ Rm, one have

∥(Wx+ b)− (W′x+ b′)∥2 = ∥(W −W′)x+ (b− b′)∥2

≤ ∥W −W′∥2∥x∥2 + ∥b− b′∥2.

≤ ∥W −W′∥F∥x∥2 +
√
m∥b− b′∥∞.

In summary,

|gℓ(x)− g′ℓ(x)| = |Bℓ(WℓAℓ(x) + bℓ)− Bℓ(W′
ℓAℓ(x) + b′ℓ)|

≤ (
√
w)L−ℓ∥(WℓAℓ(x) + bℓ)− (W′

ℓAℓ(x) + b′ℓ)∥2

≤ (
√
w)L−ℓ(∥Wℓ −W′

ℓ∥F∥Aℓ(x)∥2 + ∥bℓ − b′ℓ∥2)

≤ 2(ℓ−1)w(L+ℓ−3)/2d1/2ϵ+ w(L−ℓ)/2ϵ̄

Let f(x), f ′(x) be two neural networks satisfying (5.16) with parametersW1, b1, . . . ,WL, bL

and W ′
1, b

′
1, . . . ,W

′
L, b

′
L respectively, and ∥Wℓ−W ′

ℓ∥F ≤ ϵℓ, ∥bℓ− b′ℓ∥F ≤ ϵ̃ℓ. Further define

fℓ be the neural network with parameters W1, b1, . . . ,Wℓ, bℓ,W
′
ℓ+1, b

′
ℓ+1, . . . ,W

′
L, b

′
L, then

|f(x)− f ′(x)| ≤ |f(x)− f1(x)|+ |f1(x)− f2(x)|+ · · ·+ |fL−1(x)− f ′(x)|

≤
L∑

ℓ=1

2(ℓ−2)d1/2w(L+ℓ−3)/2ϵ+ w(L−ℓ)/2ϵ̄
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For any δ > 0, one can choose

ϵℓ =
δ

2ℓw(L+ℓ−3)/2d1/2
, ϵ̃ℓ =

δ

2w(L−ℓ)/2

such that |f(x)− f ′(x)| ≤ δ.

On the other hand, the ϵ-covering number of {W ∈ Rm×m′
: ∥W∥F ≤

√
m′} on

Frobenius norm is no larger than (2
√
m′/ϵ+ 1)m×m′

, and the ϵ̄-covering number of {b ∈

Rm : ∥b∥2 ≤ 1} on infinity norm is no larger than (2/ϵ̄+1)m. The entropy of this neural

network can be bounded by

logN (f ; δ) ≤ w2L log(2L+1wL−1/δ + 1) + wL log(2L−1w(L−1)/2d1/2/δ + 1)

Proof of Lemma 5.7

Let ϵ be a positive constant. Without the loss of generality, we can sort the coefficients

in descending order in terms of their absolute values. There exists a positive integerM

(as a function of ϵ), such that |ai| ≥ ϵ for i ≤M, and |ai| < ϵ for i >M.

By definition,Mϵp ≤∑M
i=1 |ai|p ≤ P soM≤ P/ϵp, and |ai|p ≤ P, |ai| ≤ P 1/p for all

i. Furthermore,

∑
i>m

|ai| =
∑
i>M

|ai|p|ai|1−p <
∑
i>M

|ai|pϵ1−p ≤ Pϵ1−p

Let g̃i = argming∈G̃ ∥g − ai
P 1/p gi∥∞ where G̃ is the δ′-convering set of G. By definition of
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the covering set,

∥∥∥∥∥
M∑
i=1

aigi(x)−
M∑
i=1

P 1/pg̃i(x)

∥∥∥∥∥
∞

≤
∥∥∥∥∥

M∑
i=1

(aigi(x)− P 1/pg̃i(x))

∥∥∥∥∥
∞

+

∥∥∥∥∥
M∑

i=M+1

aigi(x)

∥∥∥∥∥
∞

≤MP 1/pδ′ + c3Pϵ1−p.

(5.18)

Choosing

ϵ = (δ/2c3P )
1

1−p , δ′ ≂ P− 1
p(1−p) (δ/2c3)

1
1−p/2, (5.19)

we haveM ≤ P
1

1−p (δ/2c3)
− p

1−p ,MP 1/pδ′ ≤ δ/2, c3Pϵ1−p ≤ δ/2, so (5.18) ≤ δ. One can

compute the covering number of F by

logN (F , δ) ≤M logN (G, δ′) ≲ kM log(1/δ′) (5.20)

Taking (5.19) into (5.20) finishes the proof.

5.8.4 Proof of Approximation Error

Approximation of Neural Networks to B-spline Basis Functions

Lemma 5.12 Let Mm,k,s be the B-spline of order m with scale 2−k in each dimension

and position s ∈ Rd: Mm,k,s(x) := Mm(2
k(x−s)), Mm is defined in (5.2). There exists a

neural network with d-dimensional input and one output, with width wd,m = O(dm) and

depth L ≲ log(cd,m/ϵ) for some constant cd,m that depends only on m and d, approximates

the B spline basis function Mm,k,s(x) := Mm(2
k(x−s)) as defined in Section 5.3.2. This

neural network, denoted as M̃m,k,s(x),x ∈ Rd, satisfy

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤ m+ 1, ∀i ∈ [d],

• M̃m,k,s(x) = 0, otherwise.
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• The weight in each layer has bounded norm ∥W(ℓ)∥F ≲ 2k/L
√
w, except the first

layer where ∥W(1)∥F ≤ 2k/L
√
d.

Note that the product of the coefficients among all the layers are proportional to 2k,

instead of 2km when approximating truncated power basis functions. This is because the

transformation from Mm to Mm,k,s only scales the domain of the function by 2k, while

the codomain of the function is not changed. To apply the transformation to the neural

network, one only need to scale weights in the first layer by 2k, which is equivalent to

scaling the weights in each layer bt 2k/L and adjusting the bias according.

As for the proof, we follow the method developed in Yarotsky [135], Suzuki [106],

while putting our attention on bounding the Frobenius norm of the weights.

Lemma 5.13 (Yarotsky [135, Proposition 3]) : There exists a neural network with

two-dimensional input and one output f×(x, y), with constant width and depth O(log(1/δ)),

and the weight in each layer is bounded by a global constant c1, such that

• |f×(x, y)− xy| ≤ δ,∀ 0 ≤ x, y ≤ 1,

• f×(x, y) = 0,∀ x = 0 or y = 0.

We first prove a special case of Lemma 5.12 on the unscaled, unshifted B-spline basis

function by fixing k = 0, s = 0:

Proposition 5.14 There exists a neural network with d-dimensional input and one out-

put, with width w = w(d,m) ≂ dm and depth L ≲ log(c(m, d)/ϵ) for some constant w, c

that depends only on m and d, denoted as M̃m(x),x ∈ Rd, such that

• |M̃m(x)−Mm(x)| ≤ ϵ, if 0 ≤ xi ≤ m+ 1,∀i ∈ [d], while Mm(·) denote m-th order

B-spline basis function,

• M̃m(x) = 0, if xi ≤ 0 or xi ≥ m+ 1 for any i ∈ [d].
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• The weight in each layer has bounded norm ∥W(ℓ)∥F ≲
√
w.

Proof: We first show that one can use a neural network with constant width w0, depth

L ≂ log(m/ϵ1) and bounded norm ∥W (1)∥F ≤ O(
√
d), ∥W (ℓ)∥F ≤ O(

√
w),∀ℓ = 2, . . . , L

to approximate truncated power basis function up to accuracy ϵ1 in the range [0, 1]. Let

m =
∑⌈log2 m⌉

i=0 mi2
i,mi ∈ {0, 1} be the binary digits of m, and define m̄j =

∑i
j=0 mi, γ =

⌈log2m⌉, then for any x

xm
+ = x

m̄γ

+ ×
(
x2γ

+

)mγ

[x
m̄γ

+ , x2γ

+ ] = [x
m̄γ−1

+ ×
(
x2γ−1

+

)mγ−1 , x2γ−1

+ × x2γ−1

+ ]

. . .

[xm̄2
+ , x4

+] = [xm̄1
+ ×

(
x2
+

)m1 , x2
+ × x2

+]

[xm̄1
+ , x2

+] = [xm̄0
+ × xm0

+ , x+ × x+]

(5.21)

Notice that each line of equation only depends on the line immediately below. Replacing

the multiply operator × with the neural network approximation shown in Lemma 5.13

demonstrates the architecture of such neural network approximation. For any x, y ∈ [0, 1],

let |f×(x, y) − xy| ≤ δ, |x − x̃| ≤ δ1, |y − δy| ≤ δ2, then |f×(x̃, ỹ) − xy| ≤ δ1 + δ2 + δ.

Taking this into (5.21) shows that ϵ1 ≂ 2γδ ≂ mδ, where ϵ1 is the upper bound on the

approximate error to truncated power basis of order m and δ is the approximation error

to a single multiply operator as in Lemma 5.13.

A univariate B-spline basis can be expressed using truncated power basis, and ob-
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serving that it is symmetric around (m+ 1)/2:

Mm(x) =
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)
(x− j)m+

=
1

m!

⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)
(min(x,m+ 1− x)− j)m+

=
((m+ 1)/2)m

m!

⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)(min(x,m+ 1− x)− j

(m+ 1)/2

)m
+
,

A multivariate (d-dimensional) B-spline basis function can be expressed as the prod-

uct of truncated power basis functions and thus can be decomposed as

Mm(x) =
d∏

i=1

Mm(xi)

=
((m+ 1)/2)md

(m!)d

d∏
i=1

(⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)(min(xi,m+ 1− x)− j

(m+ 1)/2

)m
+

)

(5.22)

Using Lemma 5.13, one can construct m + 1 number of neural networks, and each of

them has width w0 and depth L = O(log(m/ϵ1), such that the (j +1)-th neural network

approximates ( x−j
(m+1)/2

)m+ with error no more than ϵ1 for any 0 ≤ x ≤ (m + 1)/2. The

weighted summation of these subnetworks can approximate the univariate B-spline basis

function with error no more than

d((m+ 1)/2)m
1

m!

m+1∑
i=1

(
m+ 1

j

)
ϵ1 ≂

de2m√
m

ϵ1

where we applied Stirling’s approximation.

A multivariate B-spline basis is the product of univariate B-spline basis along each
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dimension

Mm(x) =
d∏

i=1

Mm(xi).

We can construct a neural network to approximate this function by parallizing d

number of neural networks to approximate each B-spline basis function along each di-

mension, and use the last L1 ≂ log(d/δ) layers to approximate their product. The totol

approximation error of this function is bounded by

d
((m+ 1)/2)m

m!

m+1∑
j=1

(
m+ 1

j

)
ϵ1 + (d− 1)δ ≂

e2m√
m
dϵ1 + dδ

where δ and ϵ1 has the same definition as above. Choosing δ = ϵ
d(e2m

√
m+1)

, and recall

ϵ1 ≂ mδ proves the approximation error.

The proof of the Lemma 5.12 for general k, s follows by appending one more layer in

the front, as we show below. Proof: [Proof of Lemma 5.12] Using the neural network

proposed in Proposition 5.14, one can construct a neural network for appropximating

Mm,k,s by adding one layer before the first layer:

σ(2kIdx− 2ks)

The unused neurons in the first hidden layer is zero padded. The Frobenius norm of the

weight is 2k∥Id∥F = 2k
√
d. Following the proof of Proposition 5.5, rescaling the weight

in this layer by 2−k, and the weight matrix in the last layer by 2k, and scaling the bias

properly, one can verify that this neural network satisfy the statement.

Sparse approximation of Besov functions using B-spline wavelets

Proof of Proposition 5.8
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Dũng [136, Theorem 3.1] Suzuki [106, Lemma 2] proposed an adaptive sampling

recovery method that approximates a function in Besov space. The method is divided

into two cases: when p ≥ r, and when p < r.

When p ≥ r, there exists a sequence of scalars λj , j ∈ P d(µ), Pd(µ) := {j ∈ Zd :

|ji| ≤ µ,∀i ∈ d} for some positive µ, for arbitrary positive integer k̄, the linear operator

Qk̄(f,x) =
∑

s∈J(k̄,m,d)

ak̄,s(f)Mk̄,s(x), ak̄,s(f) =
∑

j∈Zd,P d(µ)

λj f̄(s+ 2−k̄j)

has bounded approximation error

∥f −Qk̄(f, x)∥r ≤ C2−αk̄∥f∥Bα
p,q
,

where f̄ is the extrapolation of f , J(k̄,m, d) := {s : 2k̄s ∈ Zd,−m/2 ≤ 2k̄si ≤ 2k̄ +

m/2,∀i ∈ [d]}. See Dũng [136, 2.6-2.7] for the detail of the extrapolation as well as

references for options of sequence λj .

Furthermore, Qk̄(f) ∈ Bα
p,q so it can be decomposed in the form (5.1) with M =∑k̄

k=0(2
k+m−1)d ≲ 2k̄d components and ∥{c̃k,s}k,s∥ ≲ ∥Qk̄(f)∥Bα

p,q
≲ ∥f∥Bα

p,q
where c̃k,s

is the coefficients of the decomposition of Qk̄(f). Choosing k̄ ≂ log2M/d leads to the

desired approximation error.

On the other hand, when p < r, there exists a greedy algorithm that constructs

G(f) = Qk̄(f) +
k∗∑

k=k̄+1

nk∑
j=1

ck,sj(f)Mk,sj

where k̄ ≂ log2(M), k∗ = [ϵ−1 log(λM)] + k̄ + 1, nk = [λM2−ϵ(k−k̄)] for some 0 < ϵ <
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α/δ − 1, δ = d(1/p− 1/r), λ > 0, such that

∥f −G(f)∥r ≤ M̄−α/d∥f∥Bα
p,q

and
k̄∑

k=0

(2k +m− 1)d +
k∗∑

k=k̄+1

nk ≤ M̄.

See Dũng [136, Theorem 3.1] for the detail.

Finally, since α− d/p > 1,

∥{2kicki,si}ki,si∥p ≤
k̄∑

k=0

2k∥{cki,si}si∥p

=
k̄∑

k=0

2(1−(α−d/p))k(2(α−d/p)k∥{cki,si}si∥p)

≲
k̄∑

k=0

2(1−(α−d/p))k∥f∥Bα
p,q

≂ ∥f∥Bα
p,q

(5.23)

where the first line is because for arbitrary vectors ai, i ∈ [n], ∥∑n
i=1 ai∥p ≤

∑n
i=1 ∥ai∥p,

the third line is because the sequence norm of B-spline decomposition is equivalent to

the norm in Besov space (see Section 5.3.2).

Remark 5.1 The requirement in Proposition 5.8: α− d/p > 1 is stronger than the con-

dition typically found in approximation theorem α− d/p ≥ 0 [136], so-called “Boundary

of continuity”, or the condition in Suzuki [106] α > d(1/p − 1/r)+ . This is because

although the functions in Bα
p,q when 0 ≤ α − d/p < 1 can be approximated by B-spline

basis, the sum of weighted coefficients may not converge. One simple example is the step

function fstep(x) = 1(x ≥ 0.5), fstep ∈ B1
1,∞. Although it can be decomposed using first

order B-spline basis as in (5.1), the summation of the coefficients is infinite. Actually one
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only needs a ReLU neural network with one hidden layer and two neurons to approximate

this function to arbitrary precision, but the weight need to go to infinity.

Remark 5.2 Note that when α − d/p = 1, the sequence norm (5.23) is bounded (up to

a factor of constant) by k∗∥f∥Bα
p,q
, which can be proven by following (5.23) except the

last line. This adds a logarithmic term with respect to M̄ compared with the result in

Proposition 5.8. This will add a logarithmic factor to the MSE. We will not focus on this

case in this paper of simplicity.

Sparse approximation of Besov functions using Parallel Neural Networks

Proof of Theorem 5.9

The proof is divided into three steps:

1. Bound the 0-norm and the p-norm of the coefficients of B-spline basis in order to

approximate an arbitrary function in Besov space up to any ϵ > 0.

2. Bound p′-norm of the coefficients of B-spline basis functions where p′ = 2/L, 0 <

p′ < 1 using the results above .

3. Add the approximation of neural network to B-spline basis computed in Lemma 5.12

into Step 2.

Proof: Using Proposition 5.8, one can construct M̄ number of NN according to

Lemma 5.12, such that each NN represents one B-spline basis function. The weights in

the last layer of each NN is scaled to match the coefficients in Proposition 5.8. Taking p′

in Lemma 5.15 as 2/L and combining with Lemma 5.12 finishes the proof.

Lemma 5.15 For any a ∈ RM̄ , 0 < p′ < p, it holds that:

∥a∥p′p′ ≤ M̄1−p′/p∥a∥p′p .
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Proof:

∑
i

|ai|p
′
= ⟨1, |a|p′⟩ ≤

(∑
i

1

)1− p′
p
(∑

i

(|ai|p
′
)

p
p′

) p′
p

= M̄1− p′
p ∥a∥p′p

The first inequality uses a Holder’s inequality with conjugate pair p
p′
and 1/(1− p′

p
).

5.8.5 Proof of the Main Theorem

Proof of Theorem 5.1

Proof: First recall the relationship between covering number (entropy) and estima-

tion error:

Proposition 5.16 Let F ⊆ {Rd → [−F, F ]} be a set of functions. Assume that F can

be decomposed into two orthogonal spaces F = F∥ × F⊥ where F⊥ is an affine space

with dimension of N. Let f0 ∈ {Rd → [−F, F ]} be the target function and f̂ be the least

squares estimator in F :

f̂ = argmin
f∈F

n∑
i=1

(yi − f(xi))
2, yi = f0(xi) + ϵi, ϵi ∼ N (0, σ2)i.i.d.,

then it holds that

MSE(f̂) ≤ Õ
(
argmin

f∈F
MSE(f) +

N + logN (F∥, δ) + 2

n
+ (F + σ)δ

)
.

The proof of Proposition 5.16 is defered to the section below. We choose F as the

set of functions that can be represented by a parallel neural network as stated, the (null)

space F⊥ = {f : f(x) = constant} be the set of functions with constant output, which

has dimension 1. This space captures the bias in the last layer, while the other parameters

contributes to the projection in F∥. See Section 5.8.3 for how we handle the bias in the
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other layers. One can find that F∥ is the set of functions that can be represented by a

parallel neural network as stated, and further satisfy
∑n

i=1 f(xi) = 0. Because F∥ ⊆ F ,

N (F∥, δ) ≤ N (F , δ) for all δ > 0, and the latter is studied in Theorem 5.6.

In Theorem 5.1, the width of each subnetwork is no less than what is required in

Theorem 5.9, while the depth and norm constraint are the same, so the approximation

error is no more that that in Theorem 5.9. Choosing r = 2, p = 2/L, and taking

Theorem 5.6 and Theorem 5.9 into this Proposition 5.16, one gets

MSE(f̂) ≲ min
f∈F

MSE(f) +
w2+2/(1−2/L)L2

√
dP ′ 1

1−2/L δ−
2/L

1−2/L log(wP ′/δ)

n
+ δ

≲ M̄−2α/d +
w2+2/(1−2/L)L2

n
M̄

1−2/(pL)
1−2/L δ−

2/L
1−2/L (log(M̄/δ) + 3) + δ,

(5.24)

where ∥f∥Bα
p,q
,m and d taken as constants. By choosing

δ ≂
w4−4/LL2−4/LM̄1−2/(pL)

n1−2/L
, M̄ ≂

( n1−2/L

w4−4/LL2−4/L

) 1
2α/d+1−2/(pL)

,

we get

MSE(f̂) ≤ Õ

((w4−4/LL2−4/L

n1−2/L

) 2α/d
2α/d+1−2/(pL)

+ e−c6L

)
(5.25)

where MSE(f̂) shows the MSE of the solution to constrained optimization problem (5.9)

by optimally choosing M̄ (or P ′).

Finally, under the assumption in Lemma 5.18, for any constrained optimization prob-

lem, there exists a regularized optimzation problem, whose MSE is not larger than the

MSE of the constrained optimization problem up to a factor of a constant. This closes

the connection between (5.8) and (5.9) and finishes the proof.

Note that the empirical risk minimizer (ERM) of the parallel nerual network sat-

isfy that the (2/L)-norm of the coefficients of the parallel neural network satisfy that
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∥{aj}∥2/L2/L = ∥{ãj,M̄}∥2/L2/L where {ãj,M̄} is the coefficient of the particular M̄ -sparse ap-

proximation, although {aj} is not necessarily M̄ sparse. Empirically, one only need

to guarantee that during initialization, the number of subnetworks M ≥ M̄ such that

the M̄ -sparse approximation is feasible, thus the approximation error bound from Theo-

rem 5.9 can be applied. Theorem 5.9 also says that ∥{aj}∥2/L2/L = ∥{ãj,M̄}∥2/L2/L ≲ M̄1−2/pL,

thus we can apply the covering number bound from Theorem 5.6 with P ′ = M̄1−2/pL.

Finally, if λ is optimally chosen, then it achieves a smaller MSE than this particular λ′,

which has been proven to be no more than O(M̄−α/d) and completes the proof.

Proof of Proposition 5.16

For any function f ∈ F , define f⊥ = argminh∈F⊥

∑n
i=1(f(xi)−h(xi))

2 be the projec-

tion of f to F⊥, and define f∥ = f − f⊥ be the projection to the orthogonal complement.

Note that f∥ is not necessarily in F∥. However, if f ∈ F , then f∥ ∈ F∥. yi⊥ and yi∥ are

defined by creating a function fy such that fy(xi) = yi,∀i, e.g. via interpolation. Because

F∥ and F⊥ are orthogonal, the empirical loss and population loss can be decomposed in

the same way:

L∥(f) =
1

n

n∑
i=1

(f∥(x)− f0∥(x))
2 +

n−N

n
σ2, L⊥(f) =

1

n

n∑
i=1

(f⊥(x)− f0⊥(x))
2 +

N

n
σ2,

L̂∥(f) =
1

n

n∑
i=1

(f∥(x)− yi∥)
2, L̂⊥(f) =

1

n

n∑
i=1

(f⊥(x)− yi⊥(x))
2,

MSE∥(f) = ED

[ 1
n

n∑
i=1

(f∥(x)− f0∥(x))
2
]
, MSE⊥(f) = ED

[ 1
n

n∑
i=1

(f⊥(x)− f0⊥(x))
2
]
,

such that L(f) = L∥(f) + L⊥(f), L̂(f) = L̂∥(f) + L̂⊥(f). This can be verified by

decomposing f̂ , f0 and y into two orthogonal components as shown above, and observing

that
∑n

i=1 f1⊥(xi)f2∥(xi) = 0,∀f1, f2.
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First prove the following claim

Claim 5.17 Assume that f̂ = argminf∈F L̂(f) is the empirical risk minimizer. Then

f̂⊥ = argminf∈F⊥
L̂⊥(f), f̂∥ = argminf∈F∥

L̂∥(f), where f̂⊥ is the projections of f̂ in F⊥,

and f̂∥ = f̂ − f̂⊥ respectively.

Proof: Since f̂ ∈ F , by definition f̂∥ ∈ F∥. Assume that there exist f̂ ′
⊥, f̂

′
∥, and either

L̂⊥(f̂
′
⊥) < L̂⊥(f̂⊥), or L̂∥(f̂

′
∥) < L̂∥(f̂∥). Then

L̂(f̂ ′) = L̂(f̂ ′
⊥ + f̂ ′

∥) = L̂∥(f̂
′
⊥ + f̂ ′

∥) + L̂⊥(f̂
′
⊥ + f̂ ′

∥) = L̂∥(f̂
′
∥) + L̂⊥(f̂

′
⊥)

< L̂∥(f̂∥) + L̂⊥(f̂⊥) = L̂∥(f̂⊥ + f̂∥) + L̂⊥(f̂⊥ + f̂∥) = L̂(f̂)

which shows that f̂ is not the minimizer of L̂(f) and violates the assumption.

Then we bound MSE⊥(f). We convert this part into a finite dimension least square

problem:

f̂⊥ = argmin
f∈F⊥

L̂⊥(f)

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥)
2

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥)
2 + ϵ2i∥

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥ − ϵi∥)
2

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi)
2

The forth line comes from our assumption that F⊥ is orthogonal to F∥, so ∀f ∈ F⊥, f +

f0⊥ + ϵ⊥ is orthogonal to ϵ∥.

Let the basis function of F⊥ be h1, h2, . . . , hN , the above problem can be reparame-
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terized as

argmin
θ∈RN

1

n
∥Xθ − y∥2

where X ∈ Rn×N : Xi = hj(xi),y = y0⊥ + ϵ,y0⊥ = [f0⊥(x1), . . . , f0⊥(xn)], ϵ =

[ϵ1, . . . , ϵn]. This problem has a closed-form solution

θ = (XTX)−1XTy

Observe that f0⊥ ∈ F⊥, let y0⊥ = Xθ∗,The MSE of this problem can be computed by

L(f̂⊥) =
1

n
∥Xθ − y0⊥∥2 =

1

n
∥X(XTX)−1XT (Xθ∗ + ϵ)−Xθ∗∥2

=
1

n
∥X(XTX)−1XTϵ∥2

Observing that Π := X(XTX)−1XT is an idempotent and independent projection

whose rank is N , and that E[ϵϵT ] = σ2I, we get

MSE⊥(f̂⊥) = E[L(f̂⊥)] =
1

n
∥Πϵ∥2 = 1

n
tr(ΠϵϵT ) =

σ2

n
tr(Π)

which concludes that

MSE⊥(f̂) = O
(N
n
σ2
)
. (5.26)

See also [142, Proposition 1].

Next we study MSE∥(f̂). Denote σ̃2
∥ = 1

n

∑n
i=1 ϵ

2
i∥, E = maxi |ϵi|. Using Jensen’s

inequality and union bound, we have

exp(tE[E]) ≤ E[exp(tE)] = E[max exp(t|ϵi|)] ≤
n∑

i=1

E[exp(t|ϵi|)] ≤ 2n exp(t2σ2/2)
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Taking expectation over both sides, we get

E[E] ≤ log 2n

t
+

tσ2

2

maximizing the right hand side over t yields

E[E] ≤ σ
√
2 log 2n.

Let F̃∥ be the covering set of F∥ = {f∥ : f ∈ F}. For any f̃∥ ∈ F̃∥,

L∥(fj)− L̂∥(fj) =
1

n

n∑
i=1

(fj∥(xi)− f0∥(xi))
2 − 1

n

n∑
i=1

(f̃∥(xi)− yi∥)
2 +

n−N

n
σ2

=
1

n

n∑
i=1

ϵi∥(2f̃∥(xi)− f0∥(xi)− yi∥) +
n−N

n
σ2

=
1

n

n∑
i=1

ϵi(2f̃∥(xi)− f0∥(xi)− yi∥) +
n−N

n
σ2

=
1

n

n∑
i=1

ϵi(2f̃∥(xi)− 2f0∥(xi)) +
n−N

n
σ2 − σ̃2

∥

The first term can be bounded using Bernstein’s inequality: let hi = ϵi(fj∥(xi)−f0∥(xi)),

by definition |hi| ≤ 2EF ,

Var[hi] = E[ϵ2i (f̃∥(xi)− f0∥(xi))
2]

= (f̃∥(xi)− f0∥(xi))
2E[ϵ2i ]

= (f̃∥(xi)− f0∥(xi))
2σ2

145



Local adaptivity of Weight Decayed DNNs Chapter 5

using Bernstein’s inequality, for any f̃∥ ∈ F̃∥, with probably at least 1− δp,

1

n

n∑
i=1

ϵi(2f̃∥(xi)− 2f0∥(xi)) =
2

n

n∑
i=1

hi

≤ 2

n

√√√√2
n∑

i=1

(
f̃∥(xi)− f0∥(xi)

)2
σ2 log(1/δp) +

8EF log(1/δp)

3n

= 2

√(
L∥(f̃∥)−

n−N

n
σ2
)2σ2 log(1/δp)

n
+

8EF log(1/δp)

3n

≤ ϵ
(
L∥(f̃∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δp)

3n

the last inequality holds true for all ϵ > 0. The union bound shows that with probably

at least 1− δ, for all f̃∥ ∈ F̃∥,

L∥(f̃∥)− L̂∥(f̃∥) ≤ ϵ
(
L∥(f̃∥)−

n−N

n
σ2
)
+

8σ2 log(N (F∥, δ)/δp)

nϵ
+

8EF log(N (F∥, δ)/δp)

3n

+
n−N

n
σ2 − σ̃2

∥.

By rearanging the terms and using the definition of L(f̃∥), we get

(1− ϵ)
(
L∥(f̃∥)−

n−N

n
σ2
)
≤ L̂∥(f̃∥) +

8σ2 log(N (F∥, δ)/δp)

nϵ
+

8EF log(N (F∥, δ)/δp)

3n
− σ̃2

∥.

Taking the expectation (over D) on both sides, and notice that E[σ̃2
∥] =

n−N
n

σ2. Fur-

thermore, for any random variable X,E[X] =
∫∞
−∞ xdP (X ≤ x), we get

max
f̃∥∈F̃∥

(
(1− ϵ)MSE∥(f̃∥)− E[L̂∥(f̃∥)]

)
≤
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)(
logN (F∥, δ)−

∫ 1

δ=0

log(δp)dδp

)
− n−N

n
σ2

=
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2.

(5.27)

where the integration can be computed by replacing δ with ex. Though it is not integrable
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under Riemann integral, it is integrable under Lebesgue integration.

Similarly, let f̌∥ = argminf∈F∥
L∥(f),

L∥(f̌∥)− L̂∥(f̌∥) =
1

n

n∑
i=1

ϵi(2f̌∥(xi)− 2f0∥(xi)) +
n−N

n
σ2 − σ̃2

∥

with probably at least 1− δq, for any ϵ > 0,

− 1

n

n∑
i=1

ϵi(2f̌∥(xi)− 2f0∥(xi)) ≤ ϵ
(
L∥(f̌∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δp)

3n
,

L̂∥(f̌∥) ≤ (1 + ϵ)
(
L∥(f̌∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δq)

3n
+ σ̃2

∥.

Taking the expectation on both sides,

E[L̂∥(f̌∥)] ≤ (1 + ϵ)MSE∥(f̌∥) +
8σ2

nϵ
+

8Fσ
√
2 log 2n

3n
+

n−N

n
σ2. (5.28)

Finally, let f̂∗ := argminf∈F̃∥

∑n
i=1(f̂∥(xi) − f(xi))

2 be the projection of f̂∥ in its δ-

covering space,

MSE∥(f̂∥) = E
[ 1
n

n∑
i=1

(f̂∥(xi)− f0∥(xi))
2
]

= E
[ 1
n

n∑
i=1

(f̂∗(xi)− f0∥(xi))
2 +

1

n

n∑
i=1

(f̂∥(xi)− f̂∗(xi))(f̂∥(xi) + f̂∗(xi)− 2f0∥(xi))
]

≤ E
[ 1
n

n∑
i=1

(f̂∗(xi)− f0∥(xi))
2
]
+ 4Fδ

= MSE∥(f̂∗(xi)) + 4Fδ,

and similarly

L̂∥(f̂∗) ≤ L̂∥(f̂∥) + (4F + 2E)δ. (5.29)
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We can conclude that

MSE∥(f̂∥) ≤
1

1− ϵ

(
E[L̂∥(f̂∗)] +

(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)

+ 4Fδ

≤ 1

1− ϵ

(
E[L̂∥(f̂∥)] + (4F + σ

√
8 log 2n)δ

+
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)
+ 4Fδ

≤ 1

1− ϵ

(
E[L̂∥(f̌∥)] + (4F + σ

√
8 log 2n)δ

+
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)
+ 4Fδ

≤ 1 + ϵ

1− ϵ
MSE∥(f̌∥) +

1

n

(8σ2

ϵ
+

8Fσ
√
2 log 2n

3

)( logN (F∥, δ) + 2

1− ϵ

)
+
(
4F +

4F + σ
√
8 log 2n

1− ϵ

)
δ,

where the first line comes from (5.27), and second comes from (5.29), the thid line is

because f̂∥ = argminf∈F∥
L̂∥(f), and the last line comes from (5.28). We also use that

fact that L̂∥(f̂) ≤ L̂∥(f),∀f . Noticing that MSE(f̂) = MSE∥(f̂) + MSE⊥(f̂), combining

this with (5.26) finishes the proof.

Lemma 5.18 Assume that these exists C1, C2 > 1 (which may depend on the target

function), for all P ′ > 0, there exists λ > 0, such that the soltion to the regularized

optimization problem (5.8), denoted as f̃ , satisfy

C1P
′ ≤ ∥{ãj}∥2/L2/L ≤ C2P

′,

then the MSE of the regularized optimization problem satisfy

MSE(f̃) ≤ CMSE(f̂)
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where C is a constant that depends on C1, C2, f̂ is the solution to the constrained

optimzation problem (5.9), and

λ ≲
MSE(f̂)

P ′ ≲ n−(1−2/L)

Proof: The MSE of the regularized problem can be achieved by taking our assumtion

into (5.6). We only need to prove the selection of λ. We apply the decomposition as in

Proposition 5.16, and only need to consider F∥, as F⊥ is not imfluenced by regularization

or constrained. From the definition of f̃ and λ, we have

L̂(f̃) + λ∥{ãj}∥2/L2/L ≤ L̂(f̂) + λ∥{âj}∥2/L2/L,

L̂∥(f̃) + λ∥{ãj}∥2/L2/L ≤ L∥(f̂) + λ∥{âj}∥2/L2/L

From Proposition 5.16, we get

(1− ϵ)MSE(f̃)−O

(
logN (∥{ãj}∥2/L2/L, δ)

n

)
+ λ∥{ãj}∥2/L2/L

≤ (1 + ϵ)MSE(f̂) +O

(
logN (∥{âj}∥2/L2/L, δ)

n

)
+ λ∥{âj}∥2/L2/L

(5.30)

Observing that MSE(f̃) ≥ 0, and
logN (∥{âj}∥

2/L
2/L

,δ)

n
≂ MSE(f̂) for the optimally chosen

P ′, taking the assumtion into the inequality proves the choice of λ.

Remark 5.3 Define R(λ) := R(argmin L̂(f) + λR(f)), where R(f) = ∥{aj}∥2/L2/L is the

regularizer term of a parallel NN (f). Notice that R(λ) is a non-increasing function of

lambda (as proved below), the assumption in Lemma 5.18 is equivalent to that if R(λ)

contains any uncontinuous points, then the uncontinuous points should not be larger than

C2

C1
in ratio. On the other hand, if λ is chosen as λ = O(MSE(f̂)

P ′ ), then from (5.30), we
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get

λ∥{ãj}∥2/L2/L ≤ O(MSE(f̂)) +O

(
logN (∥{âj}∥2/L2/L, δ)

n

)

≤ O(MSE(f̂)) +
1

n
Õ((∥{âj}∥2/L2/L)

1
1−2/L )

If the constant term in λ is large enough, the above inequality yields two sets of solutions:

∥{ãj}∥2/L2/L ≤ O

(
∥{âj}∥2/L2/L +

1

λ
MSE(f̂)

)
= O(∥{âj}∥2/L2/L),

and

∥{ãj}∥2/L2/L ≥ Õ
(
(nλ)

1−2/L
2/L

)
.

In the first case, one can easily see from (5.30) that MSE(f̃) ≤ O(MSE(f̂)), which says

that the MSE of the regularized problem is close to the minimax rate; in the later case,

the generalization gap of the regularized problem is bounded by O(n
1−2/L
2/L λL/2), which is

much larger than the former case. So a sufficient condition of the above assumption

is that the model does not overfit significantly (by orders of magnitude) more than the

constrained version. In our experiment, we find that the latter case is very difficult to

happen, possibly because of the implicit regularization during training, and the connection

between λ and effective degree of freedom is actually smooth. Notably, as L gets larger,

in the second case ∥{ãj}∥2/L2/L increases exponentially with L (the constant terms depends

at most polynomially on L), which suggests that the latter case is less likely to happen

for deep neural networks.

Claim 5.19 For fixed D, the regularized problem satisfy that R(λ) as defined above is

strictly non-increasing with λ.

Proof: We provide a short proof by contradiction: suppose that there exists lambda1 <

λ2, and the solution satisfy (f1) < R(f2) where R(f) = ∥{aj}∥2/L2/L is the regularizer term
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of a parallel NN, f1, f2 are the solution to the regularized problem with λ = λ1, λ2 re-

spectively. Then by definition of f1, f2, we have L̂(f1) + λ1R(f1) ≤ L̂(f2) + λ1R(f2) ,

so λ1 ≥ L̂(f1)−L̂(f2)
R(f2)−R(f1)

; L̂(f2) + λ2R(f2) ≤ L̂(f1) + λ2R(f1), so λ2 ≤ L̂(f1)−L̂(f2)
R(f2)−R(f1)

which is

controversal to our assumption that λ1 < λ2.

5.9 Additional information about numerical result

5.9.1 Target Functions

The doppler function used in Figure 5.3(d)-(f) is

f(x) = sin(4/(x+ 0.01)) + 1.5.

The “vary” function used in Figure 5.3(g)-(i) is

f(x) = M1(x/0.01) +M1((x− 0.02)/0.02) +M1((x− 0.06)/0.03)

+M1((x− 0.12)/0.04) +M3((x− 0.2)/0.02) +M3((x− 0.28)/0.04)

+M3((x− 0.44)/0.06) +M3((x− 0.68)/0.08),

where M1,M3 are first and third order Cardinal B-spline bases functions respectively.

We uniformly take 256 samples from 0 to 1 in the piecewise cubic function experiment,

and uniformly 1000 samples from 0 to 1 in the doppler function and “vary” function

experiment. We add zero mean independent (white) Gaussian noise to the observations.

The standard derivation of noise is 0.4 in the doppler function experiment and 0.1 in the

“vary” function experiment.
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5.9.2 Training/Fitting Method

In the piecewise polynomial function (“vary”) experiment, the depth of the PNN

L = 10, the width of each subnetwork w = 10, and the model contains M = 500

subnetworks. The depth of NN is also 10, and the width is 240 such that the NN and

PNN have almost the same number of parameters. In the doppler function experiment,

the depth of the PNN L = 12, the width of each subnetwork w = 10, and the model

contains M = 2000 subnetworks, because this problem requires a more complex model

to fit. The depth of NN is 12, and the width is 470. We used Adam optimizer with

learning rate of 10−3. We first train the neural network layer by layer without weight

decay. Specifically, we start with a two-layer neural network with the same number of

subnetworks and the same width in each subnetwork, then train a three layer neural

network by initializing the first layer using the trained two layer one, until the desired

depth is reached. After that, we turn the weight decay parameter and train it until

convergence. In both trend filtering and smoothing spline experiment, the order is 3,

and in wavelet denoising experiment, we use sym4 wavelet with soft thresholding. We

implement the trend filtering problem according to Tibshirani [99] using CVXPY, and

use MOSEK to solve the convex optimization problem. We directly call R function

smooth.spline to solve smoothing spline.

5.9.3 Post Processing

The degree of freedom of smoothing spline is returned by the solver in R, which is

rounded to the nearest integer when plotting. To estimate the degree of freedom of trend

filtering, for each choice of λ, we repeated the experiment for 10 times and compute the

average number of nonzero knots as estimated degree of freedom. For neural networks,
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we use the definition [140]:

2σ2df = E∥y′ − ŷ∥22 − E∥y − ŷ∥22 (5.31)

where df denotes the degree of freedom, σ2 is the variance of the noise, y are the labels,

ŷ are the predictions and y′ are independent copy of y. We find that estimating (5.31)

directly by sampling leads to large error when the degree of freedom is small. Instead,

we compute

2σ2d̂f = Ê∥y0 − ŷ∥22 − Ê∥y − ŷ∥22 + Ê∥y − ȳ0∥22 − ∥y0 − ȳ0∥22 (5.32)

where d̂f is the estimated degree of freedom, E denotes the empirical average (sample

mean), y0 is the target function and ȳ0 is the mean of the target function in its domain.

Proposition 5.20 The expectation of (5.32) over the dataset D equals (5.31).

Proof:

2σ2d̂f = ED[Ê∥y0 − ŷ∥22 − Ê∥y − ŷ∥22 + Ê∥y − ȳ0∥22 − ∥y0 − ȳ0∥22]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + ED[Ê[(y − y0)(y + y0 − 2ȳ0)]]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + E
[ n∑

i=1

ϵi(2yi + ϵi − 2ȳ0)
]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + nσ2

= E∥y′ − ŷ∥22 − E∥y − ŷ∥22

where D denotes the dataset. In the third line, we make use of the fact that E[ϵi] =

0,E[ϵ2i ] = σ2, and in the last line, we make use of E[ϵ′i] = 0,E[ϵ′i
2] = σ2, and ϵ′i are

independent of yi and y0,i

One can easily check that a “zero predictor” (a predictor that always predict ȳ0, and it
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always predicts 0 if the target function has zero mean) always has an estimated degree

of freedom of 0.

In Figure 5.3(h)(i), we take the minimum MSE over different choices of λ, and plot

the average over 10 runs. Due to optimization issue, sometimes the neural networks are

stuck at bad local minima and the empirical loss is larger than the global minimum by

orders of magnitude. To deal with this problem, in Figure 5.3(h)(i), we manually detect

these results by removing the experiments where the MSE is larger than 1.5 times the

average MSE under the same setting, and remove them before computing the average.

5.9.4 More experimental results

Regularization weight vs degree-of-freedom

As we explained in the previous section, the degree of freedom is the exact information-

theoretic measure of the generalization gap. A Larger degree-of-freedom implies more

overfitting.

In figure Figure 5.4, we show the relationship between the estimated degree of freedom

and the scaling factor of the regularizer λ in a parallel neural network and in trend

filtering. As is shown in the figure, generally speaking as λ decreases towards 0, the

degree of freedom should increase too. However, for parallel neural networks, if λ is

very close to 0, the estimated degree of freedom will not increase although the degree of

freedom is much smaller than the number of parameters — actually even smaller than the

number of subnetworks. Instead, it actually decreases a little. This effect has not been

observed in other nonparametic regression methods, e.g. trend filtering, which overfits

every noisy datapoint perfectly when λ→ 0. But for the neural networks, even if we do

not regularize at all, the among of overfitting is still relatively mild 30/256 vs 80/1000.

In our experiments using neural networks, when λ is small, we denoise the estimated
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Figure 5.4: The relationship between degree of freedom and the scaling factor of the
regularizer λ. The solid line shows the result after denoising. (a)(b)in a parallel NN.
(c)(d) In trend filtering. (a)(c): the “vary” function. (b)(d) the doppler function.

degree of freedom using isotonic regression.

We do not know the exact reason of this curious observation. Our hypothesis is that

it might be related to issues with optimization, i.e., the optimizer ends up at a local

minimum that generalizes better than a global minimum; or it could be connected to the

“double descent” behavior of DNN [143] under over-parameterization.
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Chapter 6

Finite Overparameterization:

Overparameterized ResNets for

functions on manifolds

6.1 Introduction

In the previous chapter, we delved into the local adaptivity of deep neural networks

in the context of nonparametric regression. Unfortunately, the practical applications of

this theory are limited by the curse of dimensionality, a common issue in nonparametric

regression. This phenomenon refers to the exponential increase in the number of samples

required as the dimension of the data increases. While nonparametric regression tech-

niques are typically restricted to low-dimensional data due to the curse of dimensionality,

deep learning is frequently utilized for high-dimensional data and is observed to perform

well in this case.

One possible explanation to this effect is that in real world applications, the high

dimension data often follows a lower dimension latent space. In other words, the high di-
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mension data lay on a low dimension manifold. An estimator only needs to Approximate

the target function on this manifold, thus the sample complexity depends exponentially

only on the latent dimension, thus overcome the problem of curse of dimensionality.

A series of work shows that neural networks can approximate functions on a low

dimension manifold and overcome the curse of dimensionality [109]. In this work, we

demonstrate that a weight decayed ResNet and ResNeXt can adapt to the smooth func-

tions on a low dimension manifold. Notably, the adaptivity does not require tuning the

architecture of the neural network, but only the weight decay parameter. Our inves-

tigation encompasses both vanilla neural networks and convolutional neural networks

(CNNs), utilizing both ResNet and ResNeXt architectures.

6.2 Preliminary and related work

6.2.1 Besov function and smooth manifold

Besov spaces, denoted as Bα
p,q, are a family of function spaces that are widely used

in the field of functional analysis and harmonic analysis. The detained definition of

Besov space is deferred to Section 5.3.2 and Section 6.5.2. It is parameterized by three

parameters α, p and q, where α defines the smoothness of functions in the function space,

p and q defines the norm to measure the smoothness. When p = q = 2, it reduces to

Sobolev space. It is known that linear estimators, including kernel methods, can achieve

the minimax rate on Sobolev space, but not on more generalized Besov space; the latter

requires the estimator to be locally adaptivity. Estimators with this property includes

wavelet smoothing [94], locally adaptive regression splines [LARS, 98], trend filtering

[99, 100] and adaptive local polynomials [101, 102].

In real application, the pre-image of the target function may not be the Euclidean
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space, but rather a manifold with lower intrinsic dimension denoted as d. A manifold is

a topological space and there exists a continuous bijection mapping between this space

and a d-dimensional Euclidean space. In typical applications, d ≪ D, where D is the

dimension of the Euclidean space called the ambient dimension. The detailed definition

is deferred to Section 6.5.1.

It has been found that if the data are distributed near a low dimension smooth mani-

fold, neural networks can explore this low dimension data structure and the performance

of the neural networks can be improved [144, 145, 146, 147]. Our work aims to find if

weight-decayed overparameterized neural networks can benefit from data structure.

6.2.2 ResNet and ResNeXt

(a)

x

+
+

+

f(x)

id

id

id f1,1
. . .f1,M

fN,1

. . .

fN,M

. . .

(b)

Figure 6.1: (a) Demonstration of the convolution operation W ∗ z, where the input is
z ∈ RD×w, and the output is W ∗ z ∈ RD×w′

. Here Wj,:,: is a D × w matrix for the
j-th output channel. (b) Demonstration of the ConvResNeXt. f1,1 . . . fN,M are the
building blocks, each building block is a convolution neural network.

ResNets was proposed to mitigate the vanishing/exploding gradients in deep neural

networks [148]. The key technique is to add identity mappings, also known as residual

connections, that skip the connections of every L layers. This divides the neural networks

into multiple building blocks. Each block can be represented as

y = f(x;w) + x
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where f(x;w) denotes a feedforward neural network.

ResNeXt [149] is an extension to the ResNet A parallel architecture is introduced

to each building block, which enables multiple “paths” in each block. This approach

allows for improving the performance without increasing the number of parameters. The

detailed definition can be found in Section 6.3.

Initially, ResNet and ResNeXt were proposed for convolutional neural networks (CNNs),

but the concept can be applied to vanilla neural networks as well. This paper investigates

both vanilla neural networks and CNNs, applying the ResNet and ResNeXt architectures.

In cases where the number of blocks in a ResNeXt architecture is reduced to 1,

it essentially becomes a parallel neural network, observing the impact of the residual

connection is negligible in this case. Parallel neural networks will be discussed in detail

in the next section.

It has been found that both parallel neural networks and ResNets achieve near-

minimax rates on a wide range of function classes up to a logarithmic factor [106, 108,

109], which separates them from other neural network architectures.

6.2.3 Parallel neural network and ℓp sparse model

A series of work shows that regularization in neural networks induces sparsity. Parhi

et al. [107, Theorem 8] showed that a specific regularization in a two-layer neural network

is equivalent to enforcing ℓ1 sparsity. The key technique, the AM-GM inequality, was

applied in a variety of works including Srebro et al. [130] Tibshirani [131], etc. Zhang

et al. [6] showed that training a parallel neural network with weight decay is equivalent

to training an ℓp sparse model where p = 2/L, L is the number of layers. Making use of

this result, they prove that weight decayed parallel neural networks are locally adaptive.
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6.3 Main theorem

In this paper, we investigate ResNeXt, a neural network that utilizes residual con-

nections and parallel architecture. Both feedforward neural networks and convolution

neural networks can be used as the building blocks.

Definition 6.1 Let the hidden dimension (or the number of channels) of the ResNeXt

be h. The neural network comprises N residual blocks, each building block has a parallel

architecture with M building blocks, and each building block contains L layers. If the

feedforward neural network is used in the building blocks, denote the width of each block

as w. If the convolution neural network is used in the building blocks, define the number

of channels as w and the size of the kernel be K. A ResNeXt can be represented as

f = Wout ·
(
1 +

M∑
m=1

fN,m

)
◦ · · · ◦

(
1 +

M∑
m=1

f1,m

)

fn,m = W
(n,m)
L ⋆ ReLU(W

(n,m)
L−1 ⋆ . . .ReLU(W

(n,m)
1 ⋆ x)),

where ⋆ denotes the matrix-vector product when the feedforward neural network is used

in the building blocks, and convolution operation when convolution neural network is used

in the building blocks.

With a weight decay regularization applied on the residual blocks and the last fully

connected layer separately, let the sum norm of all the residual blocks be bounded by Bres

and the norm of the last linear layer be bounded by Bout:

N∑
n=1

M∑
m=1

L∑
ℓ=1

∥W(n,m)
ℓ ∥2F ≤ Bres, ∥Wout∥2F ≤ Bout.

All the blocks above contains no bias. The missing representation power from the bias

can be compensated by appending a padding layer in front of the model. Specifically,
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the input is padded with a scalar ‘1’. If the building blocks are feedforward neural

networks, an additional scalar “0” is padded to the input, such that h = D+2, where D

is the dimension of the input; If the building blocks are convolution neural networks, an

additional channel containing ‘0’s is padded such that h = 2 and the dimension of the

input to the ResNeXt is win = D + 1. The channel with “0” is used to accumulate the

output. Besides, another linear layer is included after all the building blocks to project

the hidden space to a 1-dimensional output space.

Without the loss of generalization, assume that target function is bounded f0(x) ∈

[0, 1], ∀x ∈M. Correspondingly, assume that the output of the neural network is clipped

to [0, 1].

6.3.1 Approximation theory

In this section, we provide a universal approximation error of ResNeXts for Besov

functions on a smooth manifold:

Theorem 6.1 For any Besov function f0 on a smooth manifold satisfying p, q ≥ 1, α−

d/p > 1,

∥f0∥Bα
p,q(M) ≤ Cf ,

for any P > 0, for any ResNeXt architecture defined in Section 6.3 with the feedforward

neural network as the building blocks and with parameters M,N,L,Bres, Bout satisfying

L ≥ 3,

MN ≥ CMP, w ≥ C1(dm+D), Bres ≤ C2L,

Bout ≤ C3C
2
f ((dm+D)L)L(CMP )L−2/p,

(6.1)

there exists an instance f of this ResNeXt class, such that

∥f − f0∥∞ ≤ CfCM
(
C4P

−α/d + C5 exp(−C6L logP )
)
, (6.2)
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where C1, C2, C3 are universal constants and C4, C5, C6 are constants that only depends

on d and m, d is the intrinsic dimension of the manifold and m is an integer satisfying

0 < α < min(m,m− 1 + 1/p),

The approximation error of the network is bounded by the sum of two terms. The first

term is a polynomial decay term that decreases with the size of the neural network,

and represents the trailing term of B-spline approximation. The second term reflects

the approximation error of neural networks to piecewise polynomials, and it decreases

exponentially with the number of layers. The proof is deferred to Section 6.4.1 and the

appendix.

When the building blocks of the ResNeXt are the convolution neural networks, a

similar result can be proven:

Theorem 6.2 Under the same condition as Theorem 6.1, for any ResNeXt architecture

defined in Section 6.3 with the convolution neural network as the building blocks and with

parameters M,N,Bres, Bout, K and depth L′ satisfying L′ = L̄ + L0 − 1, L̄ ≥ 3, where

L0 = ⌈ h−1
K−1
⌉, and

MN ≥ CMP, w ≥ C1(dm+D), Bres ≤ C2L/K,

Bout ≤ C3C
2
f ((dm+D)LK)L(CMP )L−2/p,

(6.3)

there exists an instance of this ResNeXt class that has the approximation error

∥f − f0∥∞ ≤ CfCM
(
C4P

−α/d + C5 exp(−C6L̄ logP )
)
, (6.4)

where C1, C2, C3, C4, C5, C6 are the same constants as in Theorem 6.1.

This theorem is the direct result of Theorem 6.1 and Section 6.6.4, of which the latter

shows that any L-layer feedforward neural network can be reformulated as an L+L0−1-
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layer convolution neural network.

6.3.2 Estimation theory

Theorem 6.3 For any error function L that is 1-Lipschitz in its first argument, and the

architecture of the neural network satisfy the condition in Theorem 6.1 and Theorem 6.2,

for any function f0 in the Besov space on a smooth manifold

f0 ∈ Bα
p,q(M), f0(x) ∈ [0, 1] ∀x ∈M ⊆ [−1, 1]D,

the empirical risk minimize f̂ = argminf En[loss(f̂(x), y)] of a ResNeXt in (6.1) satisfies

ED[loss(f̂(x), y)] ≤ ED[L(f0)] + C7

(K− 2
L−2w

3L−4
L−2 L

3L−2
L−2

n

) α/d(1−2/L)
2α/d(1−1/L)+1−2/(pL)

+ C8 exp(−C6(L− L0)),

where the logarithmic terms are omitted. C6 is the constant defined in Theorem 6.1 and

Theorem 6.2, C7, C8 are constants that depend on Cf , CM, d,m. K = 1, L0 = 1 when the

building blocks are feedforward neural networks ; K is the size of the convolution kernel,

L0 = ⌈ h−1
K−1
⌉ when the building blocks are convolution neural networks.

Furthermore, for the mean square error loss

MSE(f) =
1

n

n∑
i=1

(f(xi)− f0(xi))
2

A tighter bound can be established:

MSE(f̂) ≤ C9ED[MSE(f0)] + C10

(K− 2
L−2w

3L−4
L−2 L

3L−2
L−2

n

) 2α/d(1−2/L)
2α/d(1−1/L)+1−2/(pL)

+ C11 exp(−C6(L− L0)).
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where C9, C10 and C11 are some universal constants.

We would like to make the following remarks about the result:

• Strong adaptivity: by setting the width of the neural network to w = 2C1, the model

can adapt to any Besov functions on any smooth manifold satisfying dm ≤ D by tuning

only the regularization parameter. This increases the estimation error by no more than

a constant term, which is a mild price to pay for a more adaptive method.

• No curse of dimensionality: the above rate only depends polynomially on the

ambient dimension D and exponentially on the hidden dimension d. Since in real data,

the hidden dimension d can be much smaller than the ambient dimension D, this result

shows that neural networks can overcome the curse of dimensionality when the data are

on a low-dimension manifold.

• Overparameterization is fine: the number of building blocks in a ResNet and

ResNeXt does not influence the estimation error as long as it is large enough. This

matches the empirical observations that neural networks generalize well despite overpa-

rameterization.

• Close to minimax rate: with weight decay, overparameterized ResNet and ResNeXt

can achieve close to the minimax rate in estimating functions in this class, and when

the number of training samples n is large enough, deeper models and achiever lower

estimation error. As a reference, the lower bound of the 1-Lipschitz error for any estimator

θ is

min
θ

max
f∗∈Bα

p,q

L(θ(D), f ∗) ≳ n− α/d
2α/d+1 ,

where ≳ notation hides a factor of constant. The proof can be found in Section 6.6.8.

• Deeper is better: with larger L, the error rate decays faster and get closer to the

minimax rate. This indicates that deeper model can achieve better performance than

shallower models when the training set is large enough.
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By choosing L = O(log(n)), the second term in the error can be eliminated and close

to the minimax rate can be achieved:

Corollary 6.4 For any ResNet or ResNeXt satisfying the condition in Theorem 6.3, and

the depth of each block is L = O(log(n)), then the estimation error of the empirical risk

minimizer under 1-lipschitz loss is

ED[loss(f̂(x), y)] ≤ ED[loss(f0)] + Õ(n− α/d
2α/d+1

(1−o(1))),

and that of the MSE loss is

ED[MSE(f̂(x), y)] ≤ Õ(ED[MSE(f0)] + n− 2α/d
2α/d+1

(1−o(1))),

where f0 is any function satisfying the condition in Theorem 6.3, Õ(·) shows that the

logarithmic term is omitted.

The proof of Theorem 6.3 is deferred to Section 6.4.2 and Section 6.6.7. The key

technique is computing the critical radius of the local Gaussian complexity by bounding

the covering number of weight-decayed ResNets and ResNeXts. This technique provides

a tighter bound than choosing a single radius of the covering number as in Suzuki [106],

Zhang et al. [6], for example. The covering number of an overparameterized ResNeXt

with norm constraint is one of the key contribution of this paper.

6.4 Proof overview

6.4.1 Approximation error

We follow the method in Liu et al. [109] to construct a neural network that achieves

the approximation error we claim. It is divided into the following steps:
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1. Decompose the target function into the sum of locally supported functions.

2. Locally approximate the decomposed functions using cardinal B-spline basis func-

tions.

3. Approximate the cardinal B-spline basis functions using neural networks.

4. Use a parallel neural network to Approximate the target function.

Decompose the target function into the sum of locally supported functions.

From the definition of the Besov function on a smooth manifold, we can decompose

the target function as the sum of locally supported Besov functions on a low dimensional

subspace. This decomposition exists for any construction of atlas of the manifold M.

See Section 6.5.1 for the detail.

In this work, we adopt a similar approach to [109] and partition M using a finite

number of open balls on RD. Specifically, we define B(ci, r) as the set of unit balls with

center ci and radius r such that their union covers the manifold of interest, i.e., M ⊆

∪CM
i=1B(ci, r). This allows us to partition the manifold into subregions Ui = B(ci, r)∪M,

and further decompose a smooth function on the manifold into sum of locally supported

smooth functions with linear projections.

Lemma 6.5 Approximating Besov function on a smooth manifold using B-spline: Let

f ∈ Bα
p,q(M). There exists a decomposition of f :

f(x) =

CM∑
i=1

f̃i ◦ ϕi(x)× 1(x ∈ B(ci, r))

and f̃i ∈ Bα
p,q,

∑CM
i=1 ∥f̃i∥Bα

p,q
≤ C∥f∥Bα

p,q(M), ϕi : M → Rd are linear projections,

B(ci, r) denotes the unit ball with radius r and center ci.
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The lemma is inferred by the existence of the partition of unity, which is shown below

for reference:

Proposition 6.6 (Existence of a C∞ partition of unity, Proposition 1 in [109])

Let {Uα}α∈A be a locally finite cover of a smooth manifold M. There is a C∞ partition

of unity {ρα}α∈A such that supp(ρα) ∈ Uα.

Locally approximate the decomposed functions using cardinal B-spline basis

functions.

In the second step, we decompose the locally supported Besov functions achieved in

the first step using B-spline basis functions. The existence of the decomposition was

proven in [136], and was applied in a series of words Zhang et al. [6], Suzuki [106], Liu

et al. [109]. The difference between our result and previous work is that we define a norm

on the coefficients and bound this norm, instead of bounding the maximum value.

Proposition 6.7 For any function in the Besov space on a compact smooth manifold

f ∗ ∈ Bs
p,q(M), any N ≥ 0, there exists an approximated to f ∗ using cardinal B-spline

basis functions:

f̃ =

CM∑
i=1

P∑
j=1

ai,kj ,sjMm,kj ,sj ◦ ϕi × 1(x ∈ B(ci, r))

where m is a integer satisfying 0 < α < min(m,m−1+1/p), Mm,k,s = Mm(2
k(·−s)),Mm

denotes the B-spline basis function defined in (5.2), the approximation error is bounded

by

∥f − f̃∥∞ ≤ C12CMP−α/d

and the coefficients satisfy

∥{2kjai,kj ,sj}i,j∥p ≤ C13∥f∥Bα
p,q(M)
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The proof is deferred to Section 6.6.1. As will be shown below, the scaled coefficients

2kjai,kj ,sj corresponds to the total norm of the parameters in the neural network to

approximate the B-spline basis function, so this lemma

Approximate the cardinal B-spline basis functions using neural networks.

As has been shown in [6, 106, 109], a neural network can approximate B-spline basis

functions, and the error decreases exponentially with the number of layers.

Lemma 6.8 (Lemma 11 in [6]) Let Mm,k,s be the B-spline of order m with scale 2−k

in each dimension and position s ∈ Rd: Mm,k,s(x) := Mm(2
k(x − s)), Mm is defined

in (5.2). There exists a neural network with d-dimensional input and one output, with

width wd,m = O(dm) and depth L ≲ log(C14/ϵ) for some constant C14 that depends only

on m and d, approximates the B spline basis function Mm,k,s(x) := Mm(2
k(x−s)). This

neural network, denoted as M̃m,k,s(x),x ∈ Rd, satisfy

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤ m+ 1, ∀i ∈ [d],

• M̃m,k,s(x) = 0, otherwise.

• The total square norm of the weights is bounded by 22k/LC15dmL for some universal

constant C15.

Use a ResNeXt to Approximate the target function.

Using the results above, the target function can be(approximately) decomposed as

CM∑
i=1

P∑
j=1

ai,kj ,sjMm,kj ,sj ◦ ϕi × 1(x ∈ B(ci, r)). (6.5)
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We first demonstrate that a ReLU neural network can approximate

y × 1(x ∈ Br,i)

where ×̃ satisfy that y×̃1 = y for all y, and y×̃x̃ = 0 if any of x or y is 0, and the soft

indicator function 1̃(x ∈ Br,i) satisfy 1̃(x ∈ Br,i) = 1 when x ∈ Br,i, and 1̃(x ∈ Br,i) = 0

when x /∈ Br+∆,i. The detail is deferred to Section 6.6.2.

Then, we show that it is possible to construct a ResNeXt with MN = P,Wout =

[0, . . . , 0, 1], such that each building block takes the input from the first D+1-th channels

and accummulates the output to the D + 2-th channel. The k-th building block (the

position of the block does not matter) approximates

ai,kj ,sjMm,kj ,sj ◦ ϕi × 1(x ∈ B(ci, r))

where i = ceiling(k/N), j = rem(k,N). Each building block has width C1(md + D)

and depth L, where 0 < α < min(m,m − 1 + 1/p), where a sub-block with width D

and depth L− 1 approximates the chart selection, a sub-block with width md and depth

L− 1 approximates the B-spline function, and the last layer approximates the multiply

function. The norm of this block is bounded by

L∑
ℓ=1

∥W(i,j)
ℓ ∥2F ≤ O(22k/LdmL+DL). (6.6)

Making use of the 1-homogeneous property of ReLU layers, we can further scale all

the weights in the residual blocks by 1
B̃
, and scale Wout by B̃L such that the new network

we construct satisfy the constraint in (6.1). See Section 6.6.3 for the detail.
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6.4.2 Estimation error

We first prove the covering number of an overparameterized ResNeXt with norm-

constraint as in Lemma 6.9, then compute the critical radius of this function class using

the covering number as in Corollary 6.16. The critical radius can be used to bound the

estimation error for 1-Lipschitz loss as in Theorem 6.17, or for MSE using self-bounding

trick as in Theorem 6.18. The proof is deferred to Section 6.6.7.

Lemma 6.9 Consider a neural network defined in Section 6.3. Let the last layer of this

neural network is a single linear layer with norm ∥Wout∥2F ≤ Bout. Let the input of this

neural network satisfy ∥x∥2 ≤ 1, ∀x, and is concatenated with 1 before feeding into this

neural network so that part of the weight plays the role of the bias. The covering number

of this neural network is bounded by

logN (·, δ) ≲ w2LB
1

1−2/L
res K

2−2/L
1−2/L

(
B

1/2
out exp((KBres/L)

L/2)
) 2/L

1−2/L δ−
2/L

1−2/L (6.7)

where the logarithmic term is omitted, K = 1 when the feedforward neural network is the

building blocks and K is the size of the convolution kernel when the convolution neural

network is the building blocks.

Proof: Using AM-GM inequality, From Proposition 6.19, Proposition 6.21 and Propo-

sition 6.22, if any residual block is removed, the perturbation to the output is no more

than

(KBm/L)
L/2B

1/2
out exp((KBres/L)

L/2)

where Bm is the total norm of parameters in this block, K = 1 when the feedforward

neural network is the building blocks and K is the size of the convolution kernel when

the convolution neural network is the building blocks. Because of that, the residual

blocks can be divided into two kinds depending on the norm of the weights Bm < ϵ
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(“small blocks”) and Bm ≥ ϵ (“large blocks”). If all the “small blocks” are removed, the

perturbation to the output for any input ∥x∥2 ≤ 1 is no more than

exp((KBres/L)
L/2)B

1/2
out

∑
m:Bm<ϵ

(KBm/L)
L/2

≤ exp((KBres/L)
L/2)B

1/2
out

∑
m:Bm<ϵ

(KBm/L)(Kϵ/L)L/2−1

≤ exp((KBres/L)
L/2)KL/2BresB

1/2
out (ϵ/L)

L/2−1/L

Choosing ϵ = L
(

δL

2 exp((Bres/L)L/2)KL/2BresB
1/2
out

) 1
L/2−1

, the perturbation above is no more

than δ/2. The covering number can be determined by the number of the “large blocks”

in the neural network, which is no more than B/ϵ.

Taking our choice of ϵ into Proposition 6.15 and noting that for any block, BinLpost ≤

B
1/2
out exp((KBres/L)

L/2) finishes the proof, where Bin is the upper bound of the input to

this block as defines in Proposition 6.15, and Lpost is the Lipschitze parameter of all the

layers following the block.

Taking our choise of ϵ into Proposition 6.15 and ?? finishes the proof.

Remark 6.1 The proof of Lemma 6.9 shows that under weight decay, the building blocks

in a ResNet or ResNeXt is sparse, i.e. only a finite number of blocks contribute non-

trivially to the network even though the model can be overparameterized. This explains

why a ResNet or ResNeXt can generalize well despite overparameterization, and provide

a new prospective in explaining why residual connections improves the performance of

deep neural networks.
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6.5 Discussion

In this paper, we study the approximation and estimation error of a ResNet and

ResNeXt. We show that with property weight decay, the blocks in a ResNet or ResNeXt

converges to a sparse representation, so the covering number of a ResNet and ResNeXt

does not depend only on the total norm of the parameters and not on the number of

residual blocks, which allows an overparameterized neural network to generalize. Sup-

pose that the target function is supported on a smooth manifold, the estimation error

of ResNet and ResNeXt depends only weakly on the ambient dimension of the target

function, which shows that these models do not suffer from the curse of dimensionality,

thus can adapt to functions on a smooth manifold.

sectionIntroduction to Besov space and smooth manifold For the ease of the readers,

in this section, we provide detailed definition of the Besov space and smooth manifold.

6.5.1 Smooth manifold

Definition 6.2 (Chart) A chart on M is a pair (U, ϕ) such that U ⊂ M is open and

ϕ : U 7→ Rd, where ϕ is a homeomorphism (i.e., bijective, ϕ and ϕ−1 are both continuous).

In a chart (U, ϕ), U is called a coordinate neighborhood and ϕ is a coordinate system on

U . Essentially, a chart is a local coordinate system onM. A collection of charts which

coversM is called an atlas ofM.

Definition 6.3 (Ck Atlas) A Ck atlas for M is a collection of charts {(Uα, ϕα)}α∈A
which satisfies

⋃
α∈A Uα =M, and are pairwise Ck compatible:

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) and ϕβ ◦ ϕ−1

α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

are both Ck for any α, β ∈ A. An atlas is called finite if it contains finitely many charts.
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Definition 6.4 (Smooth Manifold) A smooth manifold is a manifoldM together with

a C∞ atlas.

Classical examples of smooth manifolds are the Euclidean space, the torus and the unit

sphere. Furthermore, we define Cs functions on a smooth manifoldM as follows:

Definition 6.5 (Cs functions on M) Let M be a smooth manifold and f :M → R

be a function on M. A function f : M → R is Cs if for any chart (U, ϕ) on M, the

composition f ◦ ϕ−1 : ϕ(U)→ R is a continuously differentiable up to order s.

We next define the C∞ partition of unity which is an important tool for the study of

functions on manifolds.

Definition 6.6 (Partition of Unity, Definition 13.4 in [150]) A C∞ partition of unity

on a manifoldM is a collection of C∞ functions {ρα}α∈A with ρα :M→ [0, 1] such that

for any x ∈M,

1. there is a neighbourhood of x where only a finite number of the functions in {ρα}α∈A
are nonzero;

2.
∑
α∈A

ρα(x) = 1.

An open cover of a manifoldM is called locally finite if every x ∈M has a neighbourhood

which intersects with a finite number of sets in the cover. The following proposition shows

that a C∞ partition of unity for a smooth manifold always exists.

Proposition 6.10 (Existence of a C∞ partition of unity, Theorem 13.7 in [150])

Let {Uα}α∈A be a locally finite cover of a smooth manifoldM. Then there is a C∞ par-

tition of unity {ρα}∞α=1 where every ρα has a compact support such that supp(ρα) ⊂ Uα.

Let {(Uα, ϕα)}α∈A be a C∞ atlas ofM. Proposition 6.10 guarantees the existence of

a partition of unity {ρα}α∈A such that ρα is supported on Uα.
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To characterize the curvature of a manifold, we adopt the geometric concept, reach.

Definition 6.7 (Reach [151, 152]) Denote

G =

{
x ∈ RD : ∃p ̸= q ∈M such that ∥x− p∥2 = ∥x− q∥2} = inf

y∈M
∥x− y∥2

}
.

as the set of points that have at least two nearest neighbors on M. The closure of G is

called the medial axis ofM. Then the reach ofM is defined as

τ = inf
x∈M

inf
y∈G
∥x− y∥2.

Reach has a simple geometrical interpretation: for every point x ∈ M, the radius

of the osculating circle is at least τ . A large reach for M indicates that the manifold

changes slowly, as illustrated in Figure 6.2.

  

Figure 6.2: Illustration of manifolds with large and small reach.

6.5.2 Besov functions on a smooth manifold

We next define Besov function spaces on the smooth manifoldM, which generalizes

more elementary function spaces such as the Sobolev and Hölder spaces.

The definition of Besov class can be found in Section 5.3.2.

We define Bα
p,q functions onM.

Definition 6.8 (Bα
p,q Functions on M [153, 154]) LetM be a compact smooth man-

ifold of dimension d. Let {(Ui, ϕi)}CM
i=1 be a finite atlas onM and {ρi}CM

i=1 be a partition
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of unity onM such that supp(ρi) ⊂ Ui. A function f :M→ R is in Bα
p,q(M) if

∥f∥Bα
p,q(M) :=

CM∑
i=1

∥(fρi) ◦ ϕ−1
i ∥Bα

p,q(Rd) <∞. (6.8)

Since ρi is supported on Ui, the function (fρi) ◦ ϕ−1
i is supported on ϕ(Ui). We can

extend (fρi) ◦ ϕ−1
i from ϕ(Ui) to Rd by setting the function to be 0 on Rd \ ϕ(Ui). The

extended function lies in the Besov space Bs
p,q(Rd) [154, Chapter 7].

6.6 Proof of technical results

6.6.1 Locally approximate the decomposed functions using car-

dinal B-spline basis functions.

In this section, we provide the proof to Proposition 6.7 From the definition of Bα
p,q(M),

and applying Proposition 6.6, there exists a decomposition of f ∗ as

f ∗ =

CM∑
i=1

(fi) =

CM∑
i=1

(fi ◦ ϕ−1
i ) ◦ ϕi × 1Ui

where fi := f ∗ ·ρi, ρi satisfy the condition in Definition 6.6, and fi◦ϕ−1
i ∈ Bα

p,q. Using

Proposition 5.8, for any i, one can approximate fi ◦ ϕ−1
i with f̄i:

f̄i =
P∑

j=1

ai,kj ,sjMm,kj ,sj

such that ∥fi ◦ϕ−1
i ∥∞ ≤ C1M

−α/d, and the coefficients satisfy ∥{2kjakj ,sj}j∥p ≤ C13∥fi ◦

ϕ−1
i ∥Bα

p,q
. Define

f̄ =

CM∑
i=1

f̄i ◦ ϕi × 1Ui
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one can verify that ∥f − f̃∥∞ ≤ C12CMN−α/d. On the other hand, using triangular

inequality (and padding the vectors with 0),

∥{2kjai,kj ,sj}i,j∥p ≤
CM∑
i=1

∥{2kjai,kj ,sj}j∥p ≤
CM∑
i=1

C13∥fi ◦ ϕ−1
i ∥Bα

p,q
= C13∥f ∗∥Bα

p,q(M),

which finishes the proof.

6.6.2 Neural network for chart selection

In this section, we demonstrate that a feedforward neural network can approximate

the chart selection function z×1(x ∈ B(ci, r)), and it is error-free as long as z = 0 when

r < d(x, ci) < R. We start by proving the following supporting lemma:

Proposition 6.11 Fix some constant B > 0. For any x, c ∈ RD satisfying |xi| ≤ B

and |ci| ≤ B for i = 1, . . . , D, there exists an L-layer neural network d̃(x; c) with width

w = O(d) that approximates d2(x; c) =
∑D

i=1(xi − ci)
2 such that |d̃2(x; c) − d2(x; c)| ≤

8DB2 exp(−C16L) with an absolute constant C16 > 0 when d(x; c) < τ , and d̃2(x; c) ≥ τ 2

when d(x; c) ≥ τ , and the norm of the neural network is bounded by

L∑
ℓ=1

∥Wℓ∥2F + ∥bℓ∥22 ≤ C17DL

Proof: The proof is given by construction. By Proposition 2 in Yarotsky(2017), the

function f(x) = x2 on the segment [0, 2B] can be approximated with any error ϵ > 0

by a ReLU network g having depth and the number of neurons and weight parameters

no more than c log(4B2/ϵ) with an absolute constant c. The width of the network g

is an absolute constant. We also consider a single layer ReLU neural network h(t) =

ReLU(t)− ReLU(−t), which is equal to the absolute value of the input.

Now we consider a neural network G(x; c) =
∑D

i=1 g ◦ h(xi − ci). Then for any
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x, c ∈ RD satisfying |xi| ≤ B and |ci| ≤ B for i = 1, . . . , D, we have

|G(x; c)− d2(x; c)| ≤
∣∣∣∣∣

D∑
i=1

g ◦ h(xi − ci)−
D∑
i=1

(xi − ci)
2

∣∣∣∣∣
≤

D∑
i=1

∣∣g ◦ h(xi − ci)− (xi − ci)
2
∣∣

≤ Dϵ.

Moreover, define another neural network

F (x; c) = −ReLU(τ 2 −Dϵ−G(x; c)) + τ 2

=


G(x; c) +Dϵ if G(x; c) < τ 2 −Dϵ,

τ 2 if G(x; c) ≥ τ 2 −Dϵ,

which has depth and the number of neurons no more than c′ log(4B2/ϵ) with an absolute

constant c′. The weight parameters of G are upper bounded by max{τ 2, Dϵ, c log(4B2/ϵ)}

and the width of G is O(D).

If d2(x; c) < τ 2, we have

|F (x; c)− d2(x; c)| = | − ReLU(τ 2 −Dϵ−G(x; c)) + τ 2 − d2(x; c)|

=


|G(x; c)− d2(x; c) +Dϵ| if G(x; c) < τ 2 −Dϵ,

τ 2 − d2(x; c) if G(x; c) ≥ τ 2 −Dϵ.

For the first case when G(x; c) < τ 2 − Dϵ, |F (x; c) − d2(x; c)| ≤ 2Dϵ since d2(x; c)

can be approximated by G(x; c) up to an error ϵ. For the second case when G(x; c) ≥

τ 2 − Dϵ, we have d2(x; c) ≥ G(x; c) − Dϵ ≥ τ 2 − 2Dϵ and . Thereby we also have

|F (x; c)− d2(x; c)| ≤ 2Dϵ.
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If d2(x; c) ≥ τ 2 instead, we will obtain G(x; c) ≥ d2(x; c)−Dϵ ≥ τ 2−Dϵ. This gives

that F (x; c) = τ 2 in this case.

Finally, we take ϵ = 4B2 exp(−L/c′). Then F (x; c) is an L-layer neural network with

O(L) neurons. The weight parameters ofG are upper bounded by max{τ 2, 4DB2 exp(−L/c′), cL/c′}

and the width ofG isO(D). Moreover, F (x; c) satisfies |F (x; c)−d2(x; c)| < 8DB2 exp(−L/c′)

if d2(x; c) ≤ τ 2 and F (x; c) = τ 2 if d2(x; c) ≥ τ 2.

Proposition 6.12 There exists a single layer ReLU neural network that approximates

×̃, such that for all 0 ≤ x ≤ C, y ∈ {0, 1}, x×̃y = x when y = 1, and x×̃y = 0 when

either x = 0 or y = 0.

Proof: Consider a single layer neural network g(x, y) := A2ReLU(A1(x, y)
⊤) with no

bias, where

A1 =

− 1
C

1

0 1

 , A2 =

−C
C

 .

Then we can rewrite the neural network g as g(x, y) = −CReLU(−x/C+y)+CReLU(y).

If y = 1, we will have g(x, y) = −CReLU(−x/C + 1) + C = x, since x ≤ C. If y = 0,

we will have g(x, y) = −CReLU(−x/C) = 0, since x ≥ 0. Thereby we can conclude the

proof.

By adding a single linear layer

y =
1

R− r − 2∆
(ReLU(R−∆− x)− ReLU(r +∆− x))

after the one shown in Proposition 6.11, where ∆ = 8DB2 exp(−CL) denotes the error

in Proposition 6.11, one can approximate the indicator function 1(x ∈ B(ci, r)) such that

it is error-free when d(x, ci) ≤ r or ≥ R. Choosing R ≤ τ/2, r < R− 2∆, and combining

with Proposition 6.12, the proof is finished. Considering that fi is locally supported on
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B(ci, r) for all i by our method of construction, the chart selection part does not incur

any error in the output.

6.6.3 Constructing the neural network to Approximate the tar-

get function

In this section, we provide the proof to Theorem 6.1. Combining Lemma 6.8, Proposi-

tion 6.11 and Proposition 6.12, by putting the neural network in Lemma 6.8 and Proposi-

tion 6.11 in parallel and adding the one in Proposition 6.12 after them, one can construct

a feedforward neural network with bias with depth L, width w = O(d) + O(D) = O(d),

that approximates Mm,kj ,sj(x)× 1(x ∈ B(ci, r)) for any i, j.

To construct a ResNeXt that approximates f0, we follow the method in Oono et al.

[108], Liu et al. [109]. Specifically, let the neural network constructed above has parameter

W̃
(i,j)
1 , b̃

(i,j)

1 , . . . ,W̃
(i,j)
L , b

(i,j)
L in each layer, one can construct a feedforward block without

bias as

W
(i,j)
1 =

W̃(i,j)
1 b̃

(i,j)

1 0

0 1 0

 , W
(i,j)
ℓ =

W̃(i,j)
ℓ b̃

(i,j)

ℓ

0 1

 W
(i,j)
L =


0 0

0 0

W̃
(i,j)
L b̃

(i,j)

L

 .

Remind that the input is padded with [1, 0]T before feeding into the neural network, the

above construction provide an equivalent representation to the neural network including

the bias, and route the output to the last channel. From Lemma 6.8, it can be seen that

the total square norm of this block is bounded by (6.6).

To approximate our decomposition of the target function as in (6.5), we only need

to scale the all the weights in this block with |ai,kj ,sj |1/L, setting the sign of the weight

in the last layer as sign(ai,kj ,sj), and place CMP number of these blocks in a ResNeXt.
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Since this block always output 0 in the first D+1 channels, the order and the placement

of the feedforward blocks does not change the output. The last fully connected layer can

be simply set to

Wout = [0, . . . , 0, 1], bout = 0.

Combining Proposition 5.8 and Lemma 5.15, the norm of this ResNeXt we construct

satisfy

B̄res ≤
CM∑
i=1

P∑
j=1

a
2/L
i,kj ,sj

(22k/LC15dmL+ C17DL)

≤
CM∑
i=1

P∑
j=1

(2kai,kj ,sj)
2/L(C15dmL+ C17DL)

≤ (CMP )1−2/(pL)∥{2kai,kj ,sj}∥2/Lp (C15dmL+ C17DL)

≤ (C13Cf )
2/L(CMP )1−2/(pL)(C15dmL+ C17DL),

B̄out ≤ 1.

By scaling all the weights in the residual blocks by B̄
−1/2
res , and scaling the output layer

by B̄
L/2
res , the network that satisfy (6.1) can be constructed.

Notice that the chart selection part does not introduce error by our way of construc-

tion, we only need to sum over the error in Section 6.4.1 and Section 6.4.1, and notice

that for any x, for any linear projection ϕi, the number of B-spline basis functions Mm,k,s

that is nonzero on x is no more than md logP , the approximation error of the constructed

neural network can be proved.

6.6.4 Constructing a convolution neural network to approxi-

mate the target function

In this section, we prove that any feedforward neural network can be realized by

a convolution neural network with similar size and norm of parameters. The proof is

180



Overparameterized ResNets for functions on manifolds Chapter 6

similar to Theorem 5 in [108].

Lemma 6.13 For any feedforward neural network with depth L, width w, input dimen-

sion h and output dimension h′, for any kernel size K > 1, there exists a convolution

neural network with depth L′ = L + L0 − 1, where L0 = ⌈ h−1
K−1
⌉ number of channels

w′ = 4w, and the first dimension of the output equals the output of the feedforward neu-

ral network for all inputs, and the norm of the convolution neural network is bounded

as
L′∑
ℓ=1

∥W′
ℓ∥2F ≤ 4

L∑
ℓ=1

∥Wℓ∥2F + 4wL0

where W1 ∈ Rw×h;Wℓ ∈ Rw×w, ℓ = 2, . . . , L − 1;WL ∈ Rh×w are the weights in the

feedforward neural network, and W′
1 ∈ RK×w×h,W′

ℓ ∈ RK×w×w, ℓ = 2, . . . , L′ − 1;WL ∈

RK×h×w are the weights in the convolution neural network.

Proof: We follow the same method as Oono et al. [108] to construct the CNN that

is equivalent to the feedforward neural network. By combining Oono et al. [108] lemma

1 and lemma 2, for any linear transformation, one can construct a convolution neural

network with at most L0 = ⌈ h−1
K−1
⌉ convolution layers and 4 channels, such that the first

dimension in the output equals the linear transformation, and the norm of all the weights

is no more than
L0∑
ℓ=1

4∥W′
ℓ∥2F ≤ ∥W∥2F + 4L0, (6.9)

where W is the weight of the linear transformation. Putting w number of such con-

volution neural networks in parallel, a convolution neural network with L0 layers and

4w channels can be constructed to implement the first layer in the feedforward neural

network.

To implement the remaining layers, one choose the convolution kernel W′
ℓ+L0−1)[:

, i, j] = [0, . . . ,W[i, j], . . . , 0], ∀1 ≤ i, j ≤ w, and pad the remaining parts with 0, such
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that this convolution layer is equivalent to the linear layer applied on the dimension of

channels. Noticing that this conversion does not change the norm of the parameters in

each layer. Adding both sides of (6.9) by the norm of the 2 − L-th layer finishes the

proof.

6.6.5 Covering number of a neural network block

Proposition 6.14 If the input to a ReLU neural network is bounded by ∥x∥2 ≤ Bin, the

covering number of the ReLU neural network defined in Proposition 6.19 is bounded by

N (FNN , δ, ∥ · ∥2) ≤
(
(B/L)L/2wL

δ

)w2L

Proof: Similar to Proposition 6.19, we only consider the case ∥Wℓ∥F ≤
√

B/L.

For any 1 ≤ ℓ ≤ L, for any W1, . . .Wℓ−1,Wℓ,W
′
ℓ,Wℓ+1, . . .WL that satisfy the above

constraint and ∥Wℓ − W ′
ℓ∥F ≤ ϵ, define g(. . . ;W1, . . .WL) as the neural network with

parameters W1, . . .WL, we can see

∥g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)− g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)∥2

≤ (B/L)(L−ℓ)/2∥Wℓ −W ′
ℓ∥2∥ReLU(Wℓ−1 . . . ReLU(W1(x)))∥2

≤ (B/L)(L−1)/2Binϵ.

Choosing ϵ = δ
L(B/L)(L−1)/2 , the above inequality is no larger than δ/L. Taking the sum

over ℓ, we can see that for any W1,W
′
1, . . . ,WL,W

′
L such that ∥Wℓ −W ′

ℓ∥F ≤ ϵ,

∥g(x;W1, . . .WL)− g(x;W ′
1, . . .W

′
L))∥2 ≤ δ.
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Finally, observe that the covering number of Wℓ is bounded by

N ({W : ∥W∥F ≤ B}, ϵ, ∥ · ∥F ) ≤
(
2Bw

ϵ

)w2

(6.10)

Substituting B and ϵ and taking the product over ℓ finishes the proof.

Proposition 6.15 If the input to a ReLU neural network is bounded by ∥x∥2 ≤ Bin, the

covering number of the ReLU neural network defined in Proposition 6.19 is bounded by

N (FNN , δ, ∥ · ∥2) ≤
(
Bin(B/L)L/2wL

δ

)w2L

.

Proof: Similar to Proposition 6.19, we only consider the case ∥Wℓ∥F ≤
√

B/L.

For any 1 ≤ ℓ ≤ L, for any W1, . . .Wℓ−1,Wℓ,W
′
ℓ,Wℓ+1, . . .WL that satisfy the above

constraint and ∥Wℓ − W ′
ℓ∥F ≤ ϵ, define g(. . . ;W1, . . .WL) as the neural network with

parameters W1, . . .WL, we can see

∥g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)− g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)∥2

≤ (B/L)(L−ℓ)/2∥Wℓ −W ′
ℓ∥2∥ReLU(Wℓ−1 . . . ReLU(W1(x)))∥2

≤ (B/L)(L−1)/2Binϵ.

Choosing ϵ = δ
L(B/L)(L−1)/2 , the above inequality is no larger than δ/L. Taking the sum

over ℓ, we can see that for any W1,W
′
1, . . . ,WL,W

′
L such that ∥Wℓ −W ′

ℓ∥F ≤ ϵ,

∥g(x;W1, . . .WL)− g(x;W ′
1, . . .W

′
L))∥2 ≤ δ.

Finally, observe that the covering number of Wℓ is bounded by

N ({W : ∥W∥F ≤ B}, ϵ, ∥ · ∥F ) ≤
(
2Bw

ϵ

)w2

. (6.11)
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Substituting B and ϵ and taking the product over ℓ finishes the proof.

6.6.6 Proof of Lemma 6.9: covering number of ResNet and

ResNeXt

From Proposition 6.19, Proposition 6.21 and Proposition 6.22, if any residual block is

removed, the perturbation to the output is no more than (KBm/L)
L/2B

1/2
out exp((KBres/L)

L/2)

where Bm is the total norm of parameters in this block, K = 1 when the feedforward

neural network is the backbone and K is the size of the convolution kernel when the

convolution neural network is the backbone. If all the blocks with norm no more than ϵ

is removed, the perturbation is no more than

exp((KBres/L)
L/2)B

1/2
out

∑
m:Bm<ϵ

(KBm/L)
L/2

≤ exp((KBres/L)
L/2)B

1/2
out

∑
m:Bm<ϵ

(KBm/L)(Kϵ/L)L/2−1

≤ exp((KBres/L)
L/2)KL/2BresB

1/2
out (ϵ/L)

L/2−1/L

Choosing ϵ = L
(

δL

2 exp((Bres/L)L/2)KL/2BresB
1/2
out

) 1
L/2−1

, the perturbation above is no more

than δ/2. In this case, the remaining number of blocks is no more than Bres/ϵ. Combining

this with Proposition 6.15 and ?? finishes the proof.

6.6.7 Proof of Theorem 6.3

For 1-Lipschitz loss, the proof is a direct application of Theorem 14.20 in Wainwright

[155]. Define f̃ = argminf ED[loss(f)]. any function class ∂F that is star-shaped around
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f̃ , the empirical risk minimizer f̂ = argminf∈F lossn(f) satisfy

ED[loss(f̂)] ≤ ED[loss(f̃)] + 10δn(2 + δn) (6.12)

with probability at least 1 − c1 exp(−c2nδ2n) for any δn that satisfy (6.16), where c1, c2

are universal constants.

The function of neural networks is not star-shaped, but can be covered by a star-

shaped function class. Specifically, let {f − f̃ : f ∈ FConv} ⊂ {f1 − f2 : f1, f2 ∈

FConv} := ∂F . Any function in ∂F can be represented using a ResNeXt: one can put

two neural networks of the same structure in parallel, adjusting the sign of parameters

in one of the neural networks and summing up the result, which increases M,Bres and

Bout by a factor of 2. This only increases the log covering number in (5.10) by a factor

of constant (remind that Bres = O(1) by assumption).

Taking the log covering number of the ResNeXt (6.7), the sufficient condition for the

above inequality is

n−1/2wL1/2B
1

2−4/L
res K

1−1/L
1−2/L

(
B

1/2
out exp((KBres/L)

L/2)
) 1/L

1−2/L δ
1−3/L
1−2/L
n ≲

δ2n
4σ

,

δn ≳ K(w2L)
1−2/L
2−2/LB

1
2−2/L
res

(
B

1/2
out exp((KBres/L)

L/2)
) 1/L

1−1/Ln− 1−2/L
2−2/Lσ

1−2/L
1−1/L ,

(6.13)

where ≲ hides the logarithmic term. Finally, from Theorem 6.1, the minimum width of

each subnetwork is w = O(D + dm). Because loss is 1-Lipschitz, we have

loss(f) ≤ loss(f̃) + ∥f − f̃∥∞.

Choosing

P = O
(K− 2

L−2 (D + dm)
3L−4
L−2 L

3L−2
L−2

n

)− 1−2/L
2α/d(1−1/L)+1−2/pL
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and taking it into Theorem 6.1 and Theorem 6.2 finishes the proof.

For MSE loss, the proof depends on Theorem 6.17 and Theorem 6.18, which infers

that ∥f̂ − f0∥2n ≲ ∥f ∗ − f0∥2n + δ2n + σ2/n both in expectation and with high probability.

Taking δn in (6.13) into it finishes the proof.

6.6.8 Lower bound of error

Without the loss of generalization, assume that ∂L(y)
∂y
≥ 0.5 for −ϵ ≤ y ≤ ϵ. Define

the function space

F =

{
f =

s∑
j1,...,jd=1

± ϵ

sα
×M (m)((x− j)/s)

}
, (6.14)

whereM (m) denotes the Cardinal B-spline basis function that is supported on (0, 1)d, j =

[j1, . . . , jd]. The support of each B-spline basis function splits the space into sd number

of blocks, where the target function in each block has two choices (positive or negative),

so the total number of different functions in this function class is |F| = 2s
d
. Using Dũng

[136, Theorm 2.2], we can see that for any f ∈ F ,

∥f∥Bα
p,q
≤ ϵ

sα
sα−d/psd/p = ϵ.

For a fixed f0 ∈ F , let D = {(xi, yi)}ni=1 be a set of noisy observations with yi =

f(xi) + ϵi, ϵi ∼ SubGaussian(0, σ2I). Further assume that xi are evenly distributed in

(0, 1)d such that in all regions as defined in (6.14), the number of samples is nj := O(n/sd).

Using Le Cam’s inequality, we get that in any region, any estimator θ satisfy

sup
f0∈F

ED[∥θ(D)− f0∥j ] ≥
Cmϵ

16sα
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as long as ( ϵ
σsα

)2 ≲ sd

n
, where ∥ ·∥j := 1

ni

∑
s(x−j)∈[0,1]d |f(x)| denotes the norm defined in

the block indexed by i, Cm is a constant that depends only onm. Choosing s = O(n
1

2α+d ),

we get

sup
f0∈F

ED[∥θ(D)− f0∥j ] ≥ n− α
2α+d

Observing 1
n

∑n
i=1 L((̂f(xi))) ≥ 0.5

∑n
i=1 |f(xi) − f0(xi)| ≂ 1

sd

∑
j∈[s]d ∥f̂ − f0∥j finishes

the proof.

6.6.9 Supporting theorem

Corollary 6.16 (Corollary 13.7 and Corollary 14.3 in Wainwright [155]) Let

Gn(δ,F) = Ewi

[
sup

g∈F ,∥g∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

wig(xi)

∣∣∣∣∣
]
,Rn(δ,F) = Eϵi

[
sup

g∈F ,∥g∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

ϵig(xi)

∣∣∣∣∣
]
,

denotes the local Gaussian complexity and local Rademacher complexity respectively,

where wi ∼ N (0, 1) are the i.i.d. Gaussian random variables, and ϵi ∼ uniform{−1, 1}

are the Rademacher random variables. Suppose that the function class F is star-shaped,

for any σ > 0, any δ ∈ (0, σ] such that

16√
n

∫ δn

δ2n/4σ

√
logN (F , µ, ∥ · ∥∞)dµ ≤ δ2n

4σ
.

satisfies

Gn(δ,F) ≤
δ2

2σ
. (6.15)

Furthermore, if F is uniformly bounded by b, i.e. ∀f ∈ F ,x|f(x)| ≤ b any δ > 0 such

that

64√
n

∫ δn

δ2n/2b4σ

√
logN (F , µ, ∥ · ∥∞)dµ ≤ δ2n

b
.

187



Overparameterized ResNets for functions on manifolds Chapter 6

satisfies

Rn(δ,F) ≤
δ2

b
. (6.16)

Theorem 6.17 (Theorem 14.1 in Wainwright [155]) Given a star-shaped and b-uniformly

bounded function class F , let δn be any positive solution of the inequality

R̄n(δ,F) ≤
δ2

b
,

where

R̄n(δ,F) = Ex

[
sup

finF ,∥f∥2≤δ

sup

∣∣∣∣∣ 1n
n∑

i=1

ϵif(xi)

∣∣∣∣∣
]

denotes the localized population Rademacher complexity, then for any t ≥ δn, we have

∥f∥22 ≤ 2∥f∥2n + t2 for all f ∈ F

with probability at least 1− c1 exp(−c2nt2/b2).

Theorem 6.18 (Theorem 13.13 in Wainwright [155]) Let δn be any positive solu-

tion satisfying the inequality (6.15) for the function class ∂F = {f1 − f2|f1, f2 ∈ F}.

There are universal positive constants (c0, c1, c2) such that for any t ≥ δn, with proba-

bility greater than 1 − c1 exp(−c2ntδn/σ2), the nonpara-metric least-squares estimate f̂

satisfies the bound

∥f̂ − f0∥2n ≤
1 + γ

1− γ
∥f ∗ − f0∥2n +

c0
γ(1− γ)tδn

for any γ ∈ (0, 1).
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Proposition 6.19 An L-layer ReLU neural network with no bias and bounded norm

L∑
ℓ=1

∥Wℓ∥2F ≤ B.

is Lipschitz continuous with Lipschitz constant (B/L)L/2

Proof: Notice that ReLU function is 1-homogeneous, similar to Proposition 4 in [6],

for any neural network there exists an equivalent model satisfying ∥Wℓ∥F = ∥Wℓ′∥F for

any ℓ, ℓ′, and its total norm of parameters is no larger than the original model. Because of

that, it suffices to consider the neural network satisfying ∥Wℓ∥F ≤
√
B/L for all ℓ. The

Lipschitz constant of such linear layer is ∥Wℓ|∥2 ≤ ∥Wℓ|∥F ≤
√

B/L, and the Lipschitz

constant of ReLU layer is 1. Taking the product over all layers finishes the proof.

Proposition 6.20 An L-layer ReLU convolution neural network with convolution kernel

size K, no bias and bounded norm

L∑
ℓ=1

∥Wℓ∥2F ≤ B.

is Lipschitz continuous with Lipschitz constant (KB/L)L/2

This proposition can be proved by taking Proposition 6.23 into the proof of Proposi-

tion 6.19.

Proposition 6.21 Let f = fpost ◦ (1+fNN +fother)◦fpre be a ResNeXt, where 1+fNN +

fother denotes a residual block, fpre and fpost denotes the part of the neural network before

and after this residual block, respectively. fNN denotes one of the feedforward block in

this residual block and fother denotes the other residual blocks. Assume fpre, fNN , fpost are

Lipschitz continuous with Lipschitz constant Lpre, LNN , Lpost respectively. Let the input
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be x, if the residual block is removed, the perturbation to the output is no more than

LpreLNNLpost∥x∥

Proof:

|fpost ◦ (1 + fNN + fother) ◦ fpre(x)− fpost ◦ (1 + fother) ◦ fpre(x)|

≤ Lpost|(1 + fNN + fother) ◦ fpre(x)− (1 + fother) ◦ fpre(x)|

= Lpost|fNN ◦ fpre(x)|

≤ LpreLNNLpost∥x∥

Proposition 6.22 The neural network defined in Lemma 6.9 with arbitrary number of

blocks has Lipschitz constant exp((KBres/L)
L/2), where K = 1 when the feedforward

neural network is the backbone and K is the size of the convolution kernel when the

convolution neural network is the backbone.

Proof: Note that the m-th block in the neural network defined in Lemma 6.9 can be

represented as y = fm(x;ωm)+x, where fm is an L-layer feedforward neural network with

no bias. By Proposition 6.19 and Proposition 6.20, such block is Lipschitz continuous

with Lipschitz constant 1+(KBm/L)
L/2, where the weight parameters of the m-th block

satisfy that
∑L

ℓ=1 ∥W
(m)
ℓ ∥2F ≤ Bm and

∑M
m=1Bm ≤ Bres.

Since the neural network defined in Lemma 6.9 is a composition of M blocks, it is

Lipschitz with Lipschitz constant Lres. We have

Lres ≤
M∏

m=1

(
1 +

(
KBm

L

)L/2
)
≤ exp

(
M∑

m=1

(
KBm

L

)L/2
)
,

where we use the inequality 1 + z ≤ exp(x) for any x ∈ R. Furthermore, notice that∑M
m=1(KBm/L)

L/2 is convex with respect to (B1, B2, . . . , BM) when L > 2. Since
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∑M
m=1Bm ≤ Bres and Bm ≥ 0, then we have

∑M
m=1(KBm/L)

L/2 ≤ (KBres/L)
L/2 by

convexity. Therefore, we obtain that Lres ≤ exp((KBres/L)
L/2).

Proposition 6.23 For any x ∈ Rd,w ∈ RK , K ≤ d, ∥Conv(x,w)∥2 ≤
√
K∥x∥2∥w∥2.

Proof: For simplicity, denote xi = 0 for i ≤ 0 or i > d.

∥Conv(x,w)∥22 =
∑d

i=1⟨x[i− K−1
2

: i+ K−1
2

],w⟩2

≤∑d
i=1 ∥x[i− K−1

2
: i+ K−1

2
]∥22∥w∥22

≤ K∥x∥22∥w∥22

where the second line comes from Cauchy-Schwarz inequality, the third line comes by

expanding ∥x[i − K−1
2

: i + K−1
2

]∥22 by definition and observing that each element in x

appears at most K times.
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