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ABSTRACT

A new secret sharing scheme for color images is introduced.
Using the {k, n}-secret sharing strategy the proposed method
encrypts the color image into z color shares. The secret in-
formation is recovered only if the k& (or more) allowed shares
are available for decryption. Both encryption and decryp-
tion operations are performed by operating at the bit-levels of
the decomposed color image. Modifying the spatial arrange-
ments of the binary components the method produces color
shares which vary in both the spectral characteristics among
the RGB components and the spatial correlation between the
neighboring color vectors. Since encryption is performed in
the decomposed binary domain, there is no obvious relation-
ship in the RGB color domain between any two color shares
or between the original color image and any of the » shares.
This increases protection of the secret information. Inverse
cryptographic processing of the shares must be realized in
the decomposed binary domain and the procedure reveals the
original color image with perfect reconstruction.

1. INTRODUCTION

A {k,n}-visual secret sharing (VSS) scheme is a popular
cryptographic tool used for protection of image information
[6]. Encrypting the image into n, seemingly random, shares,
the VSS technique allows for sharing of the secret image
among a group of n participants. The shared secret can be
recovered only when a coalition of &k willing participants are
polling their encrypted images, the so-called shares, together
[11,[3]. The secret information can be visually revealed if
any k (or more) recipients stack their shares printed as trans-
parencies on an overhead projector. On the other hand, any
(k—1) or fewer shares cannot be used to decrypt the trans-
mitted information.

Based on the nature of visual cryptography, the natural
images must be first binarized and then encrypted. Image
halftoning techniques [8],[9] are commonly used to convert
continuous-tone images into images with a binary represen-
tation. Due to a frosted/transparent representation of the
shares produced by the VSS schemes, the decrypted image
is never identical with the original continuous-tone image.
Moreover, the encryption procedure increases spatial resolu-
tion and decreases contrast of the decrypted binarized input.
Thus, the color visual cryptography schemes [4] which are
currently in use generate decrypted images with noticeable
visual impairments.

The proposed secret sharing scheme operates directly on
the bit planes of the color image. By stacking individually
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Figure 1: Visual cryptography demonstrated through a
{2,2}-scheme: (a) original binary image, (b,c) share images,
(d) decrypted output.

encrypted bit planes, the scheme produces # color shares use-
ful for secure distribution over the untrusted public networks.
Note that the shares vary in both the spectral characteristics
among the RGB components and the spatial correlation be-
tween the neighboring color vectors. The decryption func-
tion recovers the original color image unchanged. Since the
decrypted output is available in a digital format, this feature
in conjunction with the overall simplicity of the approach
make the method attractive for modern image processing and
communication systems.

2. CONVENTIONAL SECRET SHARING SCHEME

Due to its algorithmic nature, conventional visual cryptog-
raphy schemes operate on a binary input [5]. Assuming a
Kj x K, binary image (black and white image with 0 val-
ues denoting the black and 1 values denoting the white),
each binary pixel r(; ; determined by spatial coordinates
i=12,...,Kand j=1,2,...,K; is replaced via an encryp-
tion function f,(-) with a m; x my block of black and white
pixels in each of the n shares [7]. Repeating the process for
each input pixel, a K; x K, input binary image is encrypted
into n binary shares each one with a spatial resolution of
m K| x myK; pixels. Since the spatial arrangement of the
pixels varies from block to block, the original information
cannot be revealed without accessing a predefined number of
shares (Figure I).

Let as assume a basic {2,2}-threshold structure which is
the basic case designed within the {k,n}-VSS framework [4].
Assuming for simplicity a basic structure with 2 x 2 blocks

o / _
S1 = [S(2i71,2j71)’s(2i71,2j)7S(2i,2j71)7s(2i,2j)] € 81 and sy =
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Figure 2: Visual cryptography strategy.
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process is defined as follows:
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where Cy and C; are the sets obtained by permuting the
columns of the n x mm; basis matrices Ay and 4, respec-
tively [S]. Since mm; represents the factor by which each
share is larger than the original image, it is desirable to make
mymy as small as possible [2]. In the case of the {2,2}-VSS
the optimal choice m;| and m; leads to m; =2 and mp =2
resulting in 2 x 2 blocks s1 and s;.

forr; =0
fOI‘ r(iJ) = 1

(M

Assuming the {2,2}-VSS the sets Go
(R T T T (008 [E 0] [y
oot] €= { (51701 (oo [0 ]
[%:%:8:8} Hggﬂ [8%%8} include all matrices

obtained by by permuting the columns of the 2 x 4 basis
matrices Ay and 4, respectively [5]. The basic matrices
considered here are defined as follows:

01 01 01 0 1

AO:[I 0 1 o]’f“:{o 10 1} @)
Figure 2 shows the principle of both encryption and de-
cryption used in visual cryptography. If a secret pixel is
white, i.e. 7(; ;) = 1, then each pixel in s; is equivalent to
each pixel in s;, and thus, [s;,s2]7 can be any member of set
C1. If a secret pixel is black, i.e. r(; ;) = 0, then each pixel
in s should complement each pixel in s, and thus, [sj, sz]T
should be selected from set Cy. The choice of [sy,sy]” is

guided by a random number generator, which determines the
random character of the shares.
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Figure 3: Images obtained using by halftoning based {2,2}-
scheme [4]: (a) original color image, (b) halftone image,
(c,d) share images, (e) decrypted output image.

Decrypting 2 x 2 share blocks s; = [s’(uﬂw
S/(u,erl)’S,(qul,v)’S,(u+l,v+1)] €81 and s = [Sl(ll,t,v)’sl(/u,wrl)’
i i
S(MHN),S(HLVH)] €S, for u=13,.,2Ki —1 and
v=1,3,...,2K, — 1, used in a {2,2}-scheme the decrypted

block y of size 2 x 2 is produced as black y = [0,0,0,0] if
s1 # sp. Otherwise the share blocks s; and s; are identical
and the decrypted block is recovered with the same spatial
arrangement of binary pixels as in the share blocks.

The application of a conventional {k,n}-secret shar-
ing scheme to a Kj x K, natural image requires halftoning
[4]1,[5]. Using the approach of [4], the original color im-
age (Figure 3a) is first transformed into a K; x K, halftone
image (Figure 3b) by using the density of the net dots to
simulate the intensity levels [8]. Since each color channel
of the halftone image is a binary image, it is appropriate
for VSS-based encryption. Figure 3¢ and Figure 3d show
two 2K x 2K; color shares obtained using the {2,2} shar-
ing scheme. A 2K x 2K, color image depicted in Figure 3e
correspond to the decrypted output.

Visual inspection of both the original image shown in
Figure 3a and the recovered image depicted in Fig.3e indi-
cates that the decrypted image is darker, the input image is of
quarter size compared to the decrypted output, and the output
color image contains a number of color artifacts and shifted
colors resulting from the nature of the algorithm.

3. PROPOSED METHOD

Let x : Z2> — Z° be a K x K> Red-Green-Blue (RGB) color
image representing a two-dimensional matrix of the three-
component color vectors (pixels) x(; ;= [X(i j)1,X(i,j)2,X(i,j)3]
located at the spatial position (i, ), for i = 1,2,...,K; and
j=12,...,K;. Assuming that ¢ describes the color channel
(i.e. ¢ =1 for Red, ¢ = 2 for Green, and ¢ = 3 for Blue)
and the color component x; ;). is coded with B bits allowing

X(i j)e to take an integer value between 0 and 28 1, the color
vector x(,, .y can be equivalently expressed in a binary form

as follows: s B
Eb 1 X(1,)2 &)

where xi’i h= [x?i‘j)17 é’” X ] € {0,1}> denotes the bi-
nary vector at the b-bit level, w1th b =1 denoting the most
significant bits (MSB).
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Figure 4: Images obtained using the proposed scheme: (a)
original color image, (b,c) share images, (d) decrypted output
image.

If the c-th component of the binary vector xé’l. h is white
@, e
(i.))e

replacing x(

= 1), encryption is performed through [s1,s;]” € C
Je by binary blocks s; and s; in each of the

two shares. Otherwise, the reference binary component is
black (xé’p ge = 0), and encryption is defined via [s,s;]” €
Cy. This forms an encryption function defined as follows:

[S],Sz]T e CO /) O
[s1,82]7 €Cy  for X pe=1

for x?,

“4)

By replacing the binary components xé’i’j)c with binary
blocks s; and s; for one particular b, the process generates
two 2K x 2K, vector-valued binary shares S’l’ and 2, re-
spectively A random number generator guides the choice
of [s7,85]7 and determines the random character of S} and
S’J Thus, the process modifies both the spatial correla-
tion between spatlally neighboring binary vectors s’(b ) =

b /- b b b
[ S(u, V)1 /(u v)2’ (u v)3 ] = S or S(I v) [s/(lu,v)l’ /(Iu,v)Z’ /(,u,v)3} =
Sb foru=1,2,....2K, and v = 1,2, ..., 2K>, and the spectral

: /b 11h _
correlation among components s (uv)e O S (uv)er forc=1,2,3,

of the individual binary vectors s’(b 5 Or s’('b W respectively.

Bit-level stacklng of the encrypted bit-levels produces the

color vectors s( ) €8S and s(u ) €8S, as
B—b

= 3152 ®)
b B—b

Zb 1 S(um)2 (6)

Due to random processing taklng place at the bit-levels,
the color shares S| and S, contain only random, color noise
like information (Figure 4b,c). Since encryption is realized
in the decomposed binary vector space, no detectable rela-
tionship between the original color vectors x(, ) and the
color noise of S; or S, can be found in the RGB color
domain. This considerably increases security and prevents
unauthorized decryption through brute-force enumeration.

Since the proposed method is designed for computer-
centric processing in modern image communication sys-
tems which should utilize the complete image character-
istics of the original color input the decryption procedure

(b)

(d

Figure 5: Color shares S; and S, obtained encrypting only
the selected bit-levels: (a,b) MSB b = 1, (c,d) two most sig-
nificant bits » =1 and b = 2.

must satisfy the perfect reconstruction property. The orig-
inal color data must be recovered from the color shares
S| and S; using inverse algorithmic steps. Therefore, the
decryption procedure is applied to the decomposed binary
vector arrays of the color shares. Assuming that (i, ),
for i = 1,2,...,K; and j = 1,2,...,K>, denotes the spa-
tial position in the original image and ¢ denotes the color
channel the corresponding 2 x 2 binary share blocks are

§'b §'b b _
{S (2i-1,2j-1)¢’ (21 1,2/)c’ (212/ l)c’ (212] }ands

b /b §''b
{S(Zt 1,2j— l)c’ (2i— 12/)0’ (2i,25— l)c’ 212] } Based on the ar-

rangements of the basis matrices 4 and 4, of the {2,2}-VSS
used in this paper for image encryption, if both blocks are
consistent, i.e. s/’ =s"?, the decrypted original bit x( e

assign white, i.e. xl(’l. pe =L Otherwise, the blocks are in-

consistent, i.e. s # s”? and the original bit is recovered as
black, i.e. xé’ e = = 0. This logical comparison forms the fol-
lowing decryption function

b w oy 1 fors? =g"
X j)e = Ja(sc'ssc) = { 0 for S/cb + Sé/b (7

which is used to restore the binary vectors x?, i) The proce-

dure completes with the bit-level stacking (3) resultmg in the
original color vector X; ;).
Note that more generally, the decryption function is de-
scribed as
b b by J O for[s? "b] e
x(i,j)c_fd(sc 7sc)_{ 1 fOI'[ ] € (8)

where reciprocal operations to (1) are searched. The de-
crypted color output is depicted in Figure 4d. Since the pro-
posed method satisfies the perfect reconstruction property,
the output image is identical to the original depicted in Fig-
ure 4a.

Figure 5 allows for the visual comparison of the color
shares when cryptographic processing is applied to a reduced
set of binary levels. It can be seen that due to spatial varia-
tions of the binary components included in the sets Cy and
C of the encryption function (1) as well as the additional en-
cryption level obtained by modifying the spectral character-
istics of the image, a sufficient level of protection is achieved
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Figure 6: Color shares S; and S, obtained encrypting all
the bits b = 1,2,...,B only in a single-color channel: (a,b)
R channel with ¢ = 1, (c,d) G channel with ¢ =2, (e,f) B
channel with ¢ = 3.

by cryptographically processing the first two most significant
bits (b = 1,2) in all three RGB channels ¢ = 1,2,3. The
remaining bits of the original image vectors can be simply
copied into the shares unchanged. If this option is selected,
image decryption has to be also performed only for b = 1,2.
Applying the cryptographic operations for the MSB (Figure
5a,b) of the color image only, fine details are sufficiently en-
crypted, however, large flat regions can be visually revealed.
However, encrypting the two most significant bits b = 1,2
of the color image (Figure 5a,b), the color shares should be
sufficiently protected against unauthorized attacks.
Encrypting only either one color channel (Figure 6) or
two color channels (Figure 7) of the RGB color image,
the procedure significantly modifies color information in the
shares and introduces random, noise-like information. How-
ever such an encryption operation allows to reveal the image
content. These results clearly show that for a sufficient level
of security all the channels of the RGB image must be en-

crypted.

4. CONCLUSION

A new secret sharing scheme with perfect reconstruction of
the color inputs was introduced. The method encrypts the
color image replacing the bit components with a block of
bits for each of the color shares. Using the bit-level encryp-
tion of the color image the method produces color shares,
each with unique spatial and spectral characteristics. The
proposed bit-level encryption increases protection against at-
tacks performed in the RGB color domain. The decryption
operations performed at the bit-levels are designed to satisfy
the perfect reconstruction property and thus, the procedure
recovers the original color image unchanged. This makes the
proposed method attractive for a modern image processing
and communication system, where the decrypted output can
be used for subsequent processing tasks.

Figure 7: Color shares S and S, obtained encrypting all the
bits b= 1,2,...,B in two color channels: (a,b) RG channels
with ¢ =1 and ¢ =2, (c,d) RB channels withc =1 and ¢ =3,
(e,f) GB channels with ¢ =2 and ¢ = 3.
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